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FRACTIONAL DIFFERENTIAL EQUATIONS
WITH FUNCTIONAL BOUNDARY VALUE

CONDITIONS∗
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Abstract The purpose of this paper is to develop the existence theory for
a functional boundary problem of sequential fractional differential equations
involving Caputo fractional derivatives of order α+1 with n−1 < α ≤ n. The
main goal of the current contribution is to use Mawhin’s coincidence degree
theory and a few novel operators to derive sufficient criteria for the existence
of solutions to the resonance problems at hand. An example that is relevant
is given to support the findings.
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1. Introduction

The subject of perfect fractional derivatives is a long-standing topic that is still be-
ing widely researched. Fractional calculus has grown in popularity and relevance as
a result of its widespread use in engineering sciences, economics, physics, quantum
mechanics, and biology. The common applications in several domains have inad-
vertently contributed to the theoretical study of fractional derivatives. As a result,
we will look at the sequential fractional derivatives listed sequentially below.

Miller and Ross introduced the concept of this derivative in [23], and it is widely
recognized as a generalized expression. Since sequential fractional derivatives and
non-sequential fractional derivatives are closely related [9, 33], researchers have fo-
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cused on finding solutions to sequential fractional differential equations with various
initial and boundary value conditions [1, 2, 7, 13, 15, 28, 31, 34, 35]. We will discuss
some of their works here.

In [34], the authors considered the existence of minimal and maximal solutions
and uniqueness of solution of the initial value problem for fractional differential
equation involving Riemann-Liouville sequential fractional derivative, using the
method of upper and lower solutions and its associated monotone iterative method.

(
D2α

0+y
)
(x) = f

(
x, y(x),Dα

0+y(x)
)
, x ∈ (0, T ],

x1−αy(x)|x=0 = y0, x
1−α(Dα

0+y)(x)|x=0 = y1,

where 0 < T < +∞ and f ∈ C([0, T ]× R× R).
Zhang and Su [31] obtained the existence and uniqueness results for a periodic

boundary value problem of nonlinear sequential fractional differential equations by
the method of upper and lower solutions, together with the monotone iterative
technique. D2αx(t) = f

(
t, x(t),Dαx(t)

)
, t ∈ (0, 1], 1 < α ≤ 1,

x(0) = x(1),Dαx(0) = Dαx(1),

where f(t, x, y) is a continuous E-value function on [0, 1] × E × E, Dα is the con-
formable fractional derivative of order α,and D2α = DαDα is the conformable se-
quential fractional derivative.

As for sequential fractional differential equations associated with boundary value
conditions, we refer the reader to a series of papers [3–6,8,10–12,16,17,21,24–26,29,
30]. For example, in [4], the authors are concerned with the existence and unique-
ness of solutions for a coupled system of Caputo-type sequential fractional differ-
ential equations supplemented with nonlocal Riemann-Liouville integral boundary
conditions via Leray-Schauder’s alternative and Banach’s contraction principle. (CDq + kCDq−1)x(t) = f

(
t, x(t), y(t)

)
, t ∈ [0, 1], 2 < q ≤ 3, k > 0,

(CDp + kCDp−1)y(t) = g
(
t, x(t), y(t)

)
, t ∈ [0, 1], 2 < p ≤ 3, k > 0,

supplemented with coupled nonlocal integral boundary conditions
x(0) = 0, x′(0) = 0, x(ζ) = a

∫ η

0

(η − s)β−1

Γ(β)
x(s)ds, β > 0, 0 < η < ζ < 1,

y(0) = 0, y′(0) = 0, y(z) = b

∫ θ

0

(θ − s)γ−1

Γ(γ)
y(s)ds, γ > 0, 0 < θ < z < 1,

where CDq, CDp denote the Caputo fractional derivatives of order q and p respec-
tively, f, g : [0, 1] × R × R → R are given continuous functions, and a, b are real
constants.

Ahmad and Ntouyas [3] studied a nonlinear three-point boundary value problem
of sequential fractional differential equations of order α with 1 < α ≤ 2.CDα(D + λ)x(t) = f

(
t, x(t)

)
, 0 < t < 1,

x(0) = 0, x′(0) = 0, x(1) = βx(η), 0 < η < 1,
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where CDα is the Caputo fractional derivative, D is the ordinary derivative, f :
[0, 1] × R → R, λ is a positive real number and β is a real number such that

β ̸= λ+e−λ−1
λη+e−λη−1

.

Salem and Almaghamsi [29] showed the existence of a solution for the boundary
value problem by using the coincidence degree theory due to Mawhin [14].CDα(D + λ)x(t) = g

(
t, x(t), x′(t),CDα−1x(t)

)
+ e(t), t ∈ [0, 1],

x(0) = 0, x′(0) = 0, x(1) = βx(η), 0 < η < 1,

where CDα represents the Caputo derivative of fractional order 1 < α ≤ 2, while
D denotes the first derivative, g : [0, 1] × R3 → R is a function verifying with
the Carathéodory conditions, e(t) ∈ L1[0, 1], λ ∈ R+ and β ∈ R such that β =
λ+e−λ−1

λη+e−λη−1
.

Recently, much interest [19, 20, 32, 36, 37] has developed related to the exis-
tence of solutions for fractional differential equations when subjected to functional
boundary conditions. The valuable point is that the boundary value conditions can
generalize recent work on multi-point and integral boundary value conditions. [36]
discussed the existence of solutions for resonant functional problems involving both
left Riemann-Liouville and right Caputo-type fractional derivatives, relying on the
coincidence degree theory due to Mawhin.−CDα

1−D
β
0+u(t) + f(t, u(t), Dβ

0+u(t), D
β+1
0+ u(t)) = 0, t ∈ (0, 1),

Dβ−1
0+ u(0) = 0, I2−β

0+ u(0) = 0, T1(u) = 0, T2(u) = 0,

where f ∈ C([0, 1]×R3,R), 1 < α, β ≤ 2, such that α+β > 3, T1, T2 are continuous
linear functionals with the resonance condition: T1(t

β+1)T2(t
β) = T1(t

β)T2(t
β+1).

To the best of our knowledge, the problem of sequential operators of high order
with functional boundary value conditions has rarely been explored, and based on
this perspective and the motivation of the above papers, we establish the existence
of solutions for the following nonlinear sequential fractional differential equation
subject to functional boundary value conditions.

