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SIMULTANEOUS INVERSION OF THE
SOURCE TERM AND INITIAL VALUE OF THE
MULTI-TERM TIME FRACTIONAL SLOW
DIFFUSION EQUATION*

Li Qiao, Ruo-Hong Li, Fan Yang' and Xiao-Xiao Li

Abstract In this paper, the inverse problem of simultaneously identifying
the source term and initial value for the multi-term time fractional diffusion
equation is studied. We prove this problem is ill-posed, i.e. the solution
(if it exists) does not continuous depend on measurement data. A standard
Tikhonov regularization method is proposed to solve the inverse problem. In
the case of a-priori and a-posteriori, we derive the error estimates between the
exact solution and the regularized solution. Finally, we provide two examples
to show the validity of the proposed method.
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1. Introduction

Let © be the bounded region on R? (d = 1,2,---) with fully smooth boundary 9%,
and T > 0 be fixed. A time fractional diffusion equation with a power-law memory
kernel is considered in this paper

¢

ST D, t) +/ ker(t — T)%dT:AU(I,ﬂ + F(z,t), ze€Q,te(0,T],
0 T

u(z,t) =0, x €00, t e (0,T],

u(z,0) = p(x), x €,

ul, to) = (), et (0.7),

U(SC,T) = g(x)a x €,

(1.1)

where 0 < o < 1, ker(t) = F(t;ija) is the power-law memory kernel. The definition of
the one-dimension Laplacian A is Au(z,t) = %, the notations {* D¢ is Griinwald-
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Letnikov fractional derivative of the order o (0 < o < 1) [13]

(5]
GL no _ 1 —a 1\ «a s
o Diu(x,t) = }ng})h JZ::O (-1) <j>u(x,t jh),

where the (?) are the binomial coefficients

(a) ala—1)-(a—j+1)

i) 4!

It can be easily concluded that fot ker(t — T)W(h represents a time fractional
derivative of order o (0 < @ < 1) in the Caputo sense defined as [14]

C o B 1 b gz, ) .
SDpute.t) = s | T

where T'(+) represents the Gamma function. We assume the unknown source term
F(z,t) = f(x)q(t), here ¢(t) is continuous for ¢ € (0, T].

In problem (1.1), f(z) and ¢(z) are unknown. The measurement data u(z,ty) =
Y(z) and u(x,T) = g(x) are given to identify the unknown source f(x) and initial
value ¢(z). In practical problem, ¥(z) and g(x) are obtained through measurement,
¥°(x) and g°(x) are used to represent measured data, which satisfy

() =0 O <6, lg() = ¢’ ()l <6, (1.2)

where || - || is the L?(©2) norm and § > 0 is the error level.

In recent decades, time-fractional diffusion equations have attracted widespread
attention. From a physical perspective, this generalized diffusion equation is derived
from fractional Fick’s law, which describes the transfer process with long memory.
Scholars have conducted extensive research on such issues [1,2,6,9,12,33]. However,
the classical fractional diffusion model is not sufficient to simulate some anomalous
diffusion. As a natural extension, the multi-term time fractional diffusion equation
(MTTFDE) is proposed, which is expected to improve the modeling accuracy in
depicting the anomalous diffusion. At present, MTTFDE have been widely applied
in fields such as physics and viscoelastic material mechanics [3]. Apparently, the
research of such models have become a new field.

Note that, in (1.1), the second term of the main equation has a kernel function,
which has various choices, such as Mittag-Leffler type memory kernel, power-law
type memory kernel, etc [24,25]. In this problem, we take power-law type memory
kernel ker(t) = %,
are actively paying attention to such issues. In [21], the existence, uniqueness,
and regularity of solutions for nonlinear two-term time fractional diffusion wave
problems are given. In [18], Ren et al. studied the L1 approximation of multi-term
time Caputo fractional derivatives and provided some efficient numerical schemes.
Dehghan et al. [5] applied high order difference and Galerkin spectral method for
the numerical solution of multi-term time fractional mixed diffusion-wave equations.
In [20], Shen et al. derived the analytical solution for a two-dimensional multi-term
time-fractional diffusion and diffusion-wave equation using the method of separation
of variables and properties of the multivariate Mittag-Leffler function.

the problem becomes MTTFDE. At present, researchers
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Currently, extensive research has been conducted on numerical method to obtain
the solution for MTTFDE, but there is relatively little research on the inverse prob-
lem of such equation. Chang et al. [4] investigated an inverse source problem for
MTTEFDE. Sun et al. [23] studied the recover time-dependent potential function in a
MTTFDE. Actually, much inverse problems are ill-posed and needs the regulariza-
tion method to solve them. Thus several regularization methods are becoming more
mature, such as Tikhonov method, Landweber iterative method, Quasi-boundary
method and other regularization methods [28-30, 32, 34].

At present, most of the inverse problems of fractional diffusion equations only
identify a single unknown parameter. The research on identifying two unknown
parameters simultaneously is very limited. Compared to identifying single un-
known term, it is more difficult to estimate the error of simultaneously identifying
the source term and initial value. In recent decade, several Savants are gradually
starting to identify several unknown parameters simultaneously for the fractional
diffusion equation. Ruan et al. [19] considered simultaneously identifying the time-
independent source terms and initial values of time fractional diffusion equations,
and used Tikhonov method to solve the inverse problem. In [17], Ruan et al. stud-
ied the simultaneous inversion of fractional order and spatial source terms in time
fractional diffusion equations, and transformed inverse problems into optimization
problem, then proposed an algorithm to solve it. In [22], Sun et al. studied inversion
of the fractional orders and the source term simultaneously of the MTTFDE. This
inverse problem is nonlinear and author proposed a numerical method to obtain
an approximate solution. Other inverse problem of identifying multiple unknown
parameters can refer to [10,26,27]. At present, there is little research on simulta-
neously identifying the unknown source terms and initial values of MTTFDE.

For this reason, in our paper, we aim to identify the unknown source term and
initial value simultaneously for MTTFDE. This inverse problem is ill-posed, and
the Tikhonov regularization method is used to solve this inverse problem.

