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ON THE STUDY TO A TYPE OF
SINGULARLY PERTURBED BOUNDARY
VALUE PROBLEM WITH TWO DOUBLE

ROOTS OF THE DEGENERATE EQUATION*

Ruixiang Li' and Mingkang Nib2f

Abstract This paper addresses a singularly perturbed boundary value prob-
lem where the degenerate equation has three distinct roots: two double roots
and one simple root. It is shown that for a sufficiently small parameter, the
solution of the problem switches between the two double roots in a neighbor-
hood of the transition point. As a result, the inner layer can be divided into
multiple regions. An asymptotic expansion is constructed, and the existence
of smooth solutions is established. Additionally, an estimate for the remainder
term is provided.
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1. Introduction

This paper discusses the important topic of singularly perturbed problems, specif-
ically contrast structures. The Tikhonov school in the former Soviet Union first
introduced the concept of contrast structures in the late 1990s. A contrast struc-
ture occurs in singular perturbation problems where the degenerate equation has
distinct roots, known as critical manifolds in geometric singular perturbation theory.
As the solution switches between these isolated roots, a complex solution structure
forms.

Currently, most research focuses on steptype contrast structures. The main
challenge in this area is that the position and timing of the switching are unknown.
Moreover, the switching happens over a very short time scale. Since the 1970s,
Nefedov and Ni [10-13] have conducted numerous studies on singularly perturbed
problems involving contrast structures. However, all of their studies assume that
the critical manifolds are normal hyperbolic manifolds of saddle type. This raises
an important issue: whether contrast structures exist when the critical manifold
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is non-normal hyperbolic, or where the degenerate equation has repeated roots.
Butuzov [2] was one of the first to investigate such types of problems

d2
EQd—xZ:f(u,x,e), 0<z<l,

1.1
0,00 =0, T(1e)=0 "
d:c ’8 - b dx ’E - b

where

flu,@,e) = (u—1(2)*(u = ¢2(2))(u — 3(2)) — efa(u, z,€).

In [2], authors established a new method for studying singularly perturbed prob-
lems with repeated roots, which we call the non-standard boundary layer method.
This approach successfully addressed the limitation of Vasil’eva’s method [14], which
cannot be applied to non-hyperbolic manifolds. As a result, problems involving mul-
tiple roots have become a major focus in the study of singularly perturbed problems.
Butuzov [3,4,7,8] not only conducted extensive research on double roots, but also
expanded his work to include triple roots and elliptic problems [1,5,6]. Yang [15-17]
studied piecewise-smooth systems based on equation (1.1), where

(=) 0< <
f(u,:c,s) _ f (U,J],E), ST Zo,
f(+)(u,m,€), Zo S X S 1.
Both f(-)(u,z,¢) and f(*)(u,x,¢) contain repeated roots. Yang [18,19] had also
extended the research to reaction-diffusion equation.
In this paper, we consider the problem (1.1), where

Flu,z,e) = —(u—p1(2))*(u = pa2(2)) (u — 93(2))* = efr(u, z,¢€).

In this paper, following Butuzov [2], we study a singularly perturbed boundary
value problem where the degenerate equation has three distinct roots: two double
roots and one simple root. The key difference between [2] and our study is that
we focus on two double roots, whereas Butuzov studied a single root and a double
root. The difficulty arises because the degenerate roots can “jump” from one non-
hyperbolic manifold to another, making the existence of a smooth solution more
uncertain.

This problem can be treated as two separate sub-problems, referred to as the
left and right problems. We construct the formal asymptotic solution using the
boundary layer method and solve it term by term. Finally, the solutions to the left
and right problems are smoothly matched using the seaming method, leading to a
smooth solution for the original problem.