(C
Dα+1

0+ +

n−1∑
i=0

Ci+1
n µi+1 CDα−i

0+

)
u(t) = f

(
t, u(t), u′(t), . . . , u(n)(t)

)
, t ∈ [0, 1],

u(0) = u′(0) = · · · = u(n−1)(0) = 0, B(u) = 0,

(1.1)
where CDα

0+ is the Caputo fractional derivative, n − 1 < α ≤ n, Ci+1
n is the usual

notation for the binomial coefficients, µ is a positive real number, and B : Cn[0, 1] →
R is a continuous linear functional.

A boundary value problem is said to be at resonance if the corresponding ho-
mogeneous boundary value problem has a non-trivial solution, which means that

the linear operator Lu =
(C
Dα+1

0+ +
n−1∑
i=0

Ci+1
n µi+1 CDα−i

0+

)
u corresponding to (1.1)

has nontrivial solutions(more details can be found in Lemma 3.4 below). So, the

resonance condition: B(Φ(t)) = 0(Φ(t) = 1 − e−µt
n−1∑
i=0

(µt)i

i! will be obtained. We

will always suppose f : [0, 1]× Rn+1 → R satisfies the following conditions:
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(1) f(·, u) is measurable for each fixed u ∈ Rn+1, f(t, ·) is continuous for a.e.,t ∈
[0, 1].

(2) sup{|f(t, u)| : u ∈ D0} < +∞, for any compact set D0 ∈ Rn+1.
The present study is novel in the given configuration and enriches the literature

on boundary value problems of sequential fractional differential equations, which
has a high degree of generality. It includes the following features: we analyze
the functional boundary conditions and treat the details in the paper with various
innovations, like the design of the projection operator Q, in addition to improving
the order of the sequential derivatives. We can attempt to locate the resonance
solution using different approaches in the future, such as the fixed point theorem,
monotonic iteration techniques, etc., in addition to the methods described in this
paper. Of course, one can also investigate the characteristics of the solution.

This paper is structured as follows: the next part covers some introductions and
fundamental ideas related to linear operators, the coincidence degree continuation
theorem, and fractional calculus. In Section 3, we discusses two types of problems.
Subsection 3.1, by means of the Banach fixed point theorem, discusses the non-
resonant case and yields solvability results of the problem. Subsection 3.2 discusses
the existence of solution in the resonance sense by Mawhin’s coincidence theory’s
extension theory. A numerical example is provided in section four to demonstrate
our key theorems.

2. Preliminaries

Definition 2.1. (see [18,23,27]) The Riemann-Liouville fractional integrals of order
α > 0 of a function y ∈ L1(0, 1) is given by

Iαa+y(t) =
1

Γ(α)

∫ t

a

(t− s)α−1y(s)ds,

where the right side is pointwise defined on (a,+∞).

Definition 2.2. (see [18, 23, 27]) The Caputo fractional derivatives of order α > 0
of a function y ∈ ACn[a, b] is given by

CDα
a+
y(t) =

1

Γ(n− α)

∫ t

a

(t− s)n−α−1y(n)(s)ds,

where n = [α] + 1, [α] denotes the integer part of number α, and the right side is
pointwise defined on (a,+∞).

Lemma 2.1. (see [18,23,27]) Let α > 0. If u(t) ∈ ACn[a, b] or u(t) ∈ Cn[a, b], then
the fractional differential equation cDα

a+u(t) = 0 (or cDα
b−
u(t) = 0) has solution

u(t) = c0 + c1(t− a) + c2(t− a)2 + . . .+ cn−1(t− a)n−1,

where ci =
u(i)(a)

i!
∈ R, i = 0, 1, . . . , n− 1, and n = [α] + 1.

Lemma 2.2. (see [18,23,27])
(1) Let α > 0; If u(t) ∈ ACn[a, b] or u(t) ∈ Cn[a, b], then one has

Iαa+
cDα

0+u(t) = u(t)− c0 − c1(t− a)− c2(t− a)2 − . . .− cn−1(t− a)n−1,
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where ci =
u(i)(a)

i!
∈ R, i = 0, 1, . . . , n− 1, and n = [α] + 1;

(2) The equality cDβ
0+I

β
0+y = y holds for every β > 0 and y ∈ L1[0, 1].

Definition 2.3. ( [14, 22]) Let X, Z be real Banach spaces, L : domL ⊂ X → Z
be a linear operator. X is said to be the Fredholm operator of index zero provided
that:

(i) ImL is a closed subset of Y ;

(ii) dim KerL = codim ImL < +∞.

Let P : X → X, Q : Z → Z are continuous projectors such that ImP =
KerL, KerQ = ImL, X = KerL ⊕ KerP and Z = ImL ⊕ ImQ. It follows that
L|domL∩KerP : domL ∩ KerP → ImL is reversible. We denote the inverse of the
mapping by KP (generalized inverse operator of L). If Ω is an open bounded subset
of X such that domL∩Ω ̸= ∅, the mapping N : X → Z will be called L− compact
on Ω, if QN(Ω) and KP (I −Q)N : Ω → X are continuous and compact.

Theorem 2.1. (see [14,22] Mawhin continuation theorem) Let L : domL ⊂ X → Z
be a Fredholm operator of index zero and N : X → Z is L-compact on Ω. Assume
that the following conditions are satisfied:

(i) Lu ̸= λNu for every (u, λ) ∈ [(domL \KerL) ∩ ∂Ω]× (0, 1);

(ii) Nu /∈ ImL for every u ∈ KerL ∩ ∂Ω;

(iii) deg(QN |KerL,Ω ∩ KerL, 0) ̸= 0, where Q : Z → Z is a continuous projection
such that ImL = KerQ.

Then the equation Lu = Nu has at least one solution in domL ∩ Ω.

Take X = Cn[0, 1] with the norm ∥u∥ = max
{
∥u∥∞, ∥u′∥∞, . . . , ∥u(n)∥∞

}
,

where ∥u∥∞ = max
t∈[0,1]

|u(t)|.

Let Y = L1[0, 1] be endowed with the norm ∥y∥1 =

∫ 1

0

|y(t)|dt. Obviously,

(X, ∥ · ∥) and (Y, ∥ · ∥1) are Banach spaces.

