
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com

Volume 15, Number 4, August 2025, 1928–1944 DOI:10.11948/20240332

STABILITY OF A NONAUTONOMOUS
DELAYED PERIODIC REACTION-DIFFUSION

PREDATOR-PREY MODEL

Lili Jia1,2 and Changyou Wang3,†

Abstract This article focuses on the stability of periodic solution of a de-
layed nonautonomous reaction-diffusion predator-prey model. The fine com-
bination of upper and lower solution methods and Lyapunov stability theory
is used to transform the study of the stability problem of delayed reaction-
diffusion equations into the stability problem of their corresponding delayed
ordinary differential equations. Some sufficient conditions are given to ensure
the globally asymptotically stability of the periodic solution for this model.
Unlike existing results, the stable solution which are obtained in this article is
a time-periodic solution rather than a constant periodic solution or a solution
for a steady-state system. We extend a stability theorem on predator-prey
model introduced by V. Ortega and C. Rebelo in 2023 to nonautonomous de-
layed reaction-diffusion model. Finally, in order to show the application of the
theoretical results, the proposed conditions are numerically validated over a
2-periodic delayed nonautonomous reaction-diffusion predator-prey model.

Keywords Reaction-diffusion predators-prey model, nonautonomous model,
periodic solution, stability and permanent property, method of upper and lower
solutions.
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1. Introduction

The study of the properties of reaction-diffusion equations (RDEs) can be used
to describe many phenomena in the population and epidemic system, which has
attracted increasing attention from scholars [3–5, 8–10, 14, 19, 20]. Especially, the
research on predator-prey RDEs has recently achieved many excellent results. For
example, in 2013, Ko and Ahn [17] studied RDEs with two competing predators
and one prey and obtained some sufficient conditions to ensure the persistence and
global attractiveness for solutions of the system. In 2015, Yang et al. [34] stud-
ied RDEs with Leslie-Gower functional response and gained sufficient conditions to
guarantee the coexistence state and attractor existence of the model by using fixed
point index theory. In 2017, Wang [29] studied RDEs with Neumann boundary
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conditions and Holling Type III functional response and obtained sufficient con-
ditions to guarantee the existence of periodic orbits by using coincidence theory
and bifurcation methods. In 2020, Wu and Zhao [30] studied RDEs with the Allee
effect and threshold hunting and analyzed the asymptotic stability of the equilib-
rium point of the model by constructing a Jacobian matrix. In 2021, Bentout et
al. [2] studied an age-structured predator-prey infection model, and explored the im-
pact of predator maturity on interspecies interactions and infectious disease spread.
The findings reveal that the minimum maturation time of predators can influence
the behavior of the system’s solutions. In the same year, Djilali and Cattani [12]
analyzed a superdiffusive predator-prey system with a hunting cooperation func-
tional response. The presence of superdiffusion represents the fear effect of the
prey and the organized hunting strategy of the predator. The study indicates that
superdiffusion leads to complex dynamical behaviors of the system’s solutions and
can influence the stability of certain equilibria. In 2022, Yan and Zhang [33] stud-
ied RDEs with a Beddington-DeAngelis functional response and obtained stability
and instability criteria for the positive constant equilibrium point of the model.
In 2023, Chen and Wu [6] studied the spatiotemporal behavior of RDEs with a
Beddington-DeAngelis functional response function by using the Leray-Schauder
degree theory and Poincare inequality. It is worth mentioning that the above mod-
els are autonomous RDEs. Due to the fact that the birth rate, the death rate
and the interaction between population are not invariable, nonautonomous RDEs
can better simulate the interactions among species in predator-prey models. How-
ever, the methods used in the previous literature are difficult to study multi-species
nonautonomous predator-prey RDEs. More recently, Jia et al. [15] has considered
a 3-species nonautonomous predator-prey RDEs and has obtained some judgment
criteria to ensure the globally asymptotically stability of strictly positive homoge-
nous periodic solution for the system by using the upper and lower solutions method
and Lyapunov stability theory.