The remaining parts of this paper are as follows. Sections 2 provides several
important definition and lemmas. In Section 3, we provide the solution to the
problem and give the ill-posedness analysis of inverse problem. In Section 4, we use
the Tikhonov regularization method to deal with this inverse problem and provide
convergent estimates for both a-priori and a-posteriori cases, respectively. Several
numerical examples are presented in Section 5 to illustrate the usefulness of the
proposed method. Finally, we give some concluding remarks in Section 6.

2. Preliminary

In this section, we present some important Definition and Lemmas.
Definition 2.1. Let A\, and X,, be the Dirichlet eigenvalues and eigenfunctions of
—A on the domain 2, satisfies

AX,(x) = =2 Xn(z), z € Q,

X,(x) =0, x € 09,

(2.1)

where 0 < \; < Ag < -+ < Ay < -+, limy 500 Ay = +00 and X, (2) € H?(Q)
HY(Q), then {X,,}5; can be normalized as the orthonormal basis in space L?(2).
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Definition 2.2. For arbitrary p > 0, we define the space as follows
D((-ay) = {6 € Q)| D Ml(é, Xa) 2 < oo}, (2:2)
n=1

where (-, ) is the inner product in L?(Q2), and D((—A)P) is a Hilbert space with the
norm

9llD((—ay) == (Z)\ﬁ\(¢,xn)\2)§. (2.3)
n=1

Definition 2.3. The Mittag-leffler function is defined as follows [15]:

') Zk

where oo > 0 and € R are arbitrary constants.
Lemma 2.1. Let §*D$g(t) be Grimwald-Letnikov fractional derivative of the order
a (0 < a< ), then [13]

LIF* Dy ()] = p*G(p), Re(p) >0, (2.5)

where L denotes the Laplace transform operator.

Lemma 2.2. Ifp > 0, then the following equation holds [15]:

mlpe—F

W7 Re(p) > \a|é, (2.6)

oo
/0 e Pem LR (ar)dt =

where E(imﬂ) (2) := %Ea,ﬂ(z)-

Lemma 2.3. Assume A >0,¢t>0 and 0 < a < 1, then [15]

d
—Ea1(=At*) = =Xt "B o (=A%), (2.7)

Of Eo1(—AtY) = =AE4 1(—AtY), o

Moreover 0 < Eqy1(—t) < 1 and Es1(—t) is completely monotonic function,
i.e.,
dn
(=1)" 2 Baa(—t) > 0,vn € N. (2.8)

Lemma 2.4. For the Mittag-leffler function, the following formula holds [7]:

Eop(z) = 2Eq a+p8(2) + ,z € C, (2.9)

1
I'(B)
where a > 0, 8 > 0.

Lemma 2.5. Assume 0<ag<a1<1. Then there exist constants C_,C~ >0 depend-
ing only on ag,aq such that for all o € [ag, 1], then [11]

C_ 1 C- 1
_ <FE < ———
MNl—a)l—z "~ a’l(z)_f‘(l—a)l—z

2 <0. (2.10)
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Lemma 2.6. For all )\, that satisfies 0 < Ay < --- < \,, there exist positive
constant dependent on a,tg, T, A1, and we have
Cl )\ CQ 03 )\ C
— < E, —t — < E 1 (——=T“ — 2.11
S Baa-F) < P <EBa-FTISTE e
— C_ . _ 20~ - C_ . _ 20~
where Ol.— m, 02-— F(l—a)tf}’cs'_ F(lfa)(ﬁ+%Ta)7C4'_ m
Proof. From Lemma 2.5 , then
An - 1 - 21
Eaa(~22ggy < © <o 2L G
2 Fl—a)1+ nta Fl—a)tgAn A
An C_ 1 C_ 1 C
BEoa(—228) > > =1
2 Fl-a)14 22ty ~T(1-0a)3 5=+ dote A
The proof of E, 1(— ” @) is similar to the above, so it is omitted. O

Lemma 2.7. For any A\, that satisfies 0 < Ay < --- < A\, there exist positive
constant dependent on a,tg, T, A1, and we have

Cs . An 2 Cs o D Y 2
N, <ty Eaat1(— ;to) < N n <T°Eq,at1(— ?T ) < N (2.12)
where Cs :=2(1 — Eq 1(— to)) Ce:=2(1— Ea’l(—%TQ)).
Proof. From Lemma 2.4, then
An 1—E, (-20t5) 2 1
Ea,a+1(_7t8[): 7 o 2 gia‘i’
2 An o ty An
An 1— Baa(=%5) 200 — Baa(=%513)) 1
Baai(—22tg) > -2l 500) 12kl L
2 0 Au ge to An
Therefore o ) 5
5 An
)\7<t8(Eaa+1( 9 (QI)ST
Similarly, it can be inferred that
Cs An 2
— <T%,q A
An nE5 T =5
O
Lemma 2.8. Assume q(&(T)) > q(&(to)), denote M = max |q(t)|, for all Ay,

te[0,T]
that satisfies 0 < Ay < --- < Ay, then there exist positive constant dependent on
a,to, Ty A1, M, such that

rn = (f(T))(l - Ea, <_?nTa))Eoc 1( ?nto)
— (E(0)) (L~ B (= 248)) B (- 2T)
C
_A—S (2.13)

CSCG((I(f(TQ))_Q(f(tO))) ,Cg = C.

where Cr 1= oM
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Proof. Based on Lemma 2.3, Lemma 2.4, Lemma 2.6 and Lemma 2.7, we can
derive

On the other hand

QET)) (1~ Baa (= 52T)) B (- 215)

Q€101 B (~3213)) B (= 2T°)
A A

< qETNA = By (=5 T) B (= 5715)

O

Lemma 2.9. Forallp>0,0<pu <1, and 0 < A1 < s, m >0 is a constant, then:

F(s) =

2-% Copf,0<p<A4,
WS 22 < o p (2.14)
m+'LLS ClON’a p>47

where Cg 1= i(4 —p) ipimT%, Oy = m_l)\f_% and s = \y,.
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Proof. When 0 < p < 4, due to lims_,0 F(s) = 0 and lims_,~ F(s) = 0, On the
other hand, F(s)>0, for any s, then we obtain

F(s) < F(s").