3. Main results

We will discuss two types of solutions to (1.1), i.e., one for the non-resonance case
and the other for the resonance case.

Define the operators L : domL ⊂ X → Y,N : X → Y as follows:

Lu =
(C
Dα+1

0+ +

n−1∑
i=0

Ci+1
n µi+1CDα−i

0+

)
u(t), Nu = f

(
t, u(t), u′(t), . . . , u(n)(t)

)
,

where domL = {u ∈ X :C Dα+1−i
0+ u ∈ Y, i = 0, 1, . . . , n, u(0) = u′(0) = · · · =

u(n−1)(0) = 0, B(u) = 0}. So the problem (1.1) becomes Lu = Nu.
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3.1. Non-resonance case

If B(Φ(t)) ̸= 0 holds, then KerL = {0}. It is so-called non-resonance case. As to
this case, the problem (1.1) can be transformed into an operator equation.

Lemma 3.1. If B(Φ(t)) ̸= 0 holds, then the boundary value problem (1.1) has a
unique solution if and only if the following operator T : X → X has a unique fixed
point, where

T (u)(t)

=
1

(n− 1)!

∫ t

0

(t− s)n−1e−µ(t−s)(Iα−n+1
0+ f(s, u(s), u′(s), . . . , u(n)(s))ds

−
B
(

1
(n−1)!

∫ t

0
(t− s)n−1e−µ(t−s)(Iα−n+1

0+ f(s, u(s), u′(s), . . . , u(n)(s))ds
)

B(Φ(t))
Φ(t).

(3.1)

Proof. If u is a solution to Tu = u, we get

(C
Dα+1

0+ +

n−1∑
i=0

Ci+1
n µi+1 CDα−i

0+

)
u(t) = f

(
t, u(t), u′(t), . . . , u(n)(t)

)
.

Considering u ∈ Cn[0, 1] and Φ(t) = 1− e−µt

n−1∑
i=0

(µt)i

i!
, we have

u(0) = u′(0) = · · · = u(n−1)(0) = 0.

Based on the linearly of B and (3.1), we have

B(u)

=B
( 1

(n− 1)!

∫ t

0

(t− s)n−1e−µ(t−s)(Iα−n+1
0+ f(s, u(s), u′(s), . . . , u(n)(s))ds

)
−
B
(

1
(n−1)!

∫ t

0
(t− s)n−1e−µ(t−s)(Iα−n+1

0+ f(s, u(s), u′(s), . . . , u(n)(s))ds
)

B(Φ(t))
B(Φ(t))

=0.

So, we have u, which is a solution to BVP(1.1). If u is a solution to BVP(1.1), then

T (u)(t)

=
1

(n− 1)!

∫ t

0

(t− s)n−1e−µ(t−s)(Iα−n+1
0+ f(s, u(s), u′(s), . . . , u(n)(s))ds

−
B
(

1
(n−1)!

∫ t

0
(t− s)n−1e−µ(t−s)(Iα−n+1

0+ f(s, u(s), u′(s), . . . , u(n)(s))ds
)

B(Φ(t))
Φ(t)

=
1

(n− 1)!

∫ t

0

(t− s)n−1e−µ(t−s)(Iα−n+1
0+ (CDα+1

0+ +

n−1∑
i=0

Ci+1
n µi+1 CDα−i

0+ )u(s))ds

−
B

(
1

(n−1)!

∫ t
0
(t−s)n−1e−µ(t−s)(Iα−n+1

0+
(CDα+1

0+
+

n−1∑
i=0

Ci+1
n µi+1 CDα−i

0+
)u(s))ds

)
B(Φ(t)) Φ(t)
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=u(t)− u(n)(0)

µn
Φ(t) +

u(n)(0)

µn
Φ(t)

=u(t).

From the above two arguments, we get that BVP(1.1) has a unique solution in X
if and only if the operator equation Tu = u has a unique solution in X.

By making use of lemma 3.1, we can obtain the following existence theorem for
BVP(1.1) at non-resonance.

Theorem 3.1. Let f : [0, 1] × Rn+1 → R be a Carathéodory function. Assume
B(Φ(t)) ̸= 0 and the following conditions hold:

(C1):

k∑
i=0

Ci
k|µ|

k−i
e−µt

Γ(α− i+ 2)
+

B(tα+1)

Γ(α+ 2)|B(Φ(t))|
max{1 + n2kµn+k−1, 1 + n2kµk} < 1.

(C2): For almost every t ∈ [0, 1], then, ∀(u1, u2, . . . , un+1), (v1, v2, . . . , vn+1) ∈
Rn+1,

|f(t, u1, u2, . . . , un+1)− f(t, v1, v2, . . . , vn+1)|
≤max{|u1 − v1|, |u2 − v2|, . . . , |un+1 − vn+1|}.

(C3): If each u1, u2 ∈ X satisfy |u1(t)| ≤ |u2(t)|,∀t ∈ [0, 1], then |B(u1)| ≤ |B(u2)|.

Then BVP(1.1) has a unique solution in X.

Proof. We shall prove that Tu = u has a unique solution in X. By Leibniz product
rule and derivative forms of each order of Φ(t),

T (k)(u)(t)

=

k∑
i=0

Ci
k(e

−µt)(k−i)In−i
0+ (eµtIα−n+1

0+ f(t, u(t), u′(t), . . . , u(n)(t)))

−
B
(

1
(n−1)!