In a large amount of the real world, the state of a system is influenced not only
by its current state, but also often by their past state. Even in some phenomena,
if you ignore the impact of the system’s past state on its future state, the entire
research is meaningless. Therefore, when describe the impact of the interaction
between time delayed feedback and spatial transfer on the system state, scientists
have proposed a new type of mathematical model-delayed reaction-diffusion equa-
tions (DRDEs). Using these equations, many real natural phenomena are described
and well explained. In recent years, the research on DRDEs has attracted more
and more attention of scholars. Early research on DRDEs was mostly included in
academic works [28, 31]. In recent years, some excellent achievements have been
achieved in the study of periodic solutions to DRDEs. For example, in 2016, Chen
and Yu [7] considered a DRDEs with nonlocal delay effect and Dirichlet boundary
condition and obtained stability criteria for the positive equilibrium point of the
model. In 2017, Shi et al. [25] studied a DRDEs with distributed delay and Dirich-
let boundary condition and obtained stability conditions of the positive steady state
for the model. In 2018, Yuan and Guo [36] studied a nonlocal DRDE and achieved
the the existence and stability of solutions for the model with the help of monotone
iteration methods. In 2019, Shen and Wei [24] studied a mussel-algae DRDEs with
Neumann boundary conditions and obtained the stability conditions for the posi-
tive constant steady state. In 2021, Zuo and Shi [38] researched a general DRDEs
with spatiotemporal nonlocal delay effect and Dirichlet boundary conditions and
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obtained some criteria to ensure the existence and stability of positive steady-state
solutions for the system. In 2022, Xu et al. [32] analyzed a general DRDEs with
predator maturation delay and obtained global asymptotic stability of the posi-
tive constant steady state. In 2023, Yuan and Guo [35] studied a class of DRDEs
with spatial nonlocality and achieved some criteria to ensure the stability of pos-
itive steady-state solutions. In the same year, Djilali et al. [11] studied a class of
spatially heterogeneous DRDEs. By employing the Kuratowski measure of noncom-
pactness, the existence of a global compact attractor for the system is demonstrated.
Furthermore, sufficient conditions for the uniform persistence of solutions and the
asymptotic stability of equilibrium solutions are obtained. In 2024, Kumar [18] in-
vestigated a prey-predator DRDEs with Leslie-Gower functional response and Smith
growth functions and established sufficient conditions of the global stability for the
positive constant steady state. It is worth mentioning that the issues studied in the
above literatures are the stability of constant equilibrium solutions or steady-state
solutions of autonomous DRDEs. Moreover, the research methods in the previous
papers, such as eigenvalues, which cannot be used to study nonautonomous DRDEs.
To the best of our knowledge, the results about the stability of periodic solution to
nonautonomous DRDEs rarely occurred.

Due to the fact that nonautonomous DRDEs can better simulate the interactions
between species in predator-prey models and the study of its dynamic properties
has very important practical significance. In this article, we focus on the following
nonautonomous periodic DRDEs



∂u1(x, t)/∂t− d1(t)∆u1(x, t) = u1(x, t)[r1(t)− a11(t)u1(x, t− τ1)

−a12(t)u2(x, t)],

∂u2(x, t)/∂t− d2(t)∆u2(x, t) = u2(x, t)[−r2(t)− a22(t)u2(x, t− τ2)

+a21(t)u1(x, t− τ1)],

(1.1)

with the Neumman boundary and initial conditions

∂ui(x, t)/∂n = 0, (x, t) ∈ ∂Ω× R+, ui(x, t) = ηi0(x, t) > 0,

(x, t) ∈ Ω× [−τ, 0], i = 1, 2.
(1.2)

Here Ω is a bounded smooth domain in Rn with boundary ∂Ω, ∆ is a Laplace oper-
ator on Ω, ∂/∂n denotes the outward normal derivation on ∂Ω, ui(x, t) represents
the density of i-th species at location x = (x1, x2, · · · , xn) and the time t. τ1 and
τ2 are two constants representing delay and τ = max{τ1, τ2}. d1(t) and d2(t) de-
note the diffusion rates of the prey and the predator species at time t respectively.
aii(t) represent the interaction within i-th species, a12(t) is the capturing rate of
the predator, and a21(t) is the effective conversion rate of predator. r1(t) and r2(t)
are the reproduction rate of prey (in the absence of predator) and the natural death
rate of predator. All the coefficients of the model (1.1)-(1.2) are continuous and
positive ω-periodic functions. The model (1.1)-(1.2) is an extension of the clas-
sic Lotka-Volterra model, and its degenerate model has been extensively studied,
for example see [1, 22, 23]. Amine and Ortega [1] obtained a stability criterion on
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non-constant periodic solutions for the following model
du1(t)

dt
= u1(t)(a(t)− b(t)u1(t)− c(t)u2(t)),

du2(t)

dt
= u2(t)(d(t)− e(t)u2(t) + f(t)u1(t)),

(1.3)

in terms of the L∞ norm of the coefficients of a planar linear system associated to
the model (1.3). Ortega [22] gave another stability criteria in terms of the L1 norm
and Ortega and Rebelo [23] obtained a new stability criterion which establishes a
bridge between the stability criteria in [1] and [22] in terms of Lp norm.

The stability on time-periodic solution for nonautonomous DRDEs has not been
studied before. In this article, we intend to study the time-periodic solutions for
the predator-prey Lotka-Volterra models governed by nonautonomous DRDEs and
generalize the stability result on (1.3) obtained in [23]. Meanwhile, the methods
obtained in this article can also be used to extend the permanent result obtained
in [21] to nonautonomous cooperative DRDEs.

The article organization are showed as follows. In Section 2, we will investigate
the existence of the time-periodic solution of the nonautonomous predator-prey
DRDEs. In Section 3, we pay more attention to the globally asymptotically stability
of the time-periodic solution. In Section 4, we will give a numerical example to show
the application of the theoretical findings obtained in this article.

