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Abstract The innate immunity helps the individuals in the exposed compart-
ment return into the ones in the susceptible compartment when a pathogen or
virus invades the local population of having four compartments: the suscep-
tible, the exposed, the infected and the recovered. In this study, we propose
a stochastic SEIR model with innate immunity and treatment. Here, Holling
type II functional responses are used to describe the saturated effects of the
innate immunity and treatment. Then, we obtain the extinction of the ex-
posed and the infected when the basic reproduction number R0 < 1 and the
exponential decline rate ν < 0 are valid. Moreover, we conclude that when
innate immunity and treatment increase, the time that the exposed and the in-
fected approach zero reduces. We also find that the deterministic SEIR model
reaches extinction a bit faster than the stochastic SEIR model. Further, the
persistence in the mean and stationary distribution of stochastic SEIR model
are obtained under suitable conditions. Finally, the numerical investigations
with two methods and a case study of Fuzhou COVID-19 epidemic of 2022 are
discussed.
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1. Model formulation

The reliable mathematical epidemic models were proposed to predict and control
the spread of infectious diseases since the pioneering work was discussed by Kermack
and McKendrick in [12]. Later, some compartment models were extensively studied
in the recent contributions [1,6,15,16,30,33–35,38,39,41,50]. The research results
showed that the transmission mechanisms of infectious diseases played a very impor-
tant role when establishing the mathematical models. Especially, the incidence rates
between the susceptible and the infected quantitatively were governed to describe
the transmission mechanisms of infectious diseases, such as the bilinear incidence
rate, the standard incidence rate, the Beddington-DeAngelis incidence rate, and the
generalized nonlinear incidence rate etc in [3,10–13,17,18,20–22,25,26,38,41,45–47].

The innate immunity, one of the main defense mechanisms formed by organisms
in the process of long-term evolution, is extensively discussed on cellular level in
recent studies [2, 7, 14, 28, 29, 31, 32, 36, 43]. Usually, the innate immunity of the
individuals plays crucial roles because the responses of innate immunity work im-
mediately or within hours after pathogens or virus invade the hosts. Meanwhile, the
innate immunity of different individuals presents distinct timelines after they are
invaded by pathogens or viruses. However, from the best knowledge of the authors,
the studies of innate immunity on population level are few for epidemic models. For
instance, the effects of immunity are considered in an impulsive stochastic model,
in which the authors of [3] mainly study the saturated tumor-immune responses.
And the nonlinear innate immunity and saturated treatment in the forms of Holling
type II are governed for an SEIS epidemic model (1.3) in [10], in which the authors
of [10] further compare the dynamics of model (5.1) with linear innate immunity
and linear treatment. In this study, we believe that the role of innate immunity
is of importance for epidemic models, we further are motivated by recent contri-
butions to establish an SEIR model with nonlinear innate immunity and nonlinear
treatment.

The aforementioned innate immunity helps the exposed getting recovery and
returning into the susceptible again, despite the impacts of innate immunity are
limited to the exposed. In this study, we use Holling type II functional response
g(E) = aE/(1 + kE) with a > 0, k ≥ 0 to describe the increasing tendency of
the impacts of innate immunity, where 1/a is the average returning period that
the exposed remove from the exposed compartment and return into the susceptible
compartment due to the existence of innate immunity; k is a non-negative con-
stant measuring the limitation in innate immunity; 1/(1+kE) declines the exposed
returning into the susceptible compartment due to low immunoglobulin and neu-
trophil deficiency as studied in [17,46]. Meanwhile, the treatment of the infected is
an effective and important measure for controlling infectious diseases. We assume
that the infected return into the susceptible compartment due to the temporary
immunity after they receive the treatment in medical agents, by governing Holling
type II functional response h(I) = γI/(1 + bI) with γ > 0, b ≥ 0. Here, 1/γ is
the average loss period of temporary immunity that the infected lose their tem-
porary immunity after they receive the treatment and return into the susceptible
compartment; b is a non-negative constant measuring the limitation in treatment
availability; 1/(1+bI) prevents the infected returning into the susceptible compart-
ment due to the limited medical resources. When b = 0, h(I) degenerates the linear
forms in [34, 35]. Moreover, some infected individuals get the lifelong immunity
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after they receive the treatment and return into the recovered compartment with
the recovery rate µ. Thus, we derive the following model:

Ṡ(t) = Γ− δS − βSI

ϕ(I)
+

aE

1 + kE
+

γI

1 + bI
,

Ė(t) =
βSI

ϕ(I)
− (δ + σ)E − aE

1 + kE
, (1.1)

İ(t) = σE − (δ + µ)I − γI

1 + bI
,

Ṙ(t) = µI − δR.

In the model (1.1), Γ is the constant recruitment rate, δ denotes the natural
death rate of the total population, β is the contact rate between the susceptible
and the infected, ϕ(I) is an increasing function with the properties that ϕ(0) = 1
and ϕ′(I) ≥ 0, σ represents the positive infection rate from the exposed to the
infected. We derive that Ṅ(t) = Ṡ(t) + Ė(t) + İ(t) + Ṙ(t) = Γ − δN(t), here
N(0) = S(0)+E(0)+ I(0)+R(0) ≥ 0. Then, it follows that lim supt→∞ N(t) < Γ

δ .