We show that when the degenerate equation has repeated roots, i.e., when the
critical manifolds are non-normal hyperbolic, there exists a contrast structure be-
tween the roots. Unlike the case where the critical manifold is normal hyperbolic,
not only is the formal asymptotic solution expanded in terms of fractional powers
of the small parameter, but a non-standard method is also used to solve the in-
ternal layer functions. These internal layer functions exhibit complex variations,
transitioning from exponential decay to power-law decay.
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2. Problem statement

We consider singularly perturbed problems with Neumann boundary conditions

d?u
2 _
S flu,z,e), 0<z<1, (2.1)
du du
— —(1 = 2.2

where € > 0 is a small parameter. Here f(u,x,¢) has the form

Flu,z,6) = —(u—91(2))*(u — 2(2))(u — ¢3(2))* — e fi(u, ,¢).

We will call a multivariable function smooth if it is infinitely differentiable with
respect to all arguments.
Assume that the following conditions are hold.

Al. The functions ¢;(z),7 =1,2,3, are smooth and satisfy
p1(2) < pa2(z) < p3(2)

for0<z<1.
Condition A1l guarantees that the roots of the degenerate equation are distinct.

A2. The function fi(u,z,¢) is smooth, not identically equal to zero for 0 < z < 1,
and satisfies
) >0,

) < 0.

A7 @) = flei(@).a,
AT @) = fi(ps(a), 2,

o O

A3. The equation
»3(z0)
I(zg) := / f(u,z0,0)du = 0,
]

1(wo)
has the root xg € (0,1), and I'(zg) # 0. The root zg is called the transition
point.

The boundary layer method is commonly used to solve such singularly perturbed
problems. The general process involves expanding the solution as a power series
form with respect to small parameters €, and then finding each coefficient iteratively.
This process is known as constructing asymptotic solutions.

3. Construction of asymptotic solutions

To determine the steptype asymptotic solution of the problem (2.1)-(2.2) , we treat
the original problem as two separate problems, namely, the left and right problems.
The solutions of the left and right problems are then smoothly matched using the
seaming method, yielding a smooth solution of the original problem. The asymp-
totic for function u(x,€) has the form

u(z,e), 0<z <z
— i ’ i * 9 3.1
u,(l‘,{;‘) { ’U,(+)(£C,€), z, <z <1. ( )
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The left and right problems can be written as follows.
Left problem is defined for 0 <z < x, as

d2u)
g ()
. (3.2)
du(_)
g (0,e) =0, u(_)(m*,a) = @o(Ty).
Right problem is defined for z, <z <1 as
A2
52 ug = f(u(+)axa€)a
dx ) (3.3)
) (24, €) = @a(xy), W(l,s) =0,
where
ul (2,6) = a7 (2,6) + Q) (r,6) + M) (£, ¢), (3.4)
u ) (z,6) = 0P (z,6) + Q) (r,e) + M (E, ). (3.5)

Here functions @) (z,¢) are the regular parts of asymptotic, Q™) (1,¢) are the
asymptotic inner layer, and TI=) (¢, ¢), TI(H) (€, ) are the boundary layer functions.
We represent these functions in power series expansion as follows:

a® (z,6) = ai™ (@) + e2ai (@) + - +eral (@) + - (3.6)
QP (e = (M +F QP M)+ +efQP (M) - T= =, (37
Mg, e) = (I (© + T (© 4+ T (© 4 ), €= 5, (338)

I e) =@V @) +e V(@) + -+t @) ), €= —=

Functions Q) (1,¢), TI(7)(€,e) and I (€, ) are expanded in terms of /4
because the degenerate equation contains repeated roots. Then, the refined algo-
rithms for accurate searching coefficients must be used. For @(*)(x,¢) the order
€!/2 is enough. ~

The denominators in series expansions for ¢, £ and 7 are different due to the
difference in boundary conditions. For inner layer we have only Neumann boundary
conditions. We multiply the power series in equations (3.8), (3.9) by 7 to balance
the boundary conditions due to specific choice of £&. By z, we denote the transition
point, which can be also expressed in the form of power series:

x*:x0+5%x1+~-+6éxi+~-~. (3.10)

Then, we find the coefficients of asymptotic expansions (3.6)-(3.9) for right and
left problems. We also prove that there exists z. € (0,1) where

Tdr YT Tar
The value x, is used by seaming method for matching solutions of left and right
problems.