Remark 1.1. The innovations and achievements of this article are listed as fol-
lows: (1) By introducing the time delays and the variable coefficient into the known
population models, a new Lotka-Volterra predator-prey model (nonautonomous
predator-prey DRDEs) that can more truly depict the interaction among popu-
lations is proposed. (2) By considering of the upper and lower solution methods
and Lyapunov stability theory as well as fixed point theory, some new theories and
methods have been creatively developed, the existence and stability of the positive
time-dependent periodic solution of the new predator-prey DRDEs are obtained
only a set of simplify verified conditions are needed. (3) The technique of con-
structing Lyapunov functions for delayed differential equations step by step can be
used to study related problems, which will provide an effective method to study the
stability of solutions to delayed partial differential equations. (4) Compared with
the existing results, the stable solution obtained in this article is a time-periodic
solution rather than a constant periodic solution or a solution for a steady-state sys-
tem, which will be more in line with the objective law of seasonal cyclical changes
in species density.

2. Existence of spatial homogeneous periodic solu-
tions

Set φ(t) be a ω -periodic function in R+. We denote

φm = sup{φ(t), t ∈ R+}, φl = inf {φ(t), t ∈ R+} .

Next, we study the functional differential equations corresponding to the model
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(1.1) 
du1(t)

dt
= u1(t)[r1(t)− a11(t)u1(t− τ1)− a12(t)u2(t)],

du2(t)

dt
= u2(t)[−r2(t)− a22(t)u2(t− τ2) + a21(t)u1(t− τ1)],

(2.1)

with the initial conditions

ui(t) = ηi0(t) > 0, t ∈ [−τ, 0], i = 1, 2. (2.2)

Theorem 2.1. For any positive initial conditions, the solution of the models (2.1-
(2.2) is positive.

Proof. Due to the continuity of the functions on the right-hand side of model (2.1)
and its satisfaction of the local Lipschitz condition, models (2.1)-(2.2) possesses a
unique local solution, denoted as u1(t) and u2(t), on a small interval [0, T ) accord-
ing to the existence and uniqueness theorem for solutions of functional differential
equations. Next, we prove that for any positive initial values, this local solution
remains positive and can be extended to the entire positive time axis.

According to the first equation of model (2.1), when u1(t) > 0 and u2(t) > 0,
the sign of the right-hand side of the equation depends on r1(t)−a11(t)u1(t− τ1)−
a12(t)u2(t) ≜ Λ1(t). If the initial value results in Λ1(t) > 0, then the rate of change
of u1(t) is positive, and since the initial value η10(t) is positive, u1(t) will remain
positive. If the initial values result in Λ1(t) < 0, then the rate of change of u1(t)
is negative, and due to the positive initial value, the prey population u1(t) will
decrease. Based on the interaction mechanisms among populations in ecosystems
and the continuity of population dynamics. Subsequently, the predator population
u2(t) will also decrease due to insufficient food. Since r1(t) > 0, as the populations
of u1(t) and u2(t) decrease, eventually Λ1(t) will become positive, causing the pop-
ulation of u1(t) to increase before reaching zero. In summary, regardless of whether
the initial values make Λ1(t) > 0 or Λ1(t) < 0, u1(t) remains positive.

Similarly, according to the second equation of model (2.1), when u1(t) > 0 and
u2(t) > 0, the sign of the right-hand side of the equation depends on −r2(t) −
a22(t)u2(t− τ2) + a21(t)u1(t− τ1) ≜ Λ2(t). If the initial values result in Λ2(t) > 0,
then the rate of change of u2(t) is positive, and since the initial value η20(t) is pos-
itive, u2(t) will remain positive. If the initial values result in Λ2(t) < 0, then the
rate of change of u2(t) is negative, and due to the positive initial value, the predator
population u2(t) will continuously decrease. Based on the interaction mechanisms
among populations in ecosystems and the continuity of population dynamics. Simul-
taneously, the prey population u1(t) will increase due to the reduction in predators.
As u2(t) decreases and u1(t) increases, eventually Λ2(t) will become positive (since
a12(t) > 0 ), causing the population of u2(t) to increase before decreasing to zero.
In summary, regardless of whether the initial values make Λ2(t) > 0 or Λ2(t) < 0,
u2(t) remains positive.

Furthermore, since the local solution is unique and positive, we can utilize the
continuous dependence theorem for solutions of functional differential equations to
extend the local solution to the entire positive time axis while maintaining its posi-
tivity. Therefore, given the initial conditions η10(t) > 0 and η20(t) > 0, the solutions
of the predator-prey models (2.1)-(2.2) remain positive on the entire positive time
axis.
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For the model (2.1), set

M1 =
rm1
al11

exp {rm1 τ1} , M2 =
am21M1 − rl2

al22
exp

{
(am21M1 − rl2)τ2

}
,

m1 =
rm1 − am12M2

am11
exp

{
(rl1 − am12M2 − am11M1)τ1

}
,

m2 =
al21m1 − rm2

am22
exp

{
(al21m1 − rm2 − am22M2)τ2

}
.

Theorem 2.2. Assume the following conditions satisfy

(H1) a
l
21m1 > rm2 ,

(H2) r
l
1 > am12M2.