Therefore, we derive a positive invariant set Ω = {(S,E, I,R) ∈ R4
+ : N(t) < Γ

δ }.
The disease-free equilibrium point of model (1.1) is denoted by P0(

Γ
δ , 0, 0, 0). By the

next generation matrix method in [4, 5], the matrices F and V −1 are respectively
written as

F =

 0 βΓ
δ

0 0

 , V −1 =
1

(δ + σ + a)(δ + µ+ γ)

 δ + µ+ γ 0

σ δ + σ + a

 .

By Theorem 2 in [27], the basic reproduction number of model (1.1) is

R0 = ρ(FV −1) =
Γβσ

δ(δ + σ + a)(δ + µ+ γ)
. (1.2)

In fact, the endemic equilibrium point P ∗(S∗, E∗, I∗, R∗) of (1.1) is calculated as
follows:

S∗ =
1

β
(bδI∗ + µbI∗ + µ+ γ + δ)ϕ(I∗)

×
( δ + σ

bσI∗ + σ
+

a

kI∗(bδI∗ + γ + δ) + µkI∗(bI∗ + 1) + σ + bσI∗

)
,

E∗ =
b(δ + µ)(I∗)2 + (δ + µ+ γ)I∗

σ(1 + bI∗)
, R∗ =

µI∗

δ
,

and I∗ is the solution of A5ϕ(I
∗)+A4(I

∗)4+A3(I
∗)3+A2(I

∗)2+A1(I
∗)+A0 = 0,

where

A5 = −δkb2(δ + σ)(δ + µ)2 − δb(δ + µ)(δ + σ)(kγ + kδ + kµ+ bσ)

− δσb(δ + σ)(δ + µ)− kbδ(δ + σ)(δ + µ)(µ+ γ + δ)− aδσb2(δ + µ)

− δ(δ + σ)(µ+ γ + δ)(kγ + kδ + kµ+ bσ)− abδσ(2µ+ γ + 2δ)

− δσ(δ + σ)(µ+ γ + δ)− aδσ(µ+ γ + δ),

A4 = βb2k(δ + σ)(δ + µ)2,
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A3 = Γβσb2k(δ + µ)− β(δ + σ)(µ+ γ + δ)(kγ + kδ + kµ+ bσ)

− βkb(δ + σ)(δ + µ)(µ+ γ + δ) + βσγkb(δ + µ),

A2 = Γβσb(kγ + kδ + kµ+ bσ) + Γβσkb(δ + µ)− βσb(δ + σ)(δ + µ)

− β(δ + σ)(µ+ γ + δ)(kγ + kδ + kµ+ bσ) + βσγ(kγ + kδ + kµ+ bσ),

A1 = Γβσ(kγ + kδ + kµ+ bσ) + Γβσ2b− βσ(δ + σ)(µ+ γ + δ) + βσ2γ,

A0 = Γβσ2.

In the real circumstances, the existences of environmental fluctuations and pop-
ulation mobility lead to the variations on persistence and extinction of epidemic
models in [1,6,18,20,23,35,38,39,41,47–49]. Therefore, it is necessary to introduce
the environmental fluctuations into model (1.1). The independent environmental
fluctuations are proportional to S, E, I and R of model (1.1), which are pro-
vided by multiplicative white noises. More precisely, we consider a Markov process
X(t) = (S(t), E(t), I(t), R(t))T when △t → 0, and we derive the following descrip-
tions:

E[S(t+∆t)− S(t)|Xt = x] ≈
(
Γ− δS − βSI

ϕ(I)
+

aE

1 + kE
+

γI

1 + bI

)
∆t,

E[E(t+∆t)− E(t)|Xt = x] ≈
(βSI

ϕ(I)
− (δ + σ)E − aE

1 + kE

)
∆t,

E[I(t+∆t)− I(t)|Xt = x] ≈
(
σE − (δ + µ)I − γI

1 + bI

)
∆t,

E[R(t+∆t)−R(t)|Xt = x] ≈ (µI − δR)∆t,

and
Var[S(t+∆t)− S(t)|Xt = x] ≈ σ2

1S
2(t)∆t,

Var[E(t+∆t)− E(t)|Xt = x] ≈ σ2
2E

2(t)∆t,

Var[I(t+∆t)− I(t)|Xt = x] ≈ σ2
3I

2(t)∆t,

Var[R(t+∆t)−R(t)|Xt = x] ≈ σ2
4R

2(t)∆t,

where σ2
i > 0 are the intensities of white noises for i = 1, 2, 3, 4. Thus, we obtain

the following stochastic epidemic model as follows:

dS(t) =
(
Γ− δS − βSI

ϕ(I)
+

aE

1 + kE
+

γI

1 + bI

)
dt+ σ1SdB1(t),

dE(t) =
(βSI

ϕ(I)
− (δ + σ)E − aE

1 + kE

)
dt+ σ2EdB2(t),

dI(t) =
(
σE − (δ + µ)I − γI

1 + bI

)
dt+ σ3IdB3(t),

dR(t) = (µI − δR)dt+ σ4RdB4(t),

(1.3)

where Bi(t) are mutually independent standard Brownian motions with i = 1, 2, 3, 4.