Finally, we prove that the solution of problem (2.1)-(2.2) is also the solution of
(3.2)-(3.3) with contrast structure near x = x,.

(24, ). (3.11)
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4. The asymptotic of the right and left problems
solution

Let us consider the left problem (3.2). Substituting series (3.4) to (3.2), we get

2(121;(—) N d2Q) L d2m)
€

12 1.2 + g2 d£2 = f(—) + Q(—)f + H(—)f7
da(-) dru-)
L (0,0 + et (0,6) = 0, @) () + QU0 €) = o),

dz dé

where
O =@ (w,e), w0,
I f = f(a(€e*,e) + M (r,6), 665/, €) — f(@ T (€1, ), €4, o),
QU f = f(u' ) (s +7e,8) + QU)(r, ), s + 7E, )
— f(@ ) (24 + e, 8), Ty + TE, E).

The regular part of asymptotics can be found from the equation

2@ - J?(—) 0<
Lz = , T < Ty,
the inner layer from
difi;) =Q7f,r <0,
and boundary layer from
P10 o
€2 3z =II'"f,¢£>0.

The right problem (3.3) is solved similarly.

4.1. The regular part of asymptotics

Let us consider the regular part u(_)(;v, ¢) of asymptotics for left problem solution.
It satisfies 0 ()
d=u'~

€2W: (ﬂ(_),x,&‘). (41)

Substituting series (3.6) to equation (4.1), we get

@ay (@) sl (@) ees d2ay ) ()

2 3 1 . Tk

c dx? te dx? toote dx?

= — (@7 —p1(@)* (@) = 2(2)) (@) — p3(2))* — efr(@ ), 2,¢)
=—(

a5 = 1(@)2 (@) — pal))(a§” — ps(@))?
+e3[—(ay”) — e1(@)?ay (@) — ps())?]
+el=@i )2 (a5 — ea(@)) (@ - pa(a))?

— @y = pi(x)?as (@ - ps(@))?
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— (@5 = ()@ = pa(2)) (@) — fi(@l?) 2, 0] + - -
2i4+2j+2h+21<k
5 AT ST ~ —\— ~
te? Z [—ug )ul( )(ul(cf)2i72j - 902)<u§' )~ $3;)
i>0,,h,1>0

x (@) — @an) — [ ()]

where

Sz) - 903(1‘)’ j: 03 @ h = @3(1‘)7 h = 07
o, j#0, ° 0

) pa(x), k—20-2j=0,
72730, k— 2 —2j #0.

By equating the coefficients of the same powers of € on both sides of the equation,

for ﬂ(f)(x) we obtain

—(@”) — (@) (ay ) — pa(2))(@y ) — p3(x))? = 0.
For solution we can take ¢ (x), i.e

a5 = p1(x).

Then @~ is determined from the equation
RO (@) (a7 ()2 - fi) () =0, (4.2)

where
W (@) = —(p1(x) — p3(x))* (91 (x) — @2(2)),

() (4.3)
1 (2) = filga(2), 2, 0).
According to condition A2, the solution of equation (4.2) must exist. Then, we
can take a positive root of
o _ i@

N T (4.4)

as solution for (4.2).