Then the model (2.1)-(2.2) is permanent.

Proof. By the first equation of model (2.1), it follows that

du1(t)

dt
= u1(t)[r1(t)− a11(t)u1(t− τ1)− a12(t)u2(t)] ≤ u1(t)[r

m
1 − al11u1(t− τ1)].

(2.3)

From the Lemma 2.2 in [21], one has

lim sup
t→+∞

u1(t) ≤
rm1
al11

exp {rm1 τ1} =M1. (2.4)

Moreover, from the second equation of model (2.1), it holds that

du2(t)

dt
≤ u2(t)[−r2(t)− a22(t)u2(t− τ2) + a21(t)u1(t− τ1)]

≤ u2(t)[−rl2 − al22u2(t− τ2) + am21M1].

By (H1), we have am21M1 > rl2. Thus, by Lemma 2.2 in [21],

lim sup
t→+∞

u2(t) ≤
am21M1 − rl2

al22
exp

{
(am21M1 − rl2)τ2

}
=M2. (2.5)

On the other hand, by (2.1),

du1(t)

dt
≥ u1(t)[r

l
1 − am11u1(t− τ1)− am12M2] = u1(t)[r

l
1 − am12M2 − am11u1(t− τ1)].

By (H2) and Lemma 2.3 in [21],

lim inf
t→+∞

u1(t) ≥
rl1 − am12M2

am11
exp[(rl1 − am12M2 − am11M1)τ1] = m1. (2.6)

Similarly, by the second equation in model (2.1), we have

du2(t)

dt
= u2(t)[−r2(t)− a22(t)u2(t− τ2) + a21(t)u1(t− τ1)]
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≥ u2(t)[−rm2 − am22u2(t− τ2) + al21m1]

= u2(t)[a
l
21m1 − rm2 − am22u2(t− τ2)].

By (H1) and Lemma 2.3 in [21],

lim inf
t→+∞

u2(t) ≥
al21m1 − rm2

am22
exp[(al21m1 − rm2 − am22M2)τ2] = m2. (2.7)

By (2.4)-(2.7), we see that the model (2.1)-(2.2) is permanent, see [Definition 2.1,
[27]] for the definition of permanent property.

Theorem 2.3. Assume that (H1) − (H2) hold. Then there is a strictly positive
spatial homogeneity ω-periodic solution of (1.1)-(1.2).

Proof. Let V = C([−τ,+∞),R2
+) be a Banach space consisting of continuous,

bounded, ω-periodic and positive functions defined on [−τ,+∞), equipped with
the infinite norm. Based on the existence and uniqueness theorem of solutions of
the functional differential equations, see [Theorem 2.3, page 42 of [13]], we define a
Poincaré mapping ψ : V → V in the following form

ψ(U0) = U(t, ω, U0),

where U(t, ω, U0) = (u1(t), u2(t)) is a positive solution of the functional differential
equations (2.1) subject to the initial conditions U0 = (η10(t), η20(t)), t ∈ [−τ, 0].

It easy to see that ψ is continuous mapping by using the continuity of solu-
tion of the functional differential equations (2.1) with regard to the above initial
conditions, see [Theorem 4.1, page 46 of [13]]. Assume that K is any bounded set
in V . For any U0 ∈ K, and let L =

√
M2

1 +M2
2 . From the permanence of solu-

tions to models (2.1)-(2.2), we have ∥ψ(U0)∥ = ∥U(t, ω, U0)∥ = ∥(u1(t), u2(t))∥ =√
u1(t)2 + u2(t)2 ≤

√
M2

1 +M2
2 = L. Hence, ψ(K) is uniformly bounded. Further-

more, according to Theorem 2.2, the derivative of the mapping ψ is also bounded,
which can then be used to prove that the ψ(K) is equicontinuous. The Arzela-Ascoli
theorem implies that ψ is completely continuous.

We define

S = {(u1(t), u2(t)) ∈ V | mi ⩽ ui(t) ⩽Mi, i = 1, 2} , (2.8)

then it is obvious that S is a closed bounded convex subset of the Banach space V .
By Theorem 2.2 we have that ψ is a mapping from S to S. Thus, by Schauder fixed-
point theorem, see [Lemma 2.4, page 40 of [13]], the mapping ψ has a fixed point
(u∗1(t), u

∗
2(t)). That is, the equations (2.1)-(2.2) have a positive ω-periodic solution

(u∗1(t), u
∗
2(t)) which is the spatial homogeneity ω-periodic solution for models (1.1)-

(1.2), see [Definition 2.2, [37]].

3. Stability of spatial homogeneity periodic solution

In this section, we provide some sufficient conditions to obtain the globally asymp-
totically stable of spatial homogeneity ω-periodic solution of (1.1) by using the
method of upper and lower solutions for the delayed parabolic partial differential
equations and Lyapunov stability theory.
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Theorem 3.1. Assume that (H1)− (H2) and the following assumptions hold.