Remark 1.1. We take a = 0 and γ = 0, model (1.3) turns into model (6) in [41].
When ϕ(I) = 1 + α1S + α2I, a = 0 and b = 0, model (1.3) becomes model (4)
in [18]. When ϕ(I) = 1 + αI, a = 0 and b = 0, model (1.3) turns into model (1.4)
in [44].
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Remark 1.2. When a = 0 and γ = 0 in (1.2), the expressions of the basic repro-
duction number R0 of model (6) in [41], model (4) in [18] and model (1.4) in [44]
are same. That is, R0 = Γβσ/[δ(δ + σ)(δ + µ)]. Moreover, R0 ≤ 1 and R0 > 1
determine the extinction and the persistence of these three models therein. While,
the values of a and γ of model (1.3) do not vanish, two indices R0 and Rs

0 are
given in the next investigations.

Noticing that the first three equations of model (1.1) are independent of the
recovered, we therefore investigate the dynamics of the equivalent model (1.4) as
follows:

dS(t) =
(
Γ− δS − βSI

ϕ(I)
+

aE

1 + kE
+

γI

1 + bI

)
dt+ σ1SdB1(t),

dE(t) =
(βSI

ϕ(I)
− (δ + σ)E − aE

1 + kE

)
dt+ σ2EdB2(t),

dI(t) =
(
σE − (δ + µ)I − γI

1 + bI

)
dt+ σ3IdB3(t).

(1.4)

Let (Ω, {F t}t≥0,P) be a complete probability space with a filtration {F t}t≥0 which
is increasing and right continuous while F0 contains all P-null sets. Next, we will
show a unique global positive solution to model (1.4). Then, the extinction and the
persistence in the mean for model (1.4) will be considered under proper conditions
in Section 2 and Section 3, respectively. The ergodic stationary distribution of
model (1.4) is also verified in Section 4. Finally, several numerical simulations in
Section 5 are carried out by two methods.

Remark 1.3. We take ϕ(I) = 1 and σ1 = σ2 = σ3 = 0, model (1.4) turns into
model (1.3) in [10]. Moreover, we take k = b = 0, model (1.4) turns into model (5.1)
in [10]. The expressions of basic reproduction number of model (1.3) and model
(5.1) in [10] are same with that of model (1.4) in this study.

2. Stochastic extinction

Before we discuss the dynamical behaviors of model (1.4), the unique global positive
solution to model (1.4) should be checked firstly, the corresponding proof is similar
to the proof in [20], so we only write down the following Theorem 2.1 without
details.

Theorem 2.1. For any given initial value (S(0), E(0), I(0)) in R3
+, there is a

unique solution (S(t), E(t), I(t)) to model (1.4) on t ≥ 0 and the solution will
remain in R3

+ with probability one.

Proof. We write down the lines and sentences as we did in the existence-and-
uniqueness theorem in [20]. We just omit the details of proof hereby.

Throughout this paper, we denote ⟨x(t)⟩ = 1
t

∫ t

0
x(s)ds.

Theorem 2.2. Let (S(t), E(t), I(t)) be the solution of model (1.4) with any initial
value (S(0), E(0), I(0)) in R3

+. If the basic reproduction number satisfies R0 < 1,
µ > 0.5(σ2

1 ∨ σ2
2 ∨ σ2

3) and

ν = (γ + µ+ δ)
√
R0 +min{a+ δ + σ, γ + µ+ δ}(

√
R0 − 1)
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+max{a, γ} − [2(σ−2
2 + σ−2

3 )]−1

< 0,

then, the infectious disease goes to extinction. That is, limt→∞ I(t) = 0.

Proof. We define a C2-function Z : R2
+ → R+ as follows:

Z(E, I) =
1

γ + µ+ δ

( σ

a+ δ + σ
E(t) +

√
R0I(t)

)
= θ1E(t) + θ2I(t).

By Itô’s formula, we have

d lnZ(E(t), I(t)) =
1

Z

(
θ1dE + θ2dI

)
− 1

2Z2

[
θ21(dE)2 + θ22(dI)

2
]

= L(lnZ(E(t), I(t)))dt+
1

Z

[
θ1σ2EdB2(t) + θ2σ3IdB3(t)

]
.

Based on (a2 + b2)(c2 + d2) ≥ (ac + bd)2, for a > 0, b > 0, c > 0, d > 0, then, we
get that

(θ1E + θ2I)
2 =

(
θ1σ2E

1

σ2
+ θ2σ3I

1

σ3

)2

≤ (θ21σ
2
2E

2 + θ22σ
2
3I

2)
( 1

σ2
2

+
1

σ2
3

)
. (2.1)

Therefore, from (1.4) and (2.1), we have

L lnZ(E(t), I(t)) =
1

Z

(
θ1

βSI

ϕ(I)
− θ1δE − θ1σE − θ1

aE

1 + kE
+ θ2σE

− θ2(δ + µ)I − θ2
γI

1 + bI

)
− θ21σ

2
2E

2 + θ22σ
2
3I

2

2(θ1E + θ2I)2

:= I1 − I2.

Indeed, we estimate each item by the following approaches

I1 ≤ 1

Z

{
θ1βSI − θ1δE − θ1σE − θ1aE + θ1aE − θ1

aE

1 + kE
+ θ2σE − θ2(δ + µ)I

−θ2γI + θ2γI − θ2
γI

1 + bI

}
≤ 1

Z

{
θ1βSI + θ1

[ΓβI
δ

− (δ + σ + a)E
]
+ θ2

[
σE − (δ + µ+ γ)I

]
+θ1aE + θ2γI

}
≤ θ1βS

θ2
+

1

Z

(
R0I −

σ

γ + µ+ δ
E +

√
R0σE

γ + µ+ δ
−
√
R0I

)
+max{a, γ}

=
θ1βS

θ2
+

1

Z
(
√
R0 − 1)

[
(a+ δ + σ)θ1E + (γ + µ+ δ)θ2I

]
+max{a, γ}

≤ θ1βS

θ2
+min{a+ δ + σ, γ + µ+ δ}(

√
R0 − 1) + max{a, γ},
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and I2 ≥ [2(σ−2
2 + σ−2

3 )]−1. Therefore, we derive

d lnZ(E(t), I(t)) ≤
{θ1βS

θ2
+min{a+ δ + σ, γ + µ+ δ}(

√
R0 − 1) + max{a, γ}

−[2(σ−2
2 + σ−2

3 )]−1
}
dt+

θ1σ2

Z
EdB2(t) +

θ2σ3

Z
IdB3(t).