Similarly, the higher order terms ﬂ(_)(x) of series (3.6) can be obtained from
algebraic equations

2R @)a” @) () = 7 (@) =0, k> 1, (45)

where f,gf)(x) is the known function that depends on ﬁ;f)(x) (j < k). Hence, the

solution of (4.4)-(4.5) is unique and equal to ﬂ(f)(m).
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4.2. The inner layer of asymptotics

Now let us consider the inner layer term, namely, Q(~) (7, ). Recall that it satisfies
the following equation and boundary conditions

d?Q)(r,¢) _
— = Q( )f
= f(‘ - (:1:* +eTe) + Q(*)(T, €), &y + €T, €)
—f(@ ) (@, +e7,8), 20 + €7, ), (4.6)
Q(_)(ng) P2(24) — ul™ )(l‘ 1€ Q(_)(_OO7E) =0. (4.7)

To find the coefficients of power series expansion for Q(~)(r,¢), we follow the Bu-

tuzov’s nonstandard method from [8]. For convenience, for Qg_) we mention only
dependance on 7. We have

WO (u,2) = —(u— @a(2)(u — p3(2))%, p1(2) = ().

Substituting series (3.7) into (4.6), we obtain the the following equation for

Q7 (r):

d2%572’<7>+ r &2 L 2< >+...+€dede§72<7>+...

= (@7 + Q7 — 1)@ + Q) — pa) (@) +

— @3 ) —Ef1( (—)+Q(—) T 5)

- [~ < 2 =) (a >—so2>< - —%) —efi(a), z,e)]

=— @7+ Q) — )@y + P3)2(Q5))?
+er{ — 20075 (al >+Q 02)(@57) + Q57 — 3)?
— (@7 @S + Q) — ps)?
+207 @l + Q) - )<a8*>+czé*>—so3>1}+---
20425 +2h+21<k
s e 0l - e + 6 - )
4,7,L,h>0
x (u Ek)Qz 2j—21— 2h)/2+Qk 2i—2j—21—2h 502)( U /5 +Q( — P3)

X (uh/z + Qh - @3)]
2i4+2j42h+21<k
— Y T E T @y — E) @) — G (@) — Gan)] - ka}

i>0,5,h,01>0

$1= { prfe.ren, 20w

ﬁ((x_)7 if «v is odd,
0, 1#0, ¢

0, if o is even.
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According to Butuzov’s nonstandard method, we get the following equation and
boundary conditions that determine (Qéf)(r)):

= hO e @) + Q5 e )@ +2vEa T (@)@l (48)
§00) = ga(m2) — 0 (@), QS (—o0) = 0. (4.9)
This problem can be reduced to the first-order boundary value problem

(=) 1
0

-) :
dﬁj = [2/0 RO (o) (@) + s,2.)(52 + 2vEa 7 (z,)s)ds| ,  (4.10)
Q57(0) = a(@.) — ¢ (). (4.11)

It is challenging to find the solution to the above boundary value problem di-
rectly. However, it can be estimated using a differential inequality. Since the func-
tion A=) (o) (x,) + 5, 2,) is bounded for 0 < s < Q(()_), let o7 denote its minimum
value and «y its maximum value. Thus, the solution Qéf)(r) admits the following
estimate

Q) (M) < Q7 (1) < QL) (7), (4.12)
where

1/4ako'r

12205 (2.) (1 4+ O(eV/4))ef
125 (2 1/2 2°
f1-1- (sss) aves o |evonr ]

Here we denote kg = [212(1_)(%)]% > 0.

According to the different decay behaviors of Q(()_)(T), the inner layer can be
divided into three regions. Here, we discuss only the left problem, i.e., when 7 < 0.
Specifically:

Q)(r) = (4.13)

1. If —6% <7 <0, where 0 < < i then Q(()_)(T) decays according to a power
law as 7 — oo.

2. If —1—/4 <7 < ——, the decay of Q ( ) changes from a power-law decay to
an exponential decay

3. Ifr < —61%, then Q(()_)(T) exhibits exponential decay with respect to the new
variable 6 = —7.

There are also three analogous regions when 7 > 0.
For higher order coefficients of QEJ) (7) we have boundary value problem

d2Q @,
S dr2

B )Qk +Qk (7-76)5 (4'14)

;C * if kis Odd, (=)
3 Q). ' (£o0) =0, (4.15)

if k is even,
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where
BO(r,e) = B (OIQST (1))? + 2vEa () Q5 (7)) +