Where s* satisfies equation F'(s) = 0 and its value is s* = (%)%.
Therefore,
. (4—pm,1-2 1 »
F(s) < F(s*) = p( " ) o = Coput. (2.15)
A
When p > 4
9_1p
ps® 2 [ [ 1
F(S) = = < 7 < T = 010/,6. (216)
mtps? 52 (m4ps?) T 85 2m T \E2y,

O

Lemma 2.10. Forallp>0,0<p<1,0< A <s andb> 0 is a constant, then:

1-3 C pTH, 0<p<?2,
Gs) = 22— < e (2.17)
tus Crop,  p22,
where Cyq := (2 p) g (2 +p) = p- #, Cio = b’l)\i_% and s = \,,.
Proof. It is similar to Lemma 2.9, we omit it. O]

3. Solution of the problem and ill-posed analysis

In Section 3, we obtain the solution of problem (1.1) and briefly analyze the ill-
posedness of the inverse problem. Using the separated variable method, Laplace
transform and Lemma 2.2, we have

oo

@) = 3 5 (Ban(=F0ont [ (=) oo (<5 (=7)a(r)dr ) X, (o)

n=1
(3.1)
where ¢, = (¢(z), Xn(2)), fn = (f(x),X,(z)) are the Fourier coefficients. By

Lemma 2.3, we have B (22 (=) ) E, a(*%"(t -7)%) <0.

)
dt et —

With the mean value theorem for integrals and Lemma 2.3, we can get
2q(

[ = B = e =2 1 ), G2)

where 0 < £(t) < t. According to (3.2), u(x,t) can be written as

u(x,t) = Z (%Eml(—/\?nto‘)(pn + Q(f\iit))(l — Ea71(—)\?"ta))fn)Xn(x). (3.3)

By using u(x,tg) = ¢(x), u(z,T) = g(x) and (3.3), we can obtain

Xn(x)a

(3.4)

- A Eo 1 (=218)gn — AnBoa (=232 T) 0y
Z _ _L _Anjay _ _ _ Anza _An o
— q(§(1)(L = Eo 1 (—=3T%)) Ea,1 (—35t8) — ¢(€(t0)) (1 — Ea,1(—%15)) Ea,1 (-5 T)
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q(f(T))Ta)\nEa,od»l (*%"T"‘)i/fn - q(f(tO))tg/\nEa,a+l (7)\7"t8¢)gn

P = 2 SN~ B3 7)) Bl 58) €)1~ B (0 BT
(3.5)
where g, = (g(x)vXn(x)) and ¢, = (1/1($),Xn($))
Now, we denote formula (3.4) as
f=Kilg+ Ky 'y, (3.6)

K, Ky are self-adjoint operators and the singular values of operators K, L Ky 1

k_l _ >\7LEa,1(_%tg)

1 A(6(T))(1=Ea1 (=22 T%) Ea,1 (=22 t3)—q(£(t0)) (1~ Ea,1 (= 28-t§)) Ea 1 (= 22 T2)’
k_—l _ _)\nEa,l(_ATnTa)

Sl =

Q(E(T)(A=Ea 1 (=22 T%) Ea1(—22t8)—q(£(t0) 1= Ea,1 (= 281§)) Ea,1 (= 22 T®)

For (3.5), we have the same representation as above:
o=K;'"w+ Ky, (3.7
similarly,

‘Z(g(T))TQ)\nEa,a+1(—>‘T"TO‘)
a(E(T) (1=Ea 1 (=2 T%) Ea 1 (= 24-8)—a(€(t0)) 1= Ba 1 (= 21§)) Ba 1 (- 23 T°)
_Q(g(to))t(o)t/\nEa,cH—l(—Mtg)

-1 _ 2
Ry = Q(E(T)) (A= Ea1 (=22 T%) Ea1(—22t8)—q(£(t0) (1= Ea,1 (= 281§)) Ea,1 (= 22 T®)

kit =

Due to n — oo, A, — 00, then kfl — 00, k;l — 00. Therefore, according to
(3.4), small disturbances of g(x) and ¥(z) can cause significant changes of f(x).
Similarly, small disturbances of g(x) and ¥(z) can also cause significant changes of
©(x), then this problem is ill-posed. Next, we will use the Tikhonov method to solve
the ill-posed problem. In order to obtain the a priori and a posteriori convergent
results, we assume that both f(x) and @(z) satisfy the following a-priori bound
condition:

max { || f () p(—ay): leC)Ip—ay } < E, (3.8)

Nl=

where £> 0 and p > 0, ()l o) = (o0 MU X)) T le()llg-apm =

(= 2l XR)

2

4. The Tikhonov regularization method and con-
vergent estimation
In Section 4, we will use the Tikhonov regularization method to solve ill-posed

problems. Meanwhile, regularization parameter choice rules based on a-priori and
a-posteriori, we derive the convergent estimates.
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4.1. The Tikhonov regularization method
Consider the following operator equation:
Kz =y, (4.1)

where K : X — Y is a bounded linear operator, x € X, y € Y, X, Y are Hib-
ert spaces. The Tikhonov regularization method can be expressed as solving the
following minimization functional

Ju() = | Kz —yll§ + plalk, (4.2)

here 0 < p < 1 is the Tikhonov regularization parameter. Following [8], we have a
result as follows:
(K*K + ul)zt = K*y, (4.3)

K*:Y — X is the self-adjoint operator of K. In the Section 3, we denote (3.4) as:
f=K{"g+ Ky,
where K, Ko : L?(2) — L?(Q) are self-adjoint operators. For (3.6), we have

Ki(Ky f — 1) = Kag. (4.4)
The Tikhonov functional of operator equation (4.4) is
1K1 (K2 f — ) = Kagl* + ul (K2f —¥)]1*. (4.5)
According to (4.2) and (4.3), we can obtain
(K7 Ky + pI)(Ka f — ) = K{ (K2g), (4.6)
rewrite (4.6) as
Ko (f — (K{ Ky +pl) "' Kig) = ¢ (4.7)