(2.2)
Taking integration on both sides of (2.2) and divided by t, one implies that

1

t
lnZ(E(t), I(t)) ≤ 1

t
lnZ(E(0), I(0)) +

1

t

∫ t

0

θ1β

θ2
S(s)ds

+min{a+ δ + σ, γ + µ+ δ}(
√
R0 − 1) + max{a, γ}

−
[
2(σ−2

2 + σ−2
3 )

]−1
+

1

t
M1(t) +

1

t
M2(t),

(2.3)

where M1(t) =
∫ t

0
θ1σ2E(s)

Z(s) dB2(s), M2(t) =
∫ t

0
θ2σ3I(s)

Z(s) dB3(s) are local martingales,

and their quadratic variations are ⟨M1(t),M1(t)⟩ ≤ σ2
2t, ⟨M2(t),M2(t)⟩ ≤ σ2

3t. By
Lemma 2 in [23], we derive that

lim sup
t→∞

1

t
Mi(t) = 0, i = 1, 2 a.s.. (2.4)

By (2.3) and (2.4), we take the upper limit on both sides, it then follows

lim sup
t→∞

1

t
lnZ(E(t), I(t)) ≤ θ1βΓ

θ2δ
+min{a+ δ + σ, γ + µ+ δ}(

√
R0 − 1)

+max{a, γ} − [2(σ−2
2 + σ−2

3 )]−1

:= ν a.s..

If ν < 0, then we have limt→∞ I(t) = 0 and limt→∞ E(t) = 0. The proof is complete.

Remark 2.1. As claimed in Theorem 3.2 of [10] and Theorem 2.2 of this study, the
basic reproduction number R0 < 1 determines the extinction of model (1.3) of [10],
also determines the extinction of model (1.4) of this study. We investigate the
extinction time of the solution of model (1.4) with ϕ(I) = 1 in numerical simulation
section. Further, we compare the differences of the extinction time for model (1.4)
with ϕ(I) = 1 and model (1.3) of [10].

3. Stochastic persistence

The stochastic persistence of the infectious disease will be demonstrated in this
section.

Lemma 3.1. For any initial value (S(0), E(0), I(0)) ∈ R3
+, the solution (S(t), E(t),

I(t)) of model (1.4) has the following properties:

lim
t→∞

1

t
S(t) = 0, lim

t→∞

1

t
E(t) = 0, lim

t→∞

1

t
I(t) = 0 a.s.,

and

lim sup
t→∞

1

t
lnS(t) ≤ 0, lim sup

t→∞

1

t
lnE(t) ≤ 0, lim sup

t→∞

1

t
ln I(t) ≤ 0 a.s..
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Moreover, if µ > 0.5(σ2
1 ∨ σ2

2 ∨ σ2
3), then

lim
t→∞

1

t

∫ t

0

S(s)dB1(s) = 0, lim
t→∞

1

t

∫ t

0

E(s)dB2(s) = 0,

lim
t→∞

1

t

∫ t

0

I(s)dB3(s) = 0 a.s..

Proof. The proof is similar to the approaches used in [48,49]. Therefore we make
variable replacement that replace E(t) with I(t), replace I(t) with V (t), and S(t)
remains unchanged, then we easily obtain the results of Lemma 3.1. We omit the
details hereby.

Theorem 3.1. Let (S(t), E(t), I(t)) be a solution of model (1.4) with any initial
value in R3

+. If

Rs
0 =

Γβσ

(δ + 0.5σ2
1)(δ + σ + a+ 0.5σ2

2)(δ + µ+ γ + 0.5σ2
3)

> ϕ(Γδ−1) > 1,

then, model (1.4) satisfies

lim inf
t→∞

⟨I⟩t ≥
1

h

(
Rs

0 − ϕ(Γδ−1)
)
> 0, h =

β

δ + 0.5σ2
1

Rs
0.

In other words, the infectious disease will prevail in the long run.

Proof. Define Z1 = −c1 lnS − c2 lnE − c3 ln I, where c1, c2, c3 are positive con-
stants determined later. By applying Itô’s formula, which gives that

LZ1(t) = −c1Γ

S
+ c1δ +

c1βI

ϕ(I)
− c1aE

(1 + kE)S
− c1γI

(1 + bI)S
− c2βSI

Eϕ(I)
+ c2(δ + σ)

+
ac2

1 + kE
− c3σE

I
+ c3δ + c3µ+

c3γ

1 + bI
+ 0.5c1σ

2
1 + 0.5c2σ

2
2 + 0.5c3σ

2
3

< −c1Γ

S
− c2βSI

Eϕ(I)
− c3σE

I
− ϕ(I) + ϕ(I) + c1δ + c1βI

+c2δ + c2σ + ac2 + c3δ + c3µ+ c3γ + 0.5c1σ
2
1 + 0.5c2σ

2
2 + 0.5c3σ

2
3

≤ −4(c1c2c3Γβσ)
1
4 + ϕ(I) + c1

(
δ + 0.5σ2

1

)
+ c1βI

+c2
(
δ + σ + a+ 0.5σ2

2

)
+ c3

(
δ + µ+ γ + 0.5σ2

3

)
.