(H3) A1 = al11 − am11τ1[r
m
1 + am11M1 + am12M2]−M1(a

m
11)

2τ1 − am21(1 + am22M2τ2)

> 0,

(H4) A2 = al22 − am22τ2[r
m
2 + am22M2 + am21M1]−M2(a

m
22)

2τ2 − (1 +M1a
m
11τ1)a

m
12

> 0.

Then there exists a spatial homogeneity strictly positive and globally asymptotically
stable ω-periodic solution (u∗1(t), u

∗
2(t)), that is, the solution (u1(x, t), u2(x, t)) of

(1.1)-(1.2) with any positive initial values fulfills

lim
t→∞

(ui(x, t)− u∗i (t)) = 0, uniformly for x ∈ Ω̄, i = 1, 2. (3.1)

Proof. By Theorem 2.3, (1.1)-(1.2) has a spatial homogeneity strictly positive
ω-periodic solution. We prove the stability of the solution. Because the solu-
tions and coefficients of model (1.1) are positive, it is easy to see that the reaction
functions of model (1.1) are mixed quasimonotone. Let li = min

x∈Ω̄, t∈[−τ, 0]
ηi0(x, t),

ri = max
x∈Ω̄, t∈[−τ, 0]

ηi0(x, t). Then 0 < li ≤ ηi0(x, t) ≤ ri. Let (ũ1(t), ũ2(t)) and

(û1(t), û2(t)) be the solutions of (2.1) subject to initial values (η10(t), η20(t)) =
(r1, r2) and (η10(t), η20(t)) = (l1, l2) respectively, then there exist upper and lower
solutions (ũ1(t), ũ2(t)) and (û1(t), û2(t)) of (1.1)-(1.2). By Theorem 2.1 in [26],
(1.1)-(1.2) has a unique solution (u1(x, t), u2(x, t)), (x, t) ∈ Ω̄ × [−τ, +∞), which
satisfies

(û1(t), û2(t)) ≤ (u1(x, t), u2(x, t)) ≤ (ũ1(t), ũ2(t)). (3.2)

We prove

lim
t→∞

(ũi(t)− u∗i (t)) = lim
t→∞

(ûi(t)− u∗i (t)) = 0, (i = 1, 2). (3.3)

We first prove the solution (u1(t), u2(t)) for the functional differential equations
(2.1) with any positive initial (u1(t), u2(t)) = (η10(t), η20(t)) satisfies

lim
t→∞

(ui(t)− u∗i (t)) = 0, i = 1, 2. (3.4)

By Theorem 2.2, there exist five positive real numbers Mi, mi and T such that

mi ≤ ui(t) ≤Mi when t > T .

Let
V11(t) = |lnu1(t)− lnu∗1(t)| .

We denote by D+V11(t) the right-side derivative of V11(t), then

D+V11(t) = sgn(u1(t)− u∗1(t))[−a11(t)(u1(t− τ1)− u∗1(t− τ1))− a12(t)(u2(t)

− u∗2(t))]

= sgn(u1(t)− u∗1(t))[−a11(t)(u1(t)− u∗1(t))− a12(t)(u2(t)− u∗2(t))

+ a11(t)

∫ t

t−τ1

(u̇1(θ)− u̇∗1(θ))dθ]

= sgn(u1(t)− u∗1(t))[−a11(t)(u1(t)− u∗1(t))− a12(t)(u2(t)− u∗2(t))
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+ a11(t)

∫ t

t−τ1

{u1(θ)[r1(θ)− a11(θ)u1(θ − τ1)− a12(θ)u2(θ)]

− u∗1(θ)[r1(θ)− a11(θ)u
∗
1(θ − τ1)− a12(θ)u

∗
2(θ)]}dθ]

= sgn(u1(t)− u∗1(t))[−a11(t)(u1(t)− u∗1(t))− a12(t)(u2(t)− u∗2(t))

+ a11(t)

∫ t

t−τ1

{(u1(θ)− u∗1(θ))[r1(θ)− a11(θ)u
∗
1(θ − τ1)− a12(θ)u

∗
2(θ)]

− u1(θ)[a11(θ)(u1(θ − τ1)− u∗1(θ − τ1)) + a12(θ)(u2(θ)− u∗2(θ))]}dθ]
≤ −a11(t) |u1(t)− u∗1(t)|+ a12(t) |u2(t)− u∗2(t)|

+ a11(t)

∫ t

t−τ1

([r1(θ) + a11(θ)u
∗
1(θ − τ1) + a12(θ)u

∗
2(θ)] |u1(θ)− u∗1(θ)|

+ u1(θ)[a11(θ) |u1(θ − τ1)− u∗1(θ − τ1)|+ a12(θ) |u2(θ)− u∗2(θ)|])dθ.
(3.5)

Let

V12(t) =

∫ t

t−τ1

∫ t

s

a11(s+ τ1)([r1(θ) + a11(θ)u
∗
1(θ − τ1) + a12(θ)u

∗
2(θ)]

× |u1(θ)− u∗1(θ)|+ u1(θ)[a11(θ) |u1(θ − τ1)− u∗1(θ − τ1)|

+a12(θ) |u2(θ)− u∗2(θ)|])dθds.