The Tikhonov functional of operator Equation (4.7) is
1B (f — (K7 K1+ pl) T Ky g) = 0l + ull(f — (K7 K1+ pl) 7' Kig)lI”. (4.8)
According to (4.2) and (4.3), we can obtain

(K3 K + pD)(f — (K7K + pl) " K g) = K30 (4.9)
Thus

Ju = (KK, + ul) ' Kig + (K3 Ko + ul) " K50, (4.10)
Similarly, we can get the regularization solution of the initial value

pp = (K3K3 + pI) " K30 + (K Ky + pI) "' Kjg. (4.11)

Using measurement data with errors, singular value of the operator and (4.10), we
have

Q&M (1= Ea,1 (=2 T*) Ba,1 (=22 5)—q(£(0)) (1= Ea 1 (= 3248)) B 1 (= 22 T%)

oo
AnEo1(—221t9) 5
f5 ) = ( 2 Lo g
(%) ; (q(é(T»(l—Ea.l<—%T~>>Ea.1<—%tﬁ)—q@(to))u—m,l<—%z3)>En,1<—%T“>)2+ '
Mo Bt (=213 s

Q(E(TNA=Ba 1 (= 2 TN Eq 1 (— 3 08)—a(6(t0) (1= B 1 (= 22 t§)) B 1 (— 22 T%)
B (- AnTa)
- by A S 2 N N 2 1/)2 Xﬂ(‘r)
2(E(T) A= Ba 1 (= 2 T%)) Ba 1 (= 4 48) ~a(€(t0) (1= B 1 (= 23 4§0) Ba 1 (= 272\ 7
AnBog,1(— 2L T) K

(4.12)
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Similarly, we can obtain

. AET) (A= Fa (=5 T%)) Ba 1 (= 55) ~a(€(t0)) (1= Fo 1 (= 348)) Fa,1 (= - T%)

0 )‘n‘Z(f(T))T“E&w&Jrl(_*TnTa) 5
o Yn
() ,;1 (q(f(T))(leu,l(f%"T@)Eu,l(f*T"tg)fq(ato))ufEM(,ATntg))Euyl(JTnTQ))2+M

/\n‘I(f(T))T"‘EaYaH(7%Ta)

Q(E(TN(A=Bg 1 (= 2 T)) By 1 (= 248) —q(£(t0) (1= Bg 1 (= 22 4§) Bo 1 (= 22 T)

Ana(§(t0))tg E. -2
a(€t0E Fa,at1 (= 34 t8) )2 gg)Xn(x)
+

(q(&(T))(l—Ea,l<—%Ta>)Ea,1<—%t(?)fq(e(tu))u—%,l<—*Tntg>>Ea,1<—%nTa>
Ana(€(t0))t Ba,at1(— 22 18)

(4.13)
In order to simplify the calculation process, we introduce some notations as follow

Q(E(T)(1=Ea,1 (=22 T*) Ba 1 (= 22 8) —q(€(t0)) 1= Eq,1 (= 2-t5)) Ba 1 (= 22 T%)

oy = A Ea,1(—20t9) ’
_ A€M (1 =Ean (=3 T)) Ea,1 (= 215)—a(€(t0)) 1= Ea,1 (= 2 £5)) Ba,1 (— 22 T%)
oy = An B (=22 T) ’
o — LEM)(A=Eaa (=3 T)) Baa (= 3-4§) =a(§(t0)) (1= Fa 1 (= 234)) Pa.1 (= 3 T7)
3= An(E(T)T Ea a1 (— 2 T) ’
og = TE@)A=Eon (Z A3 T) Bon (- 246) = a(6(t0)) (1= Boa (= 3 t)) B (< 3-T7)

Anq(€(t0))t8 Ea,a+1(—2t8)

Then the formula (3.4), (3.5), (4.12) and (4.13) can be rewritten as

F@) = (07" g — 03 n) Xn(@), @(@) = (05 ¥n — 0y gn) Xn(z), (4.14)
n=1 n=1

5 _ = 01 02 5

fu(m)_nz::l(af'i_/‘gn 0%+Mwn)Xn( )s

5 _ - 793 s 94 5

o) = 2~ e Xl (4.15)

4.2. The error estimate with a-priori parameter choice

Based on the a-priori regularization parameter choice rule, the error estimates can
be obtained respectively.

Theorem 4.1. Assume exact solution f(x) satisfies (3.8) and assumptions (1.2)
hold.

(1) If 0 < p < 4, andu:(%)ﬁ, then

() = fOIl < Cro7e2 Eve; (4.16)

ol
~
>
[
3

(2) Ifp >4, and p = (%) ,
1£3() = )l < Cad3 B3, (4.17)

where 5’1 and 6’; are positive constants independent of u, §, E.

Proof. By means of a triangular inequality, we have

IF2C) = FOIN <) = O+ 1) = FO- (4.18)
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Now we give an estimate of the first term. Through (4.14), (4.15) and (1.2), we
obtain

s S 71 5 s H
) : o — Yn n Xn
1550 = 201 = | X G0t = 00) = S 0 = o) Xal)

5 5
[EE— + [EE—
20 20
9
Vi
Then we give an estimate the second term of (4.18). Through (3.8), (4.10), (4.14)
and Lemma 2.9, we can deduce

I50) = SOIF
:HZ< g — ) X (@) = (07 g — 05 ) X ()|

ot 41 02+,u

(4.19)

—_

Z 1(0? +M In 02(U§L+ M))Xn(x)Hz

< - 15 . Eml(_%‘tg) Andn 2
S T = B (BT Ban (2516) — a(Elio)) (= Fan (5 ) B (57 ")
- 13 . EQJ(_%TQ) A 9
Y TN Bon ST Bon (5 15) — €0 (L~ Bor (585 B (7))

<G sup A (n) (ZA:; )+ 30 M)

n=1
SQ(%F Sup|A1 (Z)\ﬁ< n al(_)\*Ta)