+ 200147 () + Ve (@),
oh

R () = 50! (@) + Q7 (1), 2., 0),

R () = O () (@) + Q5 (7), 24, 0),

(4.16)

and q,(;) depends on the known functions ng) (1),7 < k. In particular,

Q§_) (7_7 5) =0,

and for q(_) we have

g5 (r.2) =VE(h ) (1) = hO () @y (2.))? + 2vEh ) (r)as ) (2.)Q5 7 (1)
+hOEa @)Q (1) +2vEE T (@)Q8 (7)) + VL A,

where Q((f) f1 is the boundary layer part of fi(u, z,e) power series expansion at ..
Therefore, for the solution of (4.14) we have

) = Q70 (1)@ (0)] 7t + @ (r) / @O )2 )y, (417)
where

n (=)
i) = / B (g (s, O = D)y

— 00

Moreover, for all functions Q](C_)(TX,ZC > 0) we have the following estimate:

QL) ()| < eQ(r), TeER (4.19)

4.3. The boundary layer of asymptotics

Now we consider the left problem for boundary layer of asymptotics, namely, the
functions II(-)(¢,e). For this functions we have the following boundary value
problem:

217(-) . .
d Hd£2(§, E) _ H(*)f = f(ﬂ(*)(é;%g’ 5) + 1‘[(*)(57 {_:)7 6%5, 6)
—f(ﬂ(_)(a%g,s),a%f,s), (4.20)
da(-) , diI=)
5 — (=) _
. (0,e) +¢ & (0,e) =0, I'7/(+00,¢) =0. (4.21)
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Substituting (3.8) to (4.20), for H;_)(f) we get the equations

o

9

CHOE) | PIE) L e P
dg? dg? de?
=— (ﬁ(,) +1) — S01)2(@(*) +1) — 802)(11(7) +1)
- @3)2 - Efl(’a(_) + H(_)7xa‘€)
— @) = )2 @) = g2) (@) — p3)? — efi (@), z,€)]
=ed 201§ a7 (@) — ) (g — )2+
214+-2j+2h+21<k

ik ) ()77 () /()
+ed { Z =@y 0+ I ) Uy o I )W i 001 on13)/2
i J L R0

— ~ _(— _) ~ _(— — ~
+ I} 7)2#2;;217211 - 902)(“53‘423)/2 + H;' - @3)(“E;Ll3)/2 +10,7 — @)

2i4+2j+2h+21<k
— Y T @, — @) — @)y gaghnnfk}
i>0,5,h,1>0
+ ..

By equating the coefficients of the same powers of € on both sides of the equation,
for H;_), k=0,1,2... we get

e _ _ _
dg’; =200 + 770, €>0, k=0,1,.., (4.22)
(-)
dH(*) duk/z . . _
U e U
0, if k is even,

where 771(«_) depends on known functions H;_)(é),j < k. In particular, ) =o.

Since the equations (4.22) are linear, the solution H(()f)(g) can be written as

17 (€) = ¢ (0)[20)(0)ai ™ (0)]  Zexp(— (2R (0)a{ 7 (0))2).  (4.24)
We also have the estimate:
M@ <ece™,  €>0, k=0,1,... (4.25)

Currently, each term of the asymptotic expansion for the left problem has been
determined and satisfies the exponential decay estimate. The right problem can be
analyzed in the same way, so we skip the details here.

4.4. Proof of existence of solution to the problem (2.1)-(2.2)

In this section, we will prove the existence of a smooth solution to the original
problem (2.1)-(2.2) using the sewing method.

Theorem 4.1. Suppose we have the boundary value problem (2.1)-(2.2) and the
conditions (A1)-(A3) are met. Then for sufficiently small € > 0, there exist a
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smooth solution u(x,€) in the asymptotic form

n+1

(=) = < .
w(z,e) = { Uy (z,e)+ 02 ), 0<a<(xy)ants,

U (@,e) +0(E™F),  (@)anss <z <1,

2n45

where n € N, (@4)anis = >, €4y, the functions Uysi)(x,s) can be found from
k=0

(4.27) with 7= [(z — Tx)2n+s]/€.