(3.6)

By (3.5) and (3.6),

D+
2∑

i=1

V1i(t) ≤ −a11(t) |u1(t)− u∗1(t)|+ a12(t) |u2(t)− u∗2(t)|

+

∫ t

t−τ1

a11(s+ τ1)ds([r1(t) + a11(t)u
∗
1(t− τ1)

+ a12(t)u
∗
2(t)] |u1(t)− u∗1(t)|+ u1(t)[a11(t) |u1(t− τ1)− u∗1(t− τ1)|

+ a12(t) |u2(t)− u∗2(t)|])
≤ −a11(t) |u1(t)− u∗1(t)|+ a12(t) |u2(t)− u∗2(t)|

+

∫ t

t−τ1

a11(s+ τ1)ds[r1(t) + a11(t)M1 + a12(t)M2] |u1(t)− u∗1(t)|

+M1

∫ t

t−τ1

a11(s+ τ1)ds[a11(t) |u1(t− τ1)− u∗1(t− τ1)|

+ a12(t) |u2(t)− u∗2(t)|]
≤ (−al11 + am11τ1[r

m
1 + am11M1 + am12M2]) |u1(t)− u∗1(t)|

+M1(a
m
11)

2τ1 |u1(t− τ1)− u∗1(t− τ1)|
+ am12(1 + am11M1τ1) |u2(t)− u∗2(t)| . (3.7)

Let

V13(t) =M1(a
m
11)

2τ1

∫ t

t−τ1

|(u1(w)− u∗1(w)| dw, (3.8)

and
V1(t) = V11(t) + V12(t) + V13(t). (3.9)
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By (3.7) and (3.8), we have

D+V1(t) ≤ (−al11 + am11τ1[r
m
1 + am11M1 + am12M2] +M1(a

m
11)

2τ1) |u1(t)− u∗1(t)|

+(1 +M1a
m
11τ1)a

m
12 |u2(t)− u∗2(t)| .

(3.10)

Similarly, we define V21(t) = |lnu2(t)− lnu∗2(t)|, and we have

D+V21(t) = sgn(u2(t)− u∗2(t))[−a22(t)(u2(t− τ2)− u∗2(t− τ2)) + a21(t)(u1(t− τ1)

− u∗1(t− τ1))]

= sgn(u2(t)− u∗2(t))[−a22(t)(u2(t)− u∗2(t)) + a21(t)(u1(t− τ1)

− u∗1(t− τ1)) + a22(t)

∫ t

t−τ2

(u̇2(θ)− u̇∗2(θ))dθ]

= sgn(u2(t)− u∗2(t))[−a22(t)(u2(t)− u∗2(t)) + a21(t)(u1(t− τ1)

− u∗1(t− τ1)) + a22(t)

∫ t

t−τ2

{u2(θ)[−r2(θ)− a22(θ)u2(θ − τ2)

+ a21(θ)u1(θ − τ1)]− u∗2(θ)[−r2(θ)− a22(θ)u
∗
2(θ − τ2)

+ a21(θ)u
∗
1(θ − τ1)]}dθ]

= sgn(u2(t)− u∗2(t))[−a22(t)(u2(t)− u∗2(t)) + a21(t)(u1(t− τ1)

− u∗1(t− τ1)) + a22(t)

∫ t

t−τ2

{(u2(θ)− u2∗(θ))[−r2(θ)− a22(θ)u
∗
2(θ − τ2)

+ a21(θ)u1∗(θ − τ1)]− u2(θ)[a22(θ)(u2(θ − τ2)− u∗2(θ − τ2))

− a21(θ)(u1(θ − τ1)− u∗1(θ − τ1))]}dθ]
≤ −a22(t) |u2(t)− u∗2(t)|+ a21(t) |u1(t− τ1)− u∗1(t− τ1)|

+ a22(t)

∫ t

t−τ2

([r2(θ) + a22(θ)u
∗
2(θ − τ2)

+ a21(θ)u
∗
1(θ − τ1)] |u2(θ)− u∗2(θ)|

+ u2(θ)[a22(θ) |u2(θ − τ2)− u∗2(θ − τ2)|
+ a21(θ) |u1(θ − τ1)− u∗1(θ − τ1)|)]dθ. (3.11)

Let

V22(t) =

∫ t

t−τ2

∫ t

s

a22(s+ τ2)([r2(θ) + a22(θ)u
∗
2(θ − τ2)

+ a21(θ)u
∗
1(θ − τ1)] |u2(θ)− u∗2(θ)|+ u2(θ)[a22(θ) |u2(θ − τ2)− u∗2(θ − τ2)|

+ a21(θ) |u1(θ − τ1)− u∗1(θ − τ1)|])dθds. (3.12)

By (3.11) and (3.12),

D+
2∑

i=1

V2i(t) ≤ −a22(t) |u2(t)− u∗2(t)|+ a21(t) |u1(t− τ1)− u∗1(t− τ1)|

+

∫ t

t−τ2

a22(s+ τ2)ds([r2(t) + a22(t)u
∗
2(t− τ2)
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+ a21(t)u
∗
1(t− τ1)] |u2(t)− u∗2(t)|