+ @TaEma_i_l(_%Ta)fn)) 2

oo

1 An q(&(to)) An 2
p _ _ o o _ o
+n§_:1)\n()\n(2Ea,l( 92 tO)SDn + 2 tOEa,aJrl( 2 to)fn)) )
Cs =
<AF) sup 41 (n 2(C3 Z N0 + 4M? Z X2 f2)

<2(E2)? sup | 41 (m)(C3 + 4M?) B

- 77 n>1

202(C2 + 4M? 2
2—2( 202 ) sup fAl(n)| E?,
7 n>1
o P
where A;(n) = 2= ~ . Then A, := s, according to Lemma 2.9, we have

(S5)2+uA2 "

Copt,0<p<4,
Av(n) < ofh p

CIO,LL7 p 2 47
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where Cy = 1 (4 7p)17§p§(%)7§’ Cio = (@)7%‘?7%

o , consequently

22Cy(C3 + 4M?)2
Cy

220y (C3 + 4M?)2
Cy

Combining (4.19) with (4.20), we can obtain a-priori regularization parameter p

Cg,LL§E, 0<p<4,

[fu() = FOI < (4.20)

Cl(),ME, p = 4.

1)
(5)77.0<p <4,
u:

Wl

)
e 247
(E) I’ p

then, we have
5 Clov Eviz 0 < p < 4,
1fuC)=FOIN<q — , (4.21)
Co03E3, p =4

— 1 1 — 1 1
Where € = (14 Z2CAGHMD2 ) @, — (14 Z2CACHMD2 01y Now the

proof of Theorem 4.1 has been completed. O

Theorem 4.2. Assume exact solution p(x) satisfies (3.8) and assumptions (1.2)
hold. .
(1) If0 < p <4, and p = (£)7+, then

95,(-) = ()| < Cad7%2 Evez; (4.22)
(2) If p >4, and p= (L)%, then
15,() = ()| < Cad E5. (4.23)

where 6; and ,C'v4 are positive constants independent of i, §, E.

Proof. The proof of Theorem 4.2 is similar to Theorem 4.1, so it is omitted. [

4.3. The error estimate with a-posteriori parameter choice

In Section 4.2, we know that the a-priori parameter choice is related to the a-
priori bound E. However, the a-priori bound F is an additional assumption. In
most practical applications, the condition is usually not readily available. Thus
an a-posteriori parameter selection rule for choosing the regularization parameter
is necessary. In this subsection, Morozov’s discrepancy principle is considered to
choose a-posteriori parameter pu.

4.3.1. The a-posteriori convergence error estimates of unknown source
term
The a-posteriori rule satisfies the following equation:

[ K f)(2) — Ko K1 g’ (2) = 9° (2)]| = 16, (4.24)

where 71 > % + 1 and ||KoK [ g + 0| > 7.
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Lemma 4.1. Let p(u) = HKQf;E(:c) — KoK g0 (x) — o0 ()|, the following results
hold

(a) p(p) is continuous;

(b) lim, 0 p(p) = 0;

(¢) Ty oo pl11) = [ KoK " + 0]

(d) p(u) is a strictly monotone function for any p € (0,00).

Proof. According to the expression of p(u) as follows, the lemma clearly holds

e CL SR V) X ()]l (4.25)

z:: K*K1+ I In K*K2+'LLI
O

Theorem 4.3. Assume ezxact solution f(x) satisfies (3.8) and assumptions (1.2)
hold. The a-posteriori reqularization parameter p is chosen by (4.24), then
(1) If 0 < p < 2, we can obtain

IF2() = FC)Il < Cso7%2 Bz (4.26)
(2) If p = 2, we can obtain
I£5() = £Oll < Ces2 B2, (4.27)
where 675 and 6’% are positive constants independent of u, §, E.

Proof. From the basic inequality, we have

IF2C) = FOIN <L) = FuO+ 1£a () = FO- (4.28)

For the first term, according to (4.19), we have

)
1£20) = £u ()] < i (4.29)
Using (4.24) and (1.2), we have
a1 (= 2t3) 8 H s
(515)
n X'n
<”Za1+uEa,< s 0 IE — ) Xa(o)]
Ant

< sup
n>11 Eo (=3

< (@+1)5+J1.

Cs

Combining a-priori bound (3.8), we can obtain

') An 1
u Ea 1( "t ) o 2
J12_ E ( > gn — P] wn)
\of + B (—22Te) oyt
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n>1 Ea’l(—%Ta) O'% + u
< (M Ongn)? + 3 M en)?)
n=1 n=1
Cy oA o, 2\ 2
< 2sup|((7)" +1) @y oz | (G D
< 2((%)2 +1)(C3 +4M?) sup ‘Bl(n)|2E2
3 n>1

= Oy sup |Bl(n)’2E2,
n>1

1_P
where Bj(n) = (%‘;;‘;ﬁ Then A, := s, from Lemma 2.10, we have
2 n
Cup™,0<p<2,
Bin)<d M P (4.30)
012/% p 2 27
1 2-p 24p 07\ 24 Cry—2y1-%
where C11 = 3(2—p) 7 (2+p) 7 (&) 2, Ci2 = (&) *A; °, therefore
C,C pT”E, 0<p<2,
(1 — % NP Y b (4.31)
3 Ci2Ci3pE,  p=2.
Then o
(— )70 TR R, 0<p <2,
7 G2
1. 10 g (4.32)
P Gl s p>2
T — 073 —
According to (4.29) and (4.32), we have
11 C
(— gt )FRare Ere 0 < p < 2,
T — & —
igo-non<! ToS (4.39)
(— 22 )350 B, p>2
T — Cii -

Next, we consider the second term and apply the Holder inequality
1 £u() = FOI
> 01 g2 — -1 -1
:H Z( D) 9n {lpn)Xn(x) - Z(Ul gn — 09 1pn))(n(ir)H
= o1 tH

2

_a§—|—,u

n=1

2

| G et @)
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7Z| M Ea,l(i%tg)
oF+ 1 g(&(T)(1 = Ean(—5T) Bt (= 34§) = a(6(t0)) (1 = Bay1(=%15)) Ea, (*%"T“)