∫ t

0
(t− s)n−1e−µ(t−s)(Iα−n+1

0+ f(s, u(s), u′(s), . . . , u(n)(s))ds
)

B(Φ(t))
Φ(k)(t),

where k = 0, 1, . . . , n.
For each u, v ∈ X, by making use of (C2)− (C3) and the linearly of B, we have

|T (k)(u)(t)− T (k)(v)(t)|

=|
k∑

i=0

Ci
k(e

−µt)(k−i)In−i
0+ (eµtIα−n+1

0+

(
f(t, u(t), u′(t),

. . . , u(n)(t))− f(t, v(t), v′(t), . . . , v(n)(t)))
)

−
B
(
e−µtIn0+e

µt
(
Iα−n+1
0+ (f(t, u(t), u′(t), . . . , u(n)(t))− f(t, v(t), v′(t), . . . , v(n)(t)))

))
B(Φ(t))

Φ(k)(t)|

≤
k∑

i=0

Ci
k|µ|

k−i
e−µt

Γ(α− i+ 2)
∥u− v∥+ B(tα+1)|Φ(k)(t)|

Γ(α+ 2)|B(Φ(t))|
∥u− v∥

≤∥u− v∥
( k∑

i=0

Ci
k|µ|

k−i
e−µt

Γ(α− i+ 2)
+

B(tα+1)

Γ(α+ 2)|B(Φ(t))|
max{1+n2kµn+k−1, 1+n2kµk}

)
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Since

|Φ(k)(t)| ≤

1 + n2kµn+k−1, µ > 1,

1 + n2kµk, µ ≤ 1, k = 0, 1, 2, . . . , n.

Considering (C1), the above inequality implies that T is a contraction. By using
Banach′s contaction principle, Tu = u has a unique solution in X. From lemma
3.1, BVP(1.1) has a unique solution in X.

3.2. Resonance case

In this part, noting that if B(Φ(t)) = 0 holds, then KerL = {cΦ(t) : c ∈ R}. It is
so-called resonance case. To obtain our main results, we will introduce the following
conditions:

(H0) The functional B : X → R is linear continuous with the norm β, that is,
|B(u)| ≤ β∥u∥. In addition, B(e−µtIn0+

(
eµtIα−n+1

0+ 1
)
) ̸= 0.

(H1) There exist nonnegative functions pi(t), q(t) ∈ Y such that

|f(t, u1, u2, . . . , un+1)|

≤
n+1∑
i=1

pi(t)|ui(t)|+ q(t), ∀(t, u1, u2, . . . , un+1) ∈ [0, 1]× Rn+1,

where if µ > 1, A(eµ · nµn−1 + 1)
n∑

i=0

∥pi+1∥1 < 1; If µ ≤ 1, A(eµ · n

+ 1)
n∑

i=0

∥pi+1∥1 < 1;

A :=
1

Γ(α− n+ 2)
+

n−1∑
k=0

Ck
nµ

n−k
k∑

i=0

1

Γ(α− k + i+ 2)
Ci

kµ
i.

(H2) There exists a constant M1 > 0 such that if |u(n)(t)| > M1, for t ∈ [0, 1], then

B
(
e−µtIn0+

(
eµtIα−n+1

0+ f(t, u(t), u′(t), . . . , u(n))
))

̸= 0.

(H3) There exists a constant a > 0 such that if |c| > a, then either

cB
(
e−µtIn0+

(
eµtIα−n+1

0+ N(cΦ(t))
))

> 0, (3.2)

or

cB
(
e−µtIn0+

(
eµtIα−n+1

0+ N(cΦ(t))
))

< 0. (3.3)

Theorem 3.2. Suppose that (H0)−(H3) are satisfied, then the functional boundary
value problem (1.1) has at least one solution.

In order to prove Theorem 3.3, we next state our main lemmas.

Lemma 3.2. Assume that (H0) holds, then L : domL ⊂ X → Z is a Fredholm
operator of index zero. Moreover,

KerL = {cΦ(t) : c ∈ R}, dim KerL = 1, (3.4)
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and

ImL =
{
y ∈ Y |B

(
e−µtIn0+

((
eµtIα−n+1

0+ y(t)
))

= 0
}
. (3.5)

Proof. Let y ∈ ImL, then there exists u ∈ domL such that Lu = y, that is,

CDα+1
0+

(
u(t) +

n−1∑
i=0

Ci+1
n µi+1Ii+1

0+

)
u(t) = y(t) , we can write its solution as

u(t) +

n−1∑
i=0

Ci+1
n µi+1Ii+1

0+ u(t) = Iα+1
0+ y(t) +

n∑
i=0

cit
i, (3.6)

where ci =
u(i)(0)

i!
, i = 0, 1, . . . , n. Now, differentiating (3.6), we obtain

u′(t) +

n−1∑
i=0

Ci+1
n µi+1Ii0+u(t) = Iα0+y(t) +

n∑
i=1

ciit
i−1. (3.7)

Next, deriving (3.7) n− 1 times, we hold

u(n)(t) +

n−1∑
i=0

Ci+1
n µi+1u(n−1−i)(t) = Iα−n+1

0+ y(t) + cnn!, (3.8)

which can alternatively be written as

(u(t)eµt)(n) = eµt(Iα−n+1
0+ y(t) + u(n)(0)). (3.9)

Integrating n times from 0 to t, we have

u(t) =e−µt
n−1∑
i=0

dit
i

i!
+

1

(n− 1)!

∫ t

0

(t− s)n−1e−µ(t−s)Iα−n+1
0+ y(s)ds

+ u(n)(0))e−µtIn0+e
µt, (3.10)

where di are arbitrary constants. Substituting the values of u(0) = u′(0) = · · · =
u(n−1)(0) = 0 in (3.10) yields the solution

u(t) =
u(n)(0)

µn
(1− e−µt

n−1∑
0

(µt)i

i!
) +

1

(n− 1)!

∫ t

0

(t− s)n−1e−µ(t−s)Iα−n+1
0+ y(s)ds

=
u(n)(0)

µn
Φ(t) +

1

(n− 1)!

∫ t

0

(t− s)n−1e−µ(t−s)Iα−n+1
0+ y(s)ds. (3.11)

Considering resonance condition B(Φ(t)) = 0, we have B
(
e−µtIn0+

((
eµtIα−n+1

0+

× y(t)
))

= 0. That is,

ImL ⊆
{
y ∈ Y |B

(
e−µtIn0+

((
eµtIα−n+1

0+ y(t)
))

= 0
}
.

If y ∈
{
y ∈ Y |B

(
e−µtIn0+

((
eµtIα−n+1

0+ y(t)
))

= 0}, take

u(t) =
1

(n− 1)!

∫ t

0

(t− s)n−1e−µ(t−s)Iα−n+1
0+ y(s)ds.
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By a simple calculation, we get
(C
Dα+1

0+ +

n−1∑
i=0

Ci+1
n µi+1 CDα−i

0+

)
u(t) = y(t), u(0) =

u′(0) = · · · = u(n−1)(0) = 0, and B(u) = 0. That is, y ∈ ImL, i.e.,{
y ∈ Y |B

(
e−µtIn0+

((
eµtIα−n+1

0+ y(t)
))

= 0} ⊆ ImL.