To prove this theorem, we first introduce two lemmas.

Lemma 4.1. If (A1) and (A2) are satisfied, then for sufficiently small € > 0, the
solution u'~)(z,€) of the left problem (3.2) and the solution uw'*)(z,€) of the right
problem (3.3) are respectively:

uw N (z,e) = U (2,6) +0(e™2 ), 0<a<u,,

(4.26)
uM(z,e) =UP (z,e)+ 07 ), =z, <x<l,

where
n . 2n+1 . 2n .
s (_ : _ 3 _
U (z,e) = Zsﬂié )(x) + Z 5ZQ,(€ )(7') +e1 Z:aSZH,(C )(5),
k=0 k=0 k=0
n N 2n+1 5 2n . B (427)
U (w,6) = > ebag (@) + Y ef Qi (n) +21 Y A7 (@),

k=0 k=0 k=0

The proof is analogous to the one in [2] and skipped here.

Lemma 4.2. For the deriwative e (z,¢), W(m,e), the asymptotic represen-
tations )
dul~) dUn n-
T(x,s): dn (x,s)—&—O(sTl)7 0<z<m,,
. x (4.28)
du() auy” net
= 2 Lz,
de/' (xﬂe) de/' (Z"&‘)—‘rO(E 2 )7 X _x_
are true.
The proof is also analogous to the one in [2].
Now, we prove the original theorem.
We rewrite the smooth seaming condition (3.11) as
du(f) du(+)
I(x,,e) = 5W(x*,s) - sw(:p*,s) =0. (4.29)

Substituting expansion (3.10) for x, in at 7 = 0, we get

dQ(()i) (-) = i (=)
?(0) = 1" (z0) + ;54% (z),

where .
3

2(zo0)
I(i)(xo) = |:2/LP f(uax070)du:| )
©

(=) (z0)
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and g;(z) is sufficiently smooth functions that depend on zy,k < . Similarly for
the right problem solution, we have

dQy”

foo
5 0= 1) (o) + Zﬁigfﬂ(x%
=1

where
1
3

2(zo)
I(+)('r0) = |:2 /(p f(ua IOaO)du:|
%)

() (z0)

Substituting power series expansion of (3.4) and (3.5) with respect to €7 to
(4.29), we obtain

I(xy,€)
dpt™) ydal”) aQs? L@
(Y )+ (R et ) 4

dQO(+) lda(l"r) d é"") ld §+)
E(da: (r,) 4 €2 i (:z:*)+>< I (0) 4 €1 i (0)+)

g’ - dQg” (i o deft)
— ( _ ( 1 ( _ ( C.
( dr 0) dr \O)> tet ( dr 0) dr \0)> +

=[1) (wg) — I (wp) + &1 (I (wo)zy — I (o)) +-- -] + - --
=H(zo) + e [H' (mo)x1 + ma] + - - - + e 1 [H (wo) ks + mu] + - - -
=0.

(4.30)
Here H(z) = I7)(2) — I'*)(2). Then, according to (A3), 2 = 2 is the root of the
equation H(z) = 0.
Since H'(xg) # 0, the higher order coefficients xx,k > 1 can be uniquely
determined from the following linear algebraic equations

H'(zg)xpg +mp =0, k>1, (4.31)
where my, depend on the known numbers z; j<;. Note that
my = [H(zo) 1 (JF) — ). (4.32)

Since q(f) =0, we have m; = 0 and then x; = 0.

To prove the existence of a solution with contrast structures for the problem
(2.1)-(2.2), we reconsider the left (3.2) and right (3.3) problems and modify z. to
the following form:

zo=a =gt eim 4T (T £0), (4.33)

where § is an arbitrary real number, and ¢ is bounded as € — 0. Lemma 4.1 shows
that the solutions of the left and right problems exist and have uniform asymptotic

expansions. It only requires replacing the variable 7 with 7 = 1_9635 , and the

estimate in (4.19) still holds.