2
L 2
( /\n To‘ ¢’L)A7L | P

un Ean(=22T%)
o3 Ft1 (1) (1=EBa1 (= 4-T))Ea1 (= 41§)—a(£(t0)) (1= Ea 1 (= 24-1§)) E

Eo,1 (= 315)

X| it - “nga P YT ~ Py “SagayIn
oitr q&(T)(1—Ea,1(—=3TY)Ea1(—34t5)—q(&(t0)) (1= Ea,1 (=315 )) Ea,1 (=3 T%)

A « 2p
- B (=5 T7) )| 77
o3 ti q(E(T) (1= Fa (= 3-T%)) a1 (= 33-5) ~4(£(t0)) (1= Ba,1 (= 34§)) Fa 1 (= 52T2) 77

<hIs.
Now we give the estimate of Iy

_ oo o Eo 1 (—22t5)
L= (Z”=1(a¥+u 4(6(T) (1= Ba 1 (=3 T%) Ba1 (= 33)=4(€(t0)) (1= a1 (= -43) Ba 1 (-3 T%)

9n

[ AR Boa(=227%) ¥ ) p+2> 2
o3tu (E(T))(l Ea1(=3T%))Ea, 1(*A"t”)* (E(to))(l*Ea1(*%”’53))15(».1( )"

( nzlv ) +Z>\P Anthn)? )

Co
Cr

Then we consider I

< (2(5)%(C3 +4M2)E2)

I = K . Ea.l(*Tto) .
2 <;(0%+# GED) 1~ Bar (-3 T%) Bat (- 515) — a(€(t0)) (1 — Bar (5 65) Ba1 (- 7%)°

2

B Eo 1 (—20T%)
o3 1 q(§(T)(1=Ea1 (=2 T%)) Ba1 (—25) —a(£(t0) (1= Ba 1 (= 22£8)) Ba,1 (- 2 T%)

¥n

:(i( Mo Eoa(=315)
=Nof 0 qE(D))(1 = Bap (=3 T%)) Ea 1 (—2t8) — a(6(t0))(1 — Ba,1(—23218)) Ba1 (=2 T9)

X (gn — 95+ 95)
_n Baa(=T7)
o3tn q(E(T))(1—Ea,1(—28T%)) Ea,1(—32t§)—q(£(t0)) A= Ea,1(— 32t)) Ea,1 (- 22 T)

< =t ) )

n= n=1
= Eoq1(=22T9) 2
+2,; (fl(f(T))(l — Ea1(=3T)Ear(=318) — q(£(t0)) (1 — Bt (—31§)) Eaa( T“))

2
( M ) Ea,l(_Tntg
of + 4 Egu(—2p

C'2 2 Cy 2 2 2\ pr2
< 4 2(— P2

(UG8 + 4% + 2 ) (d)°)

Therefore, we have
2 . D
[fu() = fOI < CraE7e2 672, (4.34)
Combining (4.28), (4.33) and (4.34), we obtain
Csd7 2 Evz 0 < p< 2,

[FHORN IO S (4.35)
Cedz2E2, p =2,
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where Cs = Cy4 + (C#C“"l)z’+2 Cs = Cia + (L&al)% The proof of Theorem
C3 C-

4.3 has been completed. ’ ’ O

4.3.2. The a-posteriori error estimates of initial value

The a-posteriori rule satisfies the following equation:
K30 (2) — K3 Ky g’ (@) = ¢ (2)]| = 29, (4.36)
where 75 > C + 1 and ||K3K;  g? + 40| > 7a0.

Lemma 4.2. Let p(u) = || K3¢),(z) — K3K; g% (x) — 0 (x)|, the following results
hold

(a) p(p) is continuous;

(b) 1iInu—>0 P(N) = O;

(¢) Ty o pl11) = [ KK " + 0]

(d) p(p) is a strictly monotone function for any p € (0,00).

Proof. According to the expression of p(u) as follows, the lemma clearly holds

—||Z K*K n IK3K4 n mw) ()] (4.37)

O

Theorem 4.4. Assume the exact solution p(z) satisfies (3.8) and assumptions
(1.2) hold. The a-posteriori reqularization parameter u is selected through (4.36),
then

(1) If 0 < p < 2, we can obtain

len () = ¢Oll < Crori= Bz (4.38)
(2) If p > 2, we can obtain
lof() = (Ol < Cad E7, (4.39)
where 6; and 6’; are positive constants independent of u, §, E.

Proof. According to basic inequality, we have

1€5() = eIl < 195, = ull + llen(:) — e(C)II- (4.40)

Now, we consider the first term, similarly

lep() = pu()l < (4.41)

Bl

Using (4.36) and (1.2), we have

(E(tO))tO Ea,a-i—l(_)\?"tg
0= H Z (U tu Q(E(T))T Ea,a-i-l(—%To‘) no o’§ +pu "

(tO))tha a+1(*)\*"t(of) 5
HZ%JF# q(&(T))T* By qi1(—2 O‘)(gn 9n) Xn )

e
>
=
(=%}

SN—
~

3

8
et
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ap3 Qiu(wi — ) X ()]
q(£(t0))t§ Ba a1 (—218) L
+ H Z (0- + u q( ))TaEa a+1( TnT )g 0’% _|_'uwn>Xn(l')H

o o
n>1 q(M)TEqy,a+1(— Ta)