+ u2(t)[a22(t) |u2(t− τ2)− u∗2(t− τ2)|
+ a21(t) |u1(t− τ1)− u∗1(t− τ1)|])

≤ −a22(t) |u2(t)− u∗2(t)|+ a21(t) |u1(t− τ1)− u∗1(t− τ1)|

+

∫ t

t−τ2

a22(s+ τ2)ds[r2(t) + a22(t)M2 + a21(t)M1] |u2(t)− u∗2(t)|

+M2

∫ t

t−τ2

a22(s+ τ2)ds[a22(t) |u2(t− τ2)− u∗2(t− τ2)|

+ a21(t) |u1(t− τ1)− u∗1(t− τ1)|]
≤ (−al22 + am22τ2[r

m
2 + am22M2 + am21M1]) |u2(t)− u∗2(t)|

+M2(a
m
22)

2τ2 |u2(t− τ2)− u∗2(t− τ2)|
+ am21(1 + am22M2τ2) |u1(t− τ1)− u∗1(t− τ1)| . (3.13)

Let

V23(t) =M2(a
m
22)

2τ2

∫ t

t−τ2

|(u2(w)− u∗2(w)| dw

+ am21(1 + am22M2τ2)

∫ t

t−τ1

|(u1(w)− u∗1(w)| dw, (3.14)

and
V2(t) = V21(t) + V22(t) + V23(t). (3.15)

By (3.13) and (3.14),

D+V2(t) ≤ (−al22 + am22τ2[r
m
2 + am22M2 + am21M1] +M2(a

m
22)

2τ2) |u2(t)− u∗2(t)|
+ am21(1 + am22M2τ2) |u1(t)− u∗1(t)| . (3.16)

We define a Lyapunov function as follows

V (t) = V1(t) + V2(t).

By (3.10) and (3.16), we get

D+V (t) ≤ −A1 |u1(t)− u∗1(t)| −A2 |u2(t)− u∗2(t)| . (3.17)

Integrating from ω to t on both sides of (3.17), we have

V (t) + α

∫ t

ω

(|u1(s)− u∗1(s)|+ |u2(s)− u∗2(s)|])ds ≤ V (ω) < +∞, (3.18)

where α = min{A1, A2} > 0. Therefore, V (t) is bounded on [ω,+∞), and∫ t

ω

(|u1(s)− u∗1(s)|+ |u2(s)− u∗2(s)|])ds ≤
V (ω)

α
< +∞. (3.19)

By (3.19), we have

(|u1(t)− u∗1(t)|+ |u2(t)− u∗2(t)|) ∈ L1(T,+∞). (3.20)
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From the uniform permanence of model (2.1), we have that |u1(t)− u∗1(t)| +
|u2(t)− u∗2(t)| and its derivative are bounded. Thus, |u1(t)− u∗1(t)|+ |u2(t)− u∗2(t)|
is uniformly continuous on [ω,+∞). By Lemma 8.2 in [16], we get

lim
t→+∞

|ui(t)− u∗i (t)| = 0, (i = 1, 2).

From (3.2) and the squeeze theorem, (3.1) holds true. That is, (1.1)-(1.2) have a
spatial homogeneity strictly positive and globally asymptotically stable ω-periodic
solution (u∗1(t), u

∗
2(t)), see [Definition 2.3, [37]]. This completes the proof of Theorem

3.1.

Theorem 3.2. Suppose that the ω-periodic model (1.1) satisfies assumptions (H1)−
(H4), then the model (1.1) is permanent, i.e., the solution (u1(x, t), u2(x, t)) of mod-
els (1.1)-(1.2) with any initial values fulfills

mi ≤ ui(x, t) ≤Mi, uniformly for (x, t) ∈ Ω̄× [T,+∞), i = 1, 2. (3.21)

Proof. By means of Theorem 2.3, there exist four positive real numbers mi,Mi,
(i = 1, 2) such that

mi ≤ u∗i (t) = u∗i (t+ ω) ≤Mi, t ∈ [−τ,+∞). (3.22)

Moreover, from Theorem 3.1, one has

lim
t→+∞

ui(x, t) = u∗i (t),uniformly for x ∈ Ω̄, i = 1, 2. (3.23)

Therefore, from (3.22) and (3.23), the model (1.1) is permanent.

4. Numerical simulations

In this section, we provide a numerical example to show the application of Theorem
3.1. For the convenience of calculation and numerical simulation, we choose 2-period
functions as the coefficients for the nonautonomous ω-periodic DRDEs (1.1)-(1.2).

Example 4.1. Consider the following 2-species DRDEs. In view of the conditions
(H1) − (H4) of Theorem 3.1, with the help of some calculations we choose some
special values of parameters shown in models (4.1)-(4.2). It should be noted that,
the selection of above parameters is not unique.