Let

c1 =
Rs

0

δ + 0.5σ2
1

, c2 =
Rs

0

δ + σ + a+ 0.5σ2
2

, c3 =
Rs

0

δ + µ+ γ + 0.5σ2
3

.

Then LZ1(t) ≤ −Rs
0 + ϕ(I) + hI, h = c1β, we thus derive that

dZ1(t) ≤ (−Rs
0 + ϕ(I) + hI)dt− c1σ1dB1(t)− c2σ2dB2(t)− c3σ3dB3(t). (3.1)

By Lemma 2.1, M3(t) =
∫ t

0
c1σ1dB1(s) +

∫ t

0
c2σ2dB2(s) +

∫ t

0
c3σ3dB3(s) is a local

martingale, and satisfies limt→∞
1
tM3(t) = 0. Consequently, by (3.1), the integra-
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tion implies that

lim inf
t→∞

h⟨I⟩t

≥ Rs
0 − lim sup

t→∞
⟨ϕ(I)⟩t + lim inf

t→∞

1

t
Z1(t)− lim sup

t→∞

1

t
Z1(0) + lim inf

t→∞

1

t
M3(t)

≥ Rs
0 − ϕ(Γδ−1)

> 0.

The proof is complete.

Remark 3.1. Let σ1 = σ2 = σ3 = 0. Then Rs
0 degenerates R0 as demonstrated

in (1.2).

4. Existence of stationary distribution

In this section, the existence of an ergodic stationary distribution will be proved
and sufficient conditions for the stationary will be established.

Theorem 4.1. Let (S(0), E(0), I(0)) ∈ R3
+ be any positive initial value, If Rs

0 >
ϕ(Γδ−1) > 1, then, there exists a stationary distribution µ(·) for model (1.4), which
is ergodic.

Proof. The diffusion matrix of model (1.4) is given by B̃ = diag{σ2
1S

2, σ2
2E

2,
σ2
3I

2}. Meanwhile, we select L = min(S,E,I)∈Dm⊂R3
+
{σ2

1S
2, σ2

2E
2, σ2

3I
2}. We get

3∑
i,j=1

aij(S,E, I)ξiξj = (ξ1, ξ2, ξ3)B̃(ξ1, ξ2, ξ3)
T

= σ2
1S

2ξ21 + σ2
2E

2ξ22 + σ2
3I

2ξ23

≥ L ∥ ξ ∥2,

for any (S,E, I) ∈ Dm, ξ = (ξ1, ξ2, ξ3) ∈ R3
+, where m > 1 is a sufficiently large

integer and Dm = [ 1m ,m] × [ 1m ,m] × [ 1m ,m]. Consequently, we take l-dimensional
Euclidean space El = R3

+ and U = Dm. That is, condition (A1) of [37] holds.
For M > 0 and a sufficiently small constant n > 0, we construct a nonnegative
C2-function W̃ : R3

+ → R as follows

W̃ (S,E, I) = M(−c1 lnS − c2 lnE − c3 ln I)− lnS − lnE +
1

n+ 1
(S + E + I)n+1.

It is easy to check that lim infm→∞,(S,E,I)∈R3
+\Dm

W̃ (S,E, I) = +∞. Besides,

W̃ (S,E, I) is a continuous function, and there is a minimum point P ∗(S∗, E∗, I∗)

of the function W̃ (S,E, I) in the interior of R3
+. Then a nonnegative C2-function

W is constructed as follows:

W (S,E, I) = W̃ (S,E, I)− W̃ (S∗, E∗, I∗)

= MZ1 + Z2 + Z3 + Z4 − W̃ (S∗, E∗, I∗),
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where Z1 is presented above, and define Z2 = − lnS, Z3 = − lnE, Z4 = 1
n+1 (S +

E+I)n+1. Next, we choose a positive constant M such that the following conditions
hold

η = δ − 0.5n(σ2
1 ∨ σ2

2 ∨ σ2
3) > 0,

Ξ(S,E, I) := 3Mλ+2δ+σ+a+0.5(σ2
1+σ2

2)+B−0.5η(Sn+1+En+1+In+1) ≤ −2,

where

λ = Rs
0, B = sup

(S,E,I)∈R3
+

{
Γ(S + E + I)n − 0.5η(Sn+1 + En+1 + In+1)

}
.

According to the similar discussions as shown in Theorem 3.1, we re-estimate Z1

here

LZ1(t) <− c1Γ

S
− c2βSI

Eϕ(I)
− c3σE

I
+ c1δ + c1βI + c2δ + c2σ + ac2

+ c3δ + c3µ+ c3γ + 0.5(c1σ
2
1 + c2σ

2
2 + c3σ

2
3)

≤− 3
(c1c2c3Γβσ

ϕ(I)

) 1
3

+ c1
(
δ + 0.5σ2

1

)
+ c1βI

+ c2
(
δ + σ + a+ 0.5σ2

2

)
+ c3

(
δ + µ+ γ + 0.5σ2

3

)
,

substituting c1, c2, c3 into the above expression, which gives the simplified form

LZ1(t) < −3λ
( λ

ϕ(I)

) 1
3

+ 3λ+
βλ

δ + 0.5σ2
1

I.