( + 1) + Ja,

0+6+J

o8
Q
3
\
=
=
3
N—
2
8
=
T

HZ( q4(£(0))t§ Eaat1 (=3t
03+ 1 q(E(T))T* Egopr (—25T) o3+ p

N (- A€t Baoin (56) _n )2
A\t qE(T)TE g (— T o +p "
< i ( M q(§(t0))t6 Ea a+1(*)‘7"t8‘) o — 1 ))2
B n=1 0—'32> +M Q(S(T))T Ea oz+1( )\" a)
< i( 1 (1)1 = Ba (=3 T*) Ean (= %15) — a(£(t0)) (1 — Ea.l(*%to”))Eu,l(*%T”)y
- n=1 0'3+# )‘qu(g(T))TaEma#»l(_%Ta)
y UETNT Fa s (=2 T —a(E(t0))1§ B (= 348D 2
" q(¢(T))(1—Ea, 1(,@@))& (= 2448)—a(£(t0) (1= Ea 1 (= 315)) Ba,1 (— 4+ T%)
a9 ﬂ>\ -
< (—=-)"sup AP
- (C(S) nZl 0_3 +M nz:l n(pn
1_2
< (L2, ’4‘2 2
G n>1 (£2)2 + pA2
C
< (/2)*sup B (n)E?,
Cé" n>1
where Ba(n) = %, then A, := s, according to Lemma 2.10, we have
Cps,0<p<2,
By(n) < flu b (4.42)
Ciopy, P22,
where €}, = 3(2 —p) (2 +p)&%(%)_¥,012 = (20—7)_2)\}_57 therefore
5 CQCC“ E,0<p<2
(2= = —1)0 < ‘, (4.43)
Cs CyC5 g b9
06 ILL ) =
Then
) (O( 020121 1))ﬁé_ﬁZEﬁ,0<p<2
T e pr—
<y é o (4.44)
! 22 57'E, p=2.
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According to (4.41) and (4.44), we obtain

( 020121 )p+25p+2Eﬁ70<p<2
5 Co(re— & — 1)
() = eu()ll < , (4.45)
02012 1.1 1
5 )202 B, p=2
Co(rz — & — 1)

lou(-) —e()IIP

n=1 n=1
- [ M 2
5 5
= — X, (x
12 G a0l
=il( " G(E(T))T B i1 (—2T°) .
o3+ g€(D) (1~ Ear(—3T%) Ea(=%1§) — 4(€(t0)) (1 — o (—3-48) Ean (—%T) "
B, 9(E(t0))t5 Bayat1(—24t5) ))\%2}%
T Q€T (1~ ot (— S T) Ba,1 (~ 465) ~a(€(t0)) (1= B 1 (— 160 B 1 (— 3T I
><| I q(&(T) T Ea,a+1(*)‘T"To‘) d)
T3 i q(e(T)) (1= Fa 1 (— 34-T%)) Ea 1 (= 24 15) (& (t0)) (1~ Ea 1 (— 24 £8)) Ba 1 (— 3-T)
e 9(E(to))t Baat1 (—2218) p |%
oiti  q(&(T))(1—Ba,1 (=3 T%)) a1 (—2318) — (§(t0))(1 Bo1 (= 2248)) Bt (=22 T2) 7™
<I3ly.
We first estimate I3, from (3.8)
o An T
I — K . q(f(T))T Eoc,a-%—l(*TT ) .
’ @1(”5 T Q€T — Bt (-3 T) Bt (- 348) — a(€0) (1 — Eur (565 Ban (577
o U015 P (=215 2\ pr2) 75
oitn q(E(T))(1=Ea,1(=22T%))Ea1(—22t3)—q(£(to)) (1= Ea,1(— tg))E(l’l(fﬂTa)g") AL )
2My2 NS 2 S e
<(2(G S (M0 + 000 ))
= n=1
2M
<(2(F5)%(C3 + 40 E?) 72
Cr
Next we give the estimate of I,
( i . (I(g(T))TQEa,oH»l(_)\TnTu) w
ot qET) (= Baa(=23T) Ban(=318) = a(£(t0)(1 = Bap(=3-18)) Ban (= T2) "
K q(&(to))ts ua+1(*%t3) )2>p%
TH (€T (1= B 1~ 3T)) Bor 1 (= M 16)~a(6(t0)) (1— a1 (— 24 48)) B 1 (= 3 T) I
:(i( b (E(T)T? Ea o (22 T%)
ot i q(E(T))(1— Baa(—22T2)) ot (—22t8) — a(6(t0))(1 — Ea1(—22t8)) Ea1 (—22T9)

X (Y — P3 +95)

g . q(£(t0))tg Eo,at1(— >‘2” o)
oith g(&(T))(1=Ba,1 (=4 T%) Ea,1 (= 31§) =a(€(t0)) (1= Ba,1 (= 3-1§)) Ea,1 (= 3 T2)

P
2\ p+2
X (gn — 95+ 92)) )p
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< (1522 Y — 00 + 4GP Y (00— 92)?

n=1 n=
E(T)T*Ea,as1(=5T)

q 2
*2; e~ o %T&))Ew, (—315) — ale(t ))(1—Ea,mf%ta))Ea,l(f%Ta))

Therefore, we have
2

lou(-) = 9()Il < Crz07%2 Evv2. (4.46)
Combining (4.40), (4.45) and (4.46), we obtain
Crd72 otz 0 < p < 2,

leo() =@l <q | (4.47)
Cs02 E2, p =2

Nl

Where C7 = Cy5 + (CS(TCE_D)T Cs = Ci5 + (06(22_7025_1))
6

Theorem 4.4 is completed. O

. The proof of

5. Numerical implementation

In Section 5, we provide two examples to demonstrate the effectiveness and feasi-
bility of using the Tikhonov method to simultaneously identify initial values and

source terms. We take 2 = (0, 1) for the one-dimensional situation and Au = ‘;zg
Let Q = (0,1) x (0, 1) for the two-dimensional situation and Au = dzz 5+ 57 d +. In both

cases, tg = %,T = 1 is fixed. First of all, we consider following one- dlmensmnal
forward problem

t ou(zx,T)

G a _

SEDfu(w,t) + /0 ker(t —T) o dr
= Au(z,t) + F(z,t), z € (0,1),t € (0,1],
u(0,t) =u(l,t) =0, te(0,1], (5.1)
u(z,0) = o(z), (0,1),
u(z,0.5) = ¥(x), z € (0,1),t € (0,1],
u(z, 1) = g(x), (0,1).