Therefore, we obtain (3.5).

If u ∈ KerL, i.e., Lu(t) =
(C
Dα+1

0+ +

n−1∑
i=0

Ci+1
n µi+1 CDα−i

0+

)
u(t) = 0, and u(0) =

u′(0) = · · · = u(n−1)(0) = 0, we have u(t) = c(1− e−µt
n−1∑
i=0

(µt)i

i! ) := cΦ(t).

Based on the boundary condition B(u) = 0, one has B(u(t)) = cB(Φ(t)) = 0.
So,

KerL = {cΦ(t) : c ∈ R}, dim KerL = 1,

i.e., (3.4) holds.
Take a projector P : X → X and an operator Q : Y → Y as follows:

Pu(t) =
u(n)(0)

µn
Φ(t), Qy =

Γ(α− n+ 2)B
(
e−µtIn0+

(
eµtIα−n+1

0+ y
))

B
(
e−µtIn0+

(
eµtIα−n+1

0+ 1
)) .

We can easily check that Q2y = Qy, and Q : Y → Y is a linear projector. For
y ∈ Y , we have y = y−Qy+Qy,Qy ∈ ImQ, y−ImQ ∈ KerQ = ImL. So, we obtain
Y = ImQ + ImL. Let y0 ∈ ImQ means that y0 = c, c ∈ R. At the same time, by
y0 ∈ ImL, y0 ≡ 0. Thus, Y = ImQ ⊕ ImL, and dimKerL = codimImL < +∞.
Observing that ImL is a closed subspace of Y ; L is a Fredholm operator of index
zero.

Noting that P is a continuous projector and KerP = {u ∈ X : u(n)(0) = 0}.
For u ∈ X, set u = u− Pu+ Pu, i.e.,X = KerL+KerP . It is easy to check that

P 2u(t) = P (Pu(t))

= P (
u(n)(0)

µn
Φ(t))

=

u(n)(0)
µn Φ(n)(0)

µn
Φ(t)

=
u(n)(0)

µn
Φ(t)

= Pu(t), u ∈ X,

since Φ(n)(t) = −eµtµn
n−1∑
i=0

Ci
n(−1)n−i

n−1∑
j=i

(µt)j−i

(j−i)! , and

Φ(n)(0) = −µn
n−1∑
i=0

Ci
n(−1)n−i = −µn(

n∑
i=0

Ci
n(−1)n−i − 1) = µn.

Take u0 ∈ KerL, i.e., u0 = cΦ(t), c ∈ R. If u0 ∈ KerP , then cΦ(n)(0) = cµn = 0,
which implies that c ≡ 0. Thus, X = KerL⊕KerP .
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Lemma 3.3. The mapping Kp : ImL→ domL ∩KerP can be defined by

Kpy(t) =
1

Γ(α− n+ 1)(n− 1)!

∫ t

0

(t− s)n−1e−µ(t−s)

∫ s

0

(s− τ)α−ny(τ)dτds,

is the generalized inverse operator of L.

Proof. For y ∈ ImL, we have B
(
e−µtIn0+

((
eµtIα−n+1

0+ y(t)
))

= 0, i.e., B(Kpy) = 0.

From the definition of Kp, by a simple calculation,

(Kpy)
(k)(t) =

k∑
i=0

Ci
k(−µ)ie−µtIn−k+i

0+ (eµtIα−n+1
0+ y)(t), 0 ≤ k ≤ n− 1, (3.12)

(Kpy)
(n)(t) = Iα−n+1

0+ y(t)−
n−1∑
k=0

Ck
nµ

n−k(Kpy)
(k)(t). (3.13)

Obviously, (Kpy)
(k)(0) = 0 and (Kpy)

(n)(0) = 0. Therefore, Kpy ∈ domL ∩
KerP, y ∈ ImL.

Now, we will prove Kp is the inverse of L|domL∩KerP .
In fact, if y ∈ ImL, by Lemma 3.4, then

(LKpy)(t) =
(C
Dα+1

0+ +

n−1∑
i=0

Ci+1
n µi+1CDα−i

0+

)
(Kpy)(t) = y(t).

If u ∈ domL ∩KerP , u(i)(0) = 0, i = 0, 1, . . . , n, from (3.11), we have

(KpLu)(t) = e−µtIn0+e
µtIα−n+1

0+ Lu

= e−µtIn0+e
µtIα−n+1

0+

n∑
i=0

Ci
nµ

iIn−α
0+

dn−i+1u

dtn−i+1

= e−µtIn0+e
µt

n∑
i=0

Ci
nµ

iI10+u
(n−i+1)(t)

= e−µtIn0+

n∑
i=0

Ci
nµ

ieµtu(n−i)(t)

= e−µtIn0+(e
µtu)(n)(t)

= u(t),

so, Kp = (L|domL∩KerP )
−1.

Lemma 3.4. Assume (H0) hold, Ω ⊂ X is an open bounded set and domL ∩ Ω ̸=
∅.Then N is L−compact on Ω.

Proof. For convenience, denote v(t) := e−µtIn0+
(
eµtIα−n+1

0+ Nu).

We will prove the QN(Ω) is continuous and bounded.

It follows (H0) that QNu = CB(v(t)), where C := Γ(α−n+2)

B

(
e−µtIn

0+

(
eµtIα−n+1

0+
1
)) .

Since Ω ⊂ X is bounded, for u ∈ Ω. By the condition (2) on the function f ,
there exists a constant M > 0 such that sup |f(t, u(t), u′(t), . . . , u(n)(t))| ≤ M, t ∈
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[0, 1], u ∈ Ω. From formulas (3.12) and (3.13), we obtain

v(k)(t) =

k∑
i=0

Ci
k(−µ)ie−µtIn−k+i

0+ (eµtIα−n+1
0+ Nu)(t), 0 ≤ k ≤ n− 1, and

v(n)(t) = Iα−n+1
0+ Nu(t)−

n−1∑
i=0

Ck
nµ

n−kv(k)(t).