By the same approaches, we get

LZ2 = −Γ

S
+ δ +

βI

ϕ(I)
− aE

S(1 + kE)
− γI

S(1 + bI)
+

σ2
1

2
< −Γ

S
+ δ + βI +

σ2
1

2
,

LZ3 = − βSI

Eϕ(I)
+ δ + σ +

a

1 + kE
+

σ2
2

2
< − βSI

Eϕ(I)
+ δ + σ + a+

σ2
2

2
,

and

LZ4 = (S + E + I)n
[
Γ− δ(S + E + I)− µI

]
+
n

2
(S + E + I)n−1

(
σ2
1S

2 + σ2
2E

2 + σ2
3I

2
)

< Γ(S + E + I)n −
[
δ − n

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)
]
(S + E + I)n+1

≤ Γ(S + E + I)n − η(Sn+1 + En+1 + In+1)

< B − η

2
(Sn+1 + En+1 + In+1).

Therefore

LW̃ ≤ −3Mλ
( λ

ϕ(I)

) 1
3

+
( Mβλ

δ + 0.5σ2
1

+ β
)
I − Γ

S
− βSI

Eϕ(I)
+ Ξ(S,E, I).

Next, we construct the following bounded closed set

D =
{
(S,E, I) ∈ R3

+ : ε1 ≤ S ≤ 1

ε1
, ε2 ≤ E ≤ 1

ε2
, ε3 ≤ I ≤ 1

ε3

}
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such that condition (A2) of [37] is valid, where εi > 0 (i = 1, 2, 3) are sufficiently
small constants satisfying the expressions (4.1)– (4.6) as follows:

− Γ

ε1
+Q ≤ −1, (4.1)

− 3Mλ
( λ

ϕ(ε3)

) 1
3

+
( Mβλ

δ + 0.5σ2
1

+ β
)
ε3 + T ≤ −1, (4.2)

− βε1ε3
ε2ϕ(ε3)

+Q ≤ −1, (4.3)

− η

4εn+1
1

+ U ≤ −1, (4.4)

− η

4εn+1
3

+ Y ≤ −1, (4.5)

− η

4εn+1
2

+G ≤ −1, (4.6)

where

f(I) = 3Mλ+
( Mβλ

δ + 0.5σ2
1

+ β
)
I + 2δ + σ + a+

σ2
1 + σ2

2

2
+B,

Q = sup
(S,E,I)∈R3

+

{
f(I)− η

2
(Sn+1 + En+1 + In+1)

}
,

T = sup
(S,E,I)∈R3

+

{
Ξ(S,E, I)

}
,

U = sup
(S,E,I)∈R3

+

{
f(I)− η

4
Sn+1 − η

2
(En+1 + In+1)

}
,

Y = sup
(S,E,I)∈R3

+

{
f(I)− η

4
In+1 − η

2
(Sn+1 + En+1)

}
,

G = sup
(S,E,I)∈R3

+

{
f(I)− η

4
En+1 − η

2
(Sn+1 + In+1)

}
.

For convenience, we divide R3
+ \D into six domains:

D1 = {(S,E, I) ∈ R3
+ : 0 < S < ε1},

D2 = {(S,E, I) ∈ R3
+ : 0 < I < ε3},

D3 = {(S,E, I) ∈ R3
+ : S ≥ ε1, 0 < E < ε2, I ≥ ε3},

D4 =
{
(S,E, I) ∈ R3

+ : S >
1

ε1

}
,

D5 =
{
(S,E, I) ∈ R3

+ : I >
1

ε3

}
,

D6 =
{
(S,E, I) ∈ R3

+ : E >
1

ε2

}
.

Clearly, Dc = D1 ∪D2 ∪ · · · ∪D6. Thus, we only need to prove LW̃ (S,E, I) ≤ −1
on Dc.
Case 1. When (S,E, I) ∈ D1, by (4.1), we get that

LW̃ < −Γ

S
+
( Mβλ

δ + 0.5σ2
1

+ β
)
I + Ξ(S,E, I) ≤ − Γ

ε1
+Q ≤ −1.
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Case 2. When (S,E, I) ∈ D2, by (4.2), we have that

LW̃ < −3Mλ
( λ

ϕ(ε3)

) 1
3

+
( Mβλ

δ + 0.5σ2
1

+ β
)
I + Ξ(S,E, I) ≤ −1.

Case 3. When (S,E, I) ∈ D3, by (4.3), we have that

LW̃ <
( Mβλ

δ + 0.5σ2
1

+ β
)
I − βSI

Eϕ(I)
+ Ξ(S,E, I) ≤ − βε1ε3

ε2ϕ(ε3)
+Q ≤ −1.

Case 4. When (S,E, I) ∈ D4, by (4.4), we get that

LW̃ < −η

4
Sn+1 + f(I)− η

4
Sn+1 − η

2
(En+1 + In+1) ≤ − η

4εn+1
1

+ U ≤ −1.

Case 5. When (S,E, I) ∈ D5, by (4.5), we get that

LW̃ < −η

4
In+1 + f(I)− η

4
In+1 − η

2
(Sn+1 + En+1) ≤ − η

4εn+1
3

+ Y ≤ −1.