∂u1(x, t)

∂t
−∆u1(x, t) = u1(x, t)[(24 + cosπt)− (6 + sinπt)u1(x, t− 0.001)

−(0.75 + 0.25 sinπt)u2(x, t)], 2π > x > 0, t > 0,

∂u2(x, t)

∂t
−∆u2(x, t) = u2(x, t)[−(2 + cosπt)− (5 + sinπt)u2(x, t− 0.002)

+(1.2 + 0.2 sinπt)u1(x, t− 0.001)], 2π > x > 0, t > 0,

(4.1)
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with the Neumman boundary and initial conditions

∂u1(x, t)

∂n
=
∂u2(x, t)

∂n
= 0, t > 0, x = 0, 2π,

u1(x, t) = (4 + 3t)[1− sin(x+ 0.5π)],

u2(x, t) = (0.6 + 5t)[1 + cos(x+ π)],

(x, t) ∈ (0, 2π)× [−0.002, 0].

(4.2)

By calculating, we have

M1 =
rm1
al11

exp {rm1 τ1} ≈ 5.1266,

M2 =
am21M1 − rl2

al22
exp

{
(am21M1 − rl2)τ2

}
≈ 1.5635,

m1 =
rm1 − am12M2

am11
exp

{
(rl1 − am12M2 − am11M1)τ1

}
≈ 3.0185,

m2 =
al21m1 − rm2

am22
exp

{
(al21m1 − rm2 − am22M2)τ2

}
≈ 0.0030,

al21m1 − rm2 ≈ 0.0185 > 0,

rl1 − am12M2 ≈ 21.4365 > 0,

A1 = al11 − am11τ1[r
m
1 + am11M1 + am12M2]−M1(a

m
11)

2τ1 − am21(1 + am22M2τ2)q

≈ 2.8854

> 0,

A2 = al22 − am22τ2[r
m
2 + am22M2 + am21M1]−M2(a

m
22)

2τ2 − (1 +M1a
m
11τ1)a

m
12

≈ 2.6166

> 0.

Based on the above calculation results, it is easy to see that that systems (4.1)-(4.2)
satisfy the conditions of Theorem 3.1. From Theorem 3.1 it is easy to know that the
systems (4.1)-(4.2) has a strictly positive spatial homogeneity 2-periodic solution
(u1(x, t), u2(x, t)) which satisfies

lim
t→+∞

|ui(t)− u∗i (t)| = 0, (i = 1, 2), uniformly for x ∈ (0, 2π).

By employing the software package MATLAB 7.1 and the finite differences method,
we can obtain some numerical solutions of the model (4.1) with the boundary con-
ditions and initial conditions (4.2) which are shown in Figure 1 to Figure 2. From
Figures 1-2, it is not difficult to find that the model (4.1)-(4.2) have a strictly
positive globally asymptotically stable spatial homogeneity 2-periodic solution. In
model (4.1)-(4.2), the densities of prey and predator will oscillate periodically with
a period of 2 and distribute homogeneously in space when the time is long enough.
In order to verify that the periodic solution of the model (4.1)-(4.2) is globally
asymptotically stable, we selected different initial values and conducted extensive
numerical simulations. The results showed that the 2-periodic solution of the model
(4.1)-(4.2) is asymptotically stable for any positive initial value. Please refer to Fig-
ure 3 for details.
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From the theoretical research in this article, we can clearly see the dynamic sta-
bility mechanism of the predator-prey system. When the birth rate of prey species
and the post-predation nutrient absorption rates of predator species reach sufficient
levels, predator and prey species can maintain a long-term stable survival state,
effectively avoiding the risk of population extinction (see Theorem 2.1 and 3.2).
More interestingly, under the basic conditions mentioned above, if key factors such
as population diffusion rate, interaction strength, and predator natural mortality
rate can also meet specific criteria, then under minor time delays, the density of
species in the predator-prey system will exhibit periodic changes. This further re-
veals the beauty of dynamic equilibrium within ecosystems (see Theorem 3.1). This
theoretical result has been thoroughly validated through precise numerical simula-
tions, providing a solid theoretical foundation for our understanding, evaluation,
and maintenance of ecosystem balance. It is worth noting that the sufficient con-
ditions established in this article are both concise and easy to verify. Specifically,
the conditions proposed here are formulated as a series of inequalities rather than
strict equations, providing great convenience and flexibility for the application of
these theoretical results in practical ecosystem management.

Remark 4.1. The method obtained in this article can not only be used to study the
dynamic properties of solutions for various delayed reaction-diffusion predator-prey
models, but also to study corresponding cooperative and competition models. In
addition, this method may also be used to study the dynamic properties of solutions
for time-varying delayed reaction-diffusion population models and fractional-order
delayed reaction-diffusion population models.
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Figure 1. Evolution process of the density for the species u1(x, t) of model (4.1)-(4.2).



1942 L. Jia & C. Wang

Figure 2. Evolution process of the density for the species u2(x, t) of model (4.1)-(4.2).

Figure 3. Evolution process of the densities for the species u1(x, t) and u2(x, t) of model (4.1)-(4.2)
with different positive initial values.
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