Then

|v(k)(t)| ≤
k∑

i=0

Ci
kµ

i|Iα−k+i+1
0+ Nu|

≤
k∑

i=0

Ci
kµ

i 1

Γ(α− k + i+ 1)

∫ t

0

(t− s)α−k+i|Nu(s)|ds

≤
k∑

i=0

MCi
kµ

i

Γ(α− k + i+ 2)

≤ M

Γ(α− k + 2)

k∑
i=0

Ci
kµ

i

=
M(1 + µ)k

Γ(α− k + 2)

< +∞,

|v(n)(t)| = |Iα−n+1
0+ Nu(t)−

n−1∑
k=0

Ck
nv

(k)(t)µn−k|

≤ |Iα−n+1
0+ Nu(t)|+

n−1∑
i=0

Ck
n|v(k)(t)|µn−k

≤ M

Γ(α− n+ 2)
+

(1 + µ)n − 1

Γ(α− k + 2)
(1 + µ)kM

< +∞.

So, ∥v∥ < +∞. Then |QNu| ≤ |C|β∥v∥ < +∞, |(I−Q)Nu| < +∞, and ∥QNu∥1 <
+∞, i.e., QN(Ω) is bounded. Of course, by the above discussions, it is not difficult
to verify that Kp(I −Q)Nu : (Ω) is also bounded.

In view of (1) on the function f and the Lebesgue dominated convergence theo-
rem, we can easily show that that QN and Kp(I −Q)Nu : Ω → Y are continuous.

Now, we will prove that Kp(I −Q)Nu : (Ω) is compact.
For the simplicity of the following mathematical formulas, it may be assumed

that there is a constant M ′ > 0 such that ∥(I − Q)Nu∥1 ≤ M ′. Again, using
formulas (3.12) and (3.13), for 0 ≤ t1 < t2 ≤ 1, u ∈ Ω, we obtain

|Iα−n+1
0+ Nu(t2)− Iα−n+1

0+ Nu(t1)|

=
∣∣∣ 1

Γ(α− n+ 1)

∫ t2

0

(t2 − s)α−n(I −Q)Nu(s)ds

− 1

Γ(α− n+ 1)

∫ t1

0

(t1 − s)α−n(I −Q)Nu(s)ds
∣∣∣
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≤ M ′

Γ(α− n+ 1)

∣∣∣ ∫ t1

0

(
(t2 − s)α−n − (t1 − s)α−n

)
ds
∣∣∣

+
M ′

Γ(α− n+ 1)

∣∣∣ ∫ t2

t1

(t2 − s)α−nds
∣∣∣

=
tα−n+1
2 − tα−n+1

1 + 2(t2 − t1)
α−n+1

Γ(α− n+ 2)
M ′,

|(Kp(I −Q)Nu)(k)(t2)− (Kp(I −Q)Nu)(k)(t1)|, 0 ≤ k ≤ n− 1,

=
∣∣∣ k∑
i=0

Ci
k(−µ)ie−µtIn−k+i

0+ (eµtIα−n+1
0+ (I −Q)Nu)

∣∣
t=t2

−
k∑

i=0

Ci
k(−µ)ie−µtIn−k+i

0+ (eµtIα−n+1
0+ (I −Q)Nu)

∣∣
t=t1

∣∣∣
=

k∑
i=0

Ci
kµ

i(e−µt1 − e−µt2)
∣∣∣In−k+i

0+ (eµtIα−n+1
0+ (I −Q)Nu)

∣∣
t=t2

∣∣∣
+

k∑
i=0

Ci
kµ

ie−µt1
∣∣∣In−k+i

0+ eµtIα−n+1
0+ (I −Q)Nu

∣∣
t=t2

− In−k+i
0+ eµtIα−n+1

0+ (I −Q)Nu
∣∣
t=t1

∣∣∣
≤

k∑
i=0

Ci
kµ

i|1− eµ(t2−t1)| M ′

Γ(α− k + i+ 2)

+

k∑
i=0

Ci
kµ

ie−µt1
∣∣∣ 1

Γ(n− k + i)

∫ t2

0

(t2 − s)n−k+i−1

× eµsIα−n+1
0+ (I −Q)Nu(s)ds

− 1

Γ(n− k + i)

∫ t1

0

(t1 − s)n−k+i−1eµsIα−n+1
0+ (I −Q)Nu(s)ds

∣∣∣
≤

k∑
i=0

Ci
kµ

i|1− eµ(t2−t1)| M ′

Γ(α− k + i+ 2)

+
(t2 − t1)

n−k+i + tn−k+i
2 − tn−k+i

1

Γ(n− k + i+ 1)
× (1 + µ)kM ′

Γ(α− n+ 2)

+
(t2 − t1)

n−k+ieµ(t2−t1)

Γ(n− k + i+ 1)
× (1 + µ)kM ′

Γ(α− n+ 2)
,

and

|(Kp(I −Q)Nu)(n)(t2)− (Kp(I −Q)Nu)(n)(t1)|
= |Iα−n+1

0+ Nu(t2)− Iα−n+1
0+ Nu(t1)

+

n−1∑
k=0

Ck
nµ

n−k[(Kp(I −Q)Nu)(k)(t2)− (Kp(I −Q)Nu)(k)(t1)]|

≤ |Iα−n+1
0+ Nu(t2)− Iα−n+1

0+ Nu(t1)|
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+

n−1∑
k=0

Ck
nµ

n−k|(Kp(I −Q)Nu)(k)(t2)− (Kp(I −Q)Nu)(k)(t1)|.

Since t, tα−n+1 and tn−k+i are uniformly continuous on [0, 1], we obtain that
KP (I −Q)N(Ω) is equi-continuous. By the Arzela-Ascoli theorem, KP (I −Q)N :
(Ω) is compact. Thus, N is L-compact.

Lemma 3.5. The set Ω1 = {u ∈ domL \KerL : Lu = λNu, λ ∈ [0, 1]} is bounded,
if conditions (H0)− (H2) are satisfied.

Proof. For u ∈ Ω1, we have QNu = 0, i.e., B
(
e−µtIn0+

(
eµtIα−n+1

0+ f(u(t), u′(t),

. . . , u(n)(t))
))

= 0. By (H2), there exists a constant t0 ∈ [0, 1] such that |u(n)(t0)| ≤
M1.