Case 6. When (S,E, I) ∈ D6, by (4.6), we get that

LW̃ < −η

4
En+1 + f(I)− η

4
En+1 − η

2
(Sn+1 + In+1) ≤ − η

4εn+1
2

+G ≤ −1.

The proof is complete.

5. Examples with numerical simulations

The numerical simulations are demonstrated by two examples in this section. The
comparison investigations of Milstein’s higher order method (MHOM in [8]) and pos-
itivity preserving truncated Euler-Maruyama method (PPTEM in [24]) are operated
in the first example. A case study is extensively discussed on Fuzhou COVID-19
epidemic of 2022 as the second example. The parameter values of the simulations
in Example 5.1, Example 5.2 and Example 5.3 are provided in Table 1.

5.1. Two types of discretization equations

(i) Discretization equation with MHOM. With MHOM in [8], model (1.4) is written
as follows:

S(tk+1) = S(tk) +
[
Γ− δS(tk)−

βS(tk)I(tk)

ϕ(I(tk))
+

aE(tk)

1 + kE(tk)
+

γI(tk)

1 + bI(tk)

]
∆t

+ σ1S(tk)ξ1
√
∆t+

σ2
1

2
S(tk)(ξ

2
1 − 1)∆t,

E(tk+1) = E(tk) +
[βS(tk)I(tk)

ϕ(I(tk))
− δE(tk)− σE(tk)−

aE(tk)

1 + kE(tk)

]
∆t

+ σ2E(tk)ξ2
√
∆t+

σ2
2

2
E(tk)(ξ

2
2 − 1)∆t,

I(tk+1) = I(tk) +
[
σE(tk)− (δ + µ)I(tk)−

γI(tk)

1 + bI(tk)

]
∆t

+ σ3I(tk)ξ3
√
∆t+

σ2
3

2
I(tk)(ξ

2
3 − 1)∆t,
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Table 1. Parameter values of the simulations in Example 5.1, Example 5.2 and Example 5.3.

Group Γ β δ a γ σ

(I) 0.20 0.01 0.04 0.15 0.10 0.08

(II) 0.65 0.70 0.15 0.25 0.20 0.25

(III) 488.39 1.99× 10−6 1.67× 10−5 0.22 0.18 0.25

Group σ1 σ2 σ3 k b ϕ(I)

(I) 0.0080 0.006 0.03 1 1 1 + 0.25I

(II) 0.0100 0.006 0.02 1 1 1 + 0.25I

(III) 0.0005 0 0 1/70 1/360 1 + 0.25I

Group µ ∆t S(0) E(0) I(0)

(I) 0.20 0.001 0.8 0.7 0.6

(II) 0.25 0.001 0.8 0.7 0.6

(III) 0.03 0.001 8,291,268 350 20

1 For Group (III), the main parameters of model (1.4) are computed as Γ = 0.0215 ×
8291268/365 = 488.39, δ = 0.0061/365 = 1.67 × 10−5, where 0.0215 is yearly growth rate
and 0.0061 is yearly natural death rate by Fujian Bureau of Statistics in [51]. By the idea of
Least Square, β = 1.99× 10−6 is obtained. By surveillance data from Fujian CDC, µ = 0.03
is derived. The initial values S(0), E(0), I(0) are from the reported data released by Fujian
Provincial Health Commission in [52].

where σ2
i > 0 (i = 1, 2, 3) are the intensities of the white noises, the time increment

∆t is positive, and ξi (i = 1, 2, 3) are independent Gaussian random variables which
follow the normal distribution N (0, 1) for k = 0, 1, 2, · · · , n.

(ii) Discretization equation with PPTEM. By PPTEM in [24], model (1.4) is
written below:

S(tk+1) = S(tk) + (Γ + f11 + f12)∆t+ g1
√
∆t,

E(tk+1) = E(tk) + (f21 + f22)∆t+ g2
√
∆t,

I(tk+1) = I(tk) + (f31 + f32)∆t+ g3
√
∆t,

where

f11 = −δπ̂0(S(tk)), f12 = −βπ̂0(S(tk)I(tk))

ϕ(π̂0(I(tk)))
+

aπ̂0(E(tk))

1 + kπ̂0(E(tk))
+

γπ̂0(I(tk))

1 + bπ̂0(I(tk))
,

f21 = −(δ + σ)π̂0(E(tk)), f22 =
βπ̂0(S(tk)I(tk))

ϕ(π̂0(I(tk)))
− aπ̂0(E(tk))

1 + kπ̂0(E(tk))
,

f31 = σπ̂0(E(tk))− (δ + µ)π̂0(I(tk)), f32 = − γπ̂0(I(tk))

1 + bπ̂0(I(tk))
,

g1 = σ1π̂0(S(tk))r1,k, g2 = σ2π̂0(E(tk))r2,k,

g3 = σ3π̂0(I(tk))r3,k, π̂0(u) = max{0, u},

and ri,k (i = 1, 2, 3, k = 0, 1, 2, 3, · · · ) are independent random variables with the
normal distribution N (0, 1).