We define h = ﬁ, = %, then
= ih(i =0,1,.., M), tj, = kr(k=0,1,..., N). (5.2)

The finite difference method is used to solve the problem. Griinwald-Letnikov dis-
cretization method is given by [31]

[%2] (%21
1 o 1
GL o . — 1 - _1\J ) . ~ (_Oé) . o
0 Dt U(xzatn) }Lli% he j§:0 ( 1) <j)U(-Tzatn jh) he ;:0 wg U(xutn ]h),

(5.3)
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where wj(-a) = (-1) (‘;) is the polynomial coefficients of (1—2)%, and can be calculate
by the following the recurrence formula:

(e} o 1 (0% .
wf = 1,0 = (1 - %)wﬁ_)l,] =1,2,.. (5.4)

The discretization method for the second term of equation

/t ker(t — T)LU(QB7 7) dr
0

or
—a n—1
__T (O‘)U.” _ o' (a) Uk — (a) o 5.5
I‘(Z_a) |:a0 % ;( n—k—1 an—k) % A, Ui |- ( . )

The finite difference method for Laplace operator A is as follows

1
AU (zi,tn) = 5 2 5 (Ui =207 + UiLy). (5.6)

01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1

() * (b) .

Figure 1. The exact solution and regularized solution of the source term.

0 0
0 01 02 03 04 05 06 07 08 09 0 01 02 03 04 05 06 07 08 09
x

(a) * (b)

Figure 2. The exact solution and regularized solution of the initial value.

Consider Equation (5.1) at node (x;,t,) and combine it with (5.3), (5.5), (5.6),
we can obtain following difference scheme

(2] ne1
1 (@) rn—jh T (@) (@) (@) \prk (@) 770
— Sl L LI (! Uk _ o
ha Jgo wj 7 + F(2 _ a) { k=1< n—k—1 a’n—k) 7 a’n—l z]

1
= o3 (U =207 + U + /7, 1<i<SM-11<n<N

U =o(x;), 1<i<M-1,
Up =0,Uy, =0, 0<n<N.

)
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Similarly, we provide a two-dimensional example. By using Matlab to implement
the difference scheme above, we can obtain ¢ (z) and g(x). In practical situations,
there is a certain degree of error in the measurement data, so we add random noise

to ¥(x) and g(x)
0 =p(1+6%(2Ra—1)), ¢° = g(1+6* (2Rg — 1)), (5.8)

where Ry is generated by the Matlab function rand.m. We define the relative error

error surface for 4=0.05

exact soluti

(a) (b)

error surface for 4=0.001

error(xy)

(c)

Figure 3. The exact solution and error surface of the source term.

as
BN i R
A

The regularization solution is given by the following equation

fo=(KiKy+pl) ' Kig® + (K5 Ko+ pl) "' K30°,
@) = (K3 K3+ pl) ' K50 + (Kj Ky + pl) 7' Kig®.

We use a-posteriori regularization parameter choice rule to select the regularization
parameter p and take 7 = 2.1, 75 = 2.1. Use the method of Igor Podlubny [16] to

obtain fl‘f and gof, Let M = 50, N = 50, we give the following two examples.
Example 5.1. Let exact source term f(x) = sin(nz) and initial value p(z) =

sin(mz). We take q(t) = FQ(FQ(’;:Z) +72t), consider two scenarios: a = 0.7, a = 0.3.

Example 5.2. Let exact source term f(x,y) = cos(mz) cos(my) and initial value
o(z,y) = 2cos(mz) cos(my). We take g(t) = st + %, consider a = 0.6.
Figure 1 and Figure 2 show the curves of exact solution and the Tikhonov
approximation solution in one-dimensional case. Figure 1 shows the curves of the
exact solution f(z) and the regularized solution flf(as) of Example 5.1 for different

errors 0 = 0.05,0.01,0.001, when the fractional order is @ = 0.7,0.3. Figure 2
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error surface for 4=0.05

ﬂa\
06

04 \\ N
T 08
! o 02

(a) (b)

error surface for 4=0.01

(d)

Figure 4. The exact solution and error surface of the initial value.

Table 1. Numerical results of the two examples.

Example o ey

Example 5.2(a =0.7)  0.05 0.0355 0.0432
0.01 0.0133 0.0214
0.001  0.0028 0.0043
Example 5.1(a =0.3) 0.05 0.0274 0.0316
0.01 0.0124 0.0184
0.001 0.0012 0.0054
Example 5.2(a =0.6) 0.05 0.1298 0.0927
0.01 0.0628 0.0494
0.001 0.0139 0.0358

shows the curves of the exact solution ¢(z) and the regularized solution 502 (x) of
Example 5.1 for different errors 6 = 0.05,0.01,0.001, when the fractional order
is « = 0.7,0.3. In addition, from Figure 1 and Figure 2, we can see that the
trend of the regularized solution and exact solution is roughly the same. As the
error decreases, the the fitting effect of the Tikhonov regularization approximation
solution and exact solution is improved.

Figure 3 and Figure 4 show exact solution and the error surface in two-dimen-
sional case. Figure 3 shows source term f(x,y) of Example 5.2, and the error
surfaces between the exact solution f(x,y) and the Tikhonov regularization ap-
proximation solution f/f(x,y) with errors § = 0.05,0.01,0.001. Figure 4 shows
initial value ¢(z,y) of Example 5.2, and the error surfaces between the exact solu-
tion p(z,y) and the Tikhonov regularization approximation solution goi(x, y) with
errors 6 = 0.05,0.01,0.001.

Table 1 presents the relative error results of Example 5.1 and Example 5.2 for
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0 = 0.05,0.01,0.001. From numerical simulation results, we can see that the relative
error is small. As the error decreases, the fitting effect of the exact solution and the
regularized solution is improved. Based on the above two examples, our method is
reasonable.

6. Conclusion

In this paper, we investigate the simultaneous identification of source terms and
initial values for the multi-term time fractional diffusion equation. This is an in-
verse problem and it is ill-posed. Therefore, we use the Tikhonov regularization
method. Based on a-priori bound assumption and a-priori, a-posteriori regulariza-
tion parameter choice rules, we derive the convergence estimates. The convergence
estimates and several numerical examples demonstrate the efficiency and feasibility
of the proposed regularization method for simultaneously identifying initial values
and source terms.
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