From boundary conditions u(0) = u′(0) = . . . = u(n−1)(0) = 0, we get u(i)(t) =∫ t

0

u(i+1)(s)ds, i = 0, 1, , . . . , n− 1, and

∥u∥∞ ≤ ∥u′∥∞ ≤ · · · ≤ ∥u(n)∥∞. (3.14)

By Lu = λNu, we hold

u(t) = cΦ(t) +
1

(n− 1)!

∫ t

0

(t− s)n−1e−µ(t−s)Iα−n+1
0+ λf(u(s), u′(s), . . . , u(n)(s))ds,

furthermore,

u(n)(t) =cΦ(n)(t) + Iα−n+1
0+ λNu(t)

−
n−1∑
k=0

Ck
nµ

n−k
k∑

i=0

Ci
k(−µ)ie−µtIn−k+i

0+ (eµtIα−n+1
0+ λNu)(t).

Let vλ(t) := e−µtIn0+
(
eµtIα−n+1

0+ λNu), then u(n)(t) = cΦ(n)(t) + v
(n)
λ (t).

In view of (3.12), (3.13) and |u(n)(t0)| ≤M1,

|v(n)(t)|

=|Iα−n+1
0+ λNu(t)−

n−1∑
k=0

Ck
nµ

n−k
k∑

i=0

Ci
k(−µ)ie−µtIn−k+i

0+ (eµtIα−n+1
0+ λNu)(t)|

≤ ∥Nu∥1
Γ(α− n+ 2)

+

n−1∑
k=0

Ck
nµ

n−k
k∑

i=0

Ci
kµ

i ∥Nu∥1
Γ(α− k + i+ 2)

=A∥Nu∥1.

And |c| ≤ |v(n)(t0)|+ |u(n)(t0)|
Φ(n)(t0)

≤ A∥Nu∥1 +M

(2n − 1)µne−µ
, where

A :=
1

Γ(α− n+ 2)
+

n−1∑
k=0

Ck
nµ

n−k
k∑

i=0

Ci
kµ

i 1

Γ(α− k + i+ 2)
,
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since

|Φ(n)(t0)| = e−µt0µn
n−1∑
i=0

Ci
n

n−1∑
j=i

(µt0)
j−i

(j − i)!
≥ e−µµn

n−1∑
i=0

Ci
n = (2n − 1)µne−µ.

Therefore, |u(n)(t)|≤ |c||Φ(n)(t)|+|v(n)(t)|≤ (A∥Nu∥1+M1)e
µ

n−1∑
k=0

µk+A∥Nu∥1,

since

|Φ(n)(t)| =
∣∣∣− eµtµn

n−1∑
i=0

Ci
n(−1)n−i

n−1∑
j=i

(µt)j−i

(j − i)!

∣∣∣
≤ µn

n−1∑
i=0

Ci
n

n−1∑
j=i

(µt0)
j−i

(j − i)!

≤ µn
n−1∑
i=0

Ci
n

n−1∑
k=0

µk

= (2n − 1)µn
n−1∑
k=0

µk.

From (H1) and (3.14), we know that ∥Nu∥1 =
∫ 1

0
|Nu(s)|ds ≤

n∑
i=0

∥pi+1∥1∥u(n)∥∞+

∥q∥1.

At the same time, if µ > 1, then
n−1∑
k=0

µk ≤ nµn−1, and |u(n)(t)| ≤ (eµ · nµn−1 +

1)A∥Nu∥1 + nµn−1eµM1, so, ∥u(n)∥ ≤ A(eµ · nµn−1 + 1)∥q∥1 + eµM1 · nµn−1

1−A(eµ · nµn−1 + 1)
n∑

i=0

∥pi+1∥1
.

Similarly, if µ ≤ 1, then
n−1∑
k=0

µk ≤ n, and ∥u(n)∥ ≤ A(eµ · n+ 1)∥q∥1 + eµM1 · n

1−A(eµ · n+ 1)
n∑

i=0

∥pi+1∥1
.

These, together with condition (H1), mean that Ω1 is bounded in X.

Lemma 3.6. The set Ω2 = {u ∈ KerL : Nu ∈ ImL} is bounded if (H3) hold.

Proof. Let uc ∈ Ω2, then uc(t) ≡ cΦ(t), c ∈ R and QNuc(t) = 0. By (H3), we
have |c| ≤ a. Since

|Φ(t)| =
∣∣1− e−µt

n−1∑
i=0

(µt)i

i!

∣∣ ≤
1 + nµn−1, µ > 1,

1 + n, µ ≤ 1,

|Φ(k)(t)| =
∣∣− e−µtµk

k∑
i=0

Ci
k(−1)k−i

n−1∑
j=i

(µt)j−i

(j − i)!

∣∣
≤

n2kµn+k−1, µ > 1,

n2kµk, µ ≤ 1, k = 1, 2, . . . , n− 1,
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|Φ(n)(t)| =
∣∣− e−µtµn

n−1∑
i=0

Ci
n(−1)n−i

n−1∑
j=i

(µt)j−i

(j − i)!

∣∣ ≤
n(2n − 1)µ2n−1, µ > 1,

n(2n − 1)µn, µ ≤ 1.

Taking into account the finiteness of fixed variables n and µ, we hold that
∥uc∥ < +∞, i.e.,Ω2 is bounded.

Lemma 3.7. The set Ω3 = {u ∈ KerL : ρλJu + (1 − λ)QNu = 0, λ ∈ [0, 1]} is
bounded if conditions (H3) is satisfied, where J : KerL→ ImQ is a homeomorphism

with J(cΦ(t)) =
c

B
(
e−µtIn0+

(
eµtIα−n+1

0+ 1
)) , c ∈ R, where

ρ =

 1, if (3.2) holds;

−1, if (3.3) holds.
(3.15)

Proof. Suppose that u′ ∈ Ω3, we have u′(t) = cΦ(t), c ∈ R and λJu′ + ρ(1 −
λ)QNu′ = 0. If λ = 0, we have QNu′ = 0. By (H5), one has |c| ≤ a, which
follows from the proof of boundedness of Ω2 that ∥u′∥ < +∞. If λ = 1, then
c = 0, i.e., u′ = 0. If λ ∈ (0, 1), taking |c| > a, we have

ρλc+ (1− λ)B
(
e−µtIn0+

(
eµtIα−n+1

0+ N(cΦ(t))
))

= 0.