Singularly perturbed boundary value problem 1957

. . 2m+ 1] .
Rewriting (4.29) and taking n = in (4.28), we have
du() du(H)
+ + +
I(x((; ),5) == (IE((; ). e,6 e (sc((s ),5,(5)

2m+41 2m+42

:H(f0)+zm:s§[H’(jo)fk+mk}+5 T H' (%) (£8) + O™ 7 ),
k=2

(4.34)
where z¢ and z can be determined by (A2) and (4.31). The last two terms on the
right-hand side of (4.34) depend on ¢ and are uniformly small as 6 — 0. Thus,

2m+41
4

I ) = ™57 (H' (20)(£6) + O(e1)). (4.35)

Since H'(Zg) # 0, the sign of (4.35) depends on §. Therefore, there exists a d, such
that
(H'(20)0 + O(e%))(=H'(20)d + O(e%)) < 0.

According to the intermediate value theorem, there exists § = 6(¢) = O(e'/*) such
that (4.35) is equal to 0 when ¢ is sufficiently small. So, we have

du(-) 5 du(H)
€ dx (1'8,57 )_6 dx

It means that the function

(=) <
u(z, ) = {u (z,8), 0<z<m,,

(1'57575) =0.

u ) (z,e), z, <x <1,

is the solution of (2.1)—(2.2) with contrast structure near z,. This completes the
proof of the theorem.

5. Example
In this section we consider the following boundary value problem:
d?u 6 6
ZQM:—(u—x)z(u—5)(u—2)2—5(5—u), 0<z <1, (5.1)
U u
— =0, —(1,¢) =0.
Here p
pr(e) =7 =2, o) = 2, walw) = oM =2,
- 6, - 6
@) = ~(@ = 2@~ 2), K@) = @ - 22 - ),
o 6 — 4
T O e

2
It is easy to verify that the conditions (A1) and (A2) are satisfied. Then zg = £ is

the root of the equation

2
u%w=/‘4u—%fw—§xu—mwu=m

0
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where I'(Zg) # 0. Therefore, condition (A3) also holds.
From (4.4), we have

_ 1 —1
i = ——, At = (5.2)

We have the following equations for determining Q(()i)(T) and their boundary con-
ditions:

(=)
0

= 2 - * - = * - bl
= | (s +s 5)(x +s5—2)%(s +2 s)ds
6

(()_)(0) = g — T,

and

(+) 1
aQ’™ @ ) 6 NG 3
=2 —(24s5—2.)%2+s5— =)(s* —
0r [ /0 2+s—x)°(24+s 5)(5 2_x5)ds} ,

4
+
Q0=
It is difficult to obtain the analytical solutions for these Cauchy problems, so we
provide only numerical simulation.
For H(()i)(ﬁ) we have

dig” 240

d¢ 5 07
ar™ _
qe (0 =1, T (+00) =0,
and
(+)
a4
@€ 57
an§ ™

& =0 11§ (+00) = 0.

Here, we can solve these Cauchy problems analytically, and the solution is

157 (€) = /5/24exp(—\/24/5¢),  TISP(€) =o0.

At Figure 1 you can see the results of numerical simulation for zero approxima-
tion Up(z, ) of the solution.
The whole solution can be get from Theorem 4.1 and has the form
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2.5

e=0.01
e=0

Figure 1. Zero order approximation Up(z,¢€) of problem (2.1)-(2.2).

Conclusion

In this paper, we discuss the singularly perturbed boundary value problem for a
degenerate equation with two double roots. The formal asymptotic solution is
constructed using the modified boundary layer function method. The existence
of multiple inner layers is established, and the existence of smooth solutions to the
problem is proven. Moreover, the obtained results are illustrated through numerical
simulation for particular right hand part of the equation. The theoretical results
can be extended to handle the contrast structure between repeated roots.
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