5.2. Numerical simulations of stochastic extinction and per-
sistence of model (1.4)

Example 5.1. (Stochastic extinction) We choose the parameter values in Group
(I) in Table 1, according to Theorem 2.2, then, model (1.4) admits a disease-free
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equilibrium point P0(5, 0, 0), and R0 = 0.0435 < 1, µ = 0.2 > 0.5(σ2
1 ∨ σ2

2 ∨ σ2
3) =

0.00005. The corresponding simulations are demonstrated by MHOM and PPTEM
in Figure 1 as n = 30000. Moreover, the extinction time for model (1.4) with
σ1 = σ2 = σ3 = 0 are compared, from which we conclude that the extinction time
for the exposed and the infected of model (1.4) becomes a bit later as presented in
Figure 2. We also notice that when the values of b and k turn out to be smaller, the
extinction time that the infected individuals spent gets earlier as shown in Figure 3.
When the larger fluctuations σ1 = 0.1, σ2 = 0.1, σ3 = 0.2 and n = 20000 are
given, the corresponding simulations show that the disease reaches extinction faster
in Figure 4.
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Figure 1. Stochastic extinction of E and I under Group (I) of model (1.4) with MHOM and PPTEM.
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Figure 2. Comparisons of the extinctions of E and I for deterministic model and stochastic model
under PPTEM.
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Figure 3. Stochastic extinctions of E and I to model (1.4) with PPTEM. Top for changes of k, bottom
for changes of b.
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Figure 4. Stochastic extinction of E and I to model (1.4) under MHOM and PPTEM with larger
fluctuations σ1 = 0.1, σ2 = 0.1, σ3 = 0.2.

Example 5.2. (Stochastic persistence) We use the parameter values in Group (II)
in Table 1, then, model (1.4) admits an endemic equilibrium point P ∗(S∗, E∗, I∗) =
(1.6884, 1.1348, 0.5228) by PPTEM. Moreover, we have Rs

0 = 2.1652 > 1, and
lim inft→∞⟨I⟩t ≥ 0.3818. Therefore, we take n = 100000, model (1.4) admits a sta-
tionary distribution presented by Theorem 3.1 and Theorem 4.1, and the stochastic
persistence of model (1.4) is demonstrated in Figure 5.
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Figure 5. Left for histogram of S, E, and I to model (1.4), right for stochastic persistence of S, E and
I to model (1.4) with MHOM and PPTEM.
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5.3. Numerical simulations of Fuzhou COVID-19 epidemic in
2022

Example 5.3. (A case study of Fuzhou COVID-19 epidemic). Since Chinese gov-
ernment issued Twenty Measures on November 11 of 2022, and New Ten Measures
on December 7 of 2022, the tendency of Fuzhou COVID-19 epidemic fluctuated dur-
ing the period from November 22 to December 12 of 2022. We take the parameter
values of Group (III) in Table 1 and the awareness delay is set as 6 days by [9,40,42].
The numerical simulations are operated by PPTEM based on the surveillance data
from Fujian Provincial Center for Disease Control and Prevention (short for, Fujian
CDC) in Figure 6.
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Figure 6. Cumulative number of infection cases for Fuzhou COVID-19 epidemic led by SARS-CoV-2
Omicron BA.5.2 from October 23 to December 22 of 2022.
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Figure 7. Numerical simulations of E, I, g(E) and h(I) for 300 days to Fuzhou epidemic by using
model (1.4) with σ1 = 0.0005, σ2 = 0, σ3 = 0.

The results of numerical simulations reveal the peak of E on the 10th day with
622 cases, and the peak of I on the 18th day with 620 cases as shown in Figure 7.
Meanwhile, the decreasing of k implies the increasing of the innate immunity, the
decreasing of b implies the increasing of the treatment availability, further, the time
that both E and I approach zero reduces in Figure 8, which are consistent with the
results in Figure 3.

6. Conclusion

The innate immunity of the individuals is usually regarded as the protection abil-
ities during the progress that pathogen or virus invades the hosts. So, the innate
immunity plays a vital role in controlling of the infectious diseases. We consider
the innate immunity in the form of Holling type II functional response in this pa-
per, instead of linear form, to establish a nonlinear stochastic epidemic model with
innate immunity. Then, the stochastic extinction and stochastic persistence under
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Figure 8. Stochastic extinctions of E and I to Fuzhou epidemic by using model (1.4) with σ1 = 0.0005,
σ2 = 0, σ3 = 0. Top for changes of b, bottom for changes of k.

moderate conditions, the existence of stationary distribution are extensively dis-
cussed. Therefore, the main numerical simulations by two methods are performed
to demonstrate the differences therein.

We show that model (1.4) admits a unique global positive solution with the
positive initial value. Further, we derive that the infectious disease approaches
the extinction when R0 < 1, ν < 0 and 2µ > σ2

1 ∨ σ2
2 ∨ σ2

3 are valid as shown
in Figure 1. Meanwhile, the persistence in the mean and the existence of ergodic
stationary distribution to model (1.4) are obtained when Rs

0 > ϕ(Γδ−1) held. The
results show that the parameters a and k of innate immunity are involved into the
sufficient conditions of the extinction, persistence in the mean and ergodic stationary
distribution to model (1.4). We explore that the increasing values of k and b make
the time that the exposed and the infected approaches zero earlier as demonstrated
in Figure 3 and Figure 8. That is to say, the individuals with low innate immunity
in the population take high risks against infection, these individuals should be
treated promptly by medical agents. The main results of this study improve the
ones in model (6) of [41], model (4) of [18] and model (1.4) of [44] for the case of
a = 0 and γ = 0, which provides a new biological perspective to the respiratory
infectious diseases. Moreover, we are motivated by results of two-group SEIR model
in [19], intend to propose a multi-group stochastic SEIR with time delay in the next
investigation.
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