Hence,

ρλc2 = −(1− λ)cB
(
e−µtIn0+

(
eµtIα−n+1

0+ N(cΦ(t))
))
.

According to the condition (H3), we can easily get the contradiction. So Ω3 is
bounded.

Proof of Theorem 3.3. Let Ω be a bounded open subset of X such that {0} ∪
3⋃

j=1

Ωj ⊂ Ω. By Lemma 3.6, we know that N is L-compact on Ω. According to the

Lemma 3.7 and Lemma 3.8, we have :
(i) Lu ̸= λNu, for every

(
u, λ

)
∈ [(domL \KerL) ∩ ∂Ω]× (0, 1);

(ii) Nu /∈ ImL, for every u ∈ KerL ∩ ∂Ω;
At last, we will prove that (iii) of Theorem 2.1 is satisfied.
Let H(u, λ) = ρλJu + (1 − λ)QNu. Noting that Lemma 3.9 and Ω3 ⊂ Ω, we

have H(u, λ) ̸= 0 for every u ∈ ∂Ω ∩ KerL. Thus, by the homotopic property of
degree, we know that

deg(QN |KerL,Ω ∩KerL, 0) = deg
(
H(·, 0),Ω ∩KerL, 0

)
= deg

(
H(·, 1),Ω ∩KerL, 0

)
= deg

(
± J,Ω ∩KerL, 0

)
̸= 0.

The assumption (iii) of Theorem 2.1 is verified and the proof is completed.
Then by the Theorem 2.1, the functional boundary value problem (1.1) has at

least one solution in X. The proof of the Theorem 3.3 is also completed.
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4. Example

Now, we illustrate Theorem 3.3 by the following example. Consider the functional
boundary value problem (CD

3
2

0+ + 2CD
1
2

0+)u(t) = f(t, u(t), u′(t)), t ∈ [0, 1],

u(0) = 0, B(u) = 2e2u(1)− (e2 − 1)u′(0) = 0,

where α = 1
2 ,µ = 2,Φ(t) = 1−e−2t, and f(t, u(t), u′(t)) = t−1+ 1

50 sinu(t)+
1
50u

′(t).

Then the functional problem is at resonance with B(Φ(t)) = 2e2(1 − e−2) −
2(e2 − 1) = 0. In this case, KerL = {c(1− e−2t)|c ∈ R}, |B(u)| ≤ (3e2 + 1)∥u∥,

B(e−2tI10+(e
2tI

1
2

0+1)) =
2

Γ( 32 )

∫ 1

0

t
1
2 e2tdt =

4√
π

∫ 1

0

t
1
2 e2tdt ≈ 4√

π
· 2.5123 ̸= 0.

p1(t) =
1
50 , p2(t) =

1
50 , q(t) = 1. It is easy to check that

A :=
1

Γ(α− n+ 2)
+

n−1∑
k=0

Ck
nµ

n−k
k∑

i=0

1

Γ(α− k + i+ 2)
Ci

kµ
i =

14

3
√
π
,

moreover, A(eµ · nµn−1 + 1)
n∑

i=0

∥pi+1∥1 = A(e2 + 1) 2
50 ≈ 0.8835 < 1.Conditions

(H0) and (H1) are satisfied.

TakeM1 = 52. If u′(t) > 52, then f(t, u(t), u′(t)) > −1− 1
50+

M1

50 = 1
50 > 0, and if

u′(t) < −52, then f(t, u(t), u′(t)) < 1
50 −

M1

50 = −51
50 < 0. Hence, if |u′(t)| > M = 52,

then

B(e−2tI10+(e
2tI

1
2

0+f(t, u(t), u
′(t)))) =

2

Γ( 12 )

∫ 1

0

e2t
∫ t

0

(t− s)−
1
2 f(s, u(s), u′(s))dsdt

̸=0.

Thus (H2) is satisfied.

Finally, take u ∈ KerL and u(t) = cΦ(t) = c(1−e−2t), one choose |c| > a = 189,

cB
(
e−2tI10+(e

2tI
1
2

0+N
(
c(Φ(t))

)
)
)

=
2c

Γ( 12 )

∫ 1

0

e2t
∫ t

0

(t− s)−
1
2 f(s, cΦ(s), cΦ′(s))dsdt

=
2

Γ( 12 )

∫ 1

0

e2t
∫ t

0

(t− s)−
1
2 cf(s, cΦ(s), cΦ′(s))dsdt

>0,

since cf(s, cΦ(s), cΦ′(s)) = c(s−1+ 1
50 sin(c(1−e

−2s))+ 2c
50e

−2t) > −|c|− |c|
50+

2c2

50e2 >
0, |c| > 189, then condition (H3) is satisfied. It follows from Theorem 3.3 that there
must be at least one solution in X.
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5. Conclusion

This work examines a category of higher-order sequential operator problems with
functional boundary conditions. First, it is reasonable to regard sequential operators
as a generic statement. Second, we examine non-resonance and resonance issues for
sequential operators of order n − 1 < α ≤ n. These considerations are specific
improvements and complements of non-resonant boundary value problems (BVPs)
of lower order or resonance problems, as found, for example, in the literature [11,
29]. In [29], the authors studied a nonlinear three-point boundary value problem
of sequential fractional differential equations of order α with 1 < α ≤ 2 at the
resonance case, but we explore the resonant BVPs (1.1) that firstly can be lifted
from the order 1 < α ≤ 2 of the fractional operator to n− 1 < α ≤ n, and secondly
the boundary condition B(u) = 0 can contain the original conditions x(1) = βx(η).
These mean that some similar results can be expanded.

In [11], the authors studied the existence of solutions to the nonlinear sequential
fractional differential equation at resonance with the order 0 < α ≤ 1. Again, we
generalize both in terms of the order of the operators and in terms of the boundary
conditions. So, we study the resonance problem for the order n−1 < α ≤ n sequen-
tial operators with functional boundary conditions, which gives a better generaliza-
tion based on the above problems in terms of the choice of sequential operators, the
order of the differential operators, and the boundary value conditions.
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