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1. Introduction

In this paper, we aim to compute the numerical solution of the following discrete-
time periodic Sylvester (DTPS) matrix equations

AjYj + Yj+1Bj = Cj , j = 1, 2, . . . , γ, (1.1)

where the known matrices Aj ∈ Rm×m, Bj ∈ Rn×n, Cj ∈ Rm×n and the unknown
matrices Yj ∈ Rm×n are periodic with period γ, i.e., Aj+γ = Aj , Bj+γ = Bj , Cj+γ =
Cj and Yj+γ = Yj for j = 1, . . . , γ.

Linear discrete periodic systems are widely used in the fields of physics, biology,
medicine and many other engineering fields [1, 2, 4, 12, 13, 17, 20]. For example, the
following forward and backward periodic Sylvester matrix equations (PSMEs)

AiYjBj + CjYj+1Dj = Fj , (1.2)

and
AjYj+1Bi + CjYjDj = Fj , (1.3)

with j = 1, 2, . . . , γ, and Yj being the unknown matrices, are an indispensable part
of pole assignment and the design of state observers for linear discrete periodic
systems [21]. The forward PSME (1.2) is more general than (1.1), and contains the
DTPS matrix equation (1.1) as a special case. Up to now, a lot of efficient methods
have been proposed to solve various types of periodic matrix equations due to the
universal existence and significance of this kind of matrix equations. For instance,
Varga [29] designed some efficient and numerically reliable algorithms for solving
periodic Lyapunov matrix equations based on the periodic Schur decomposition.
Based on the conjugate gradient normal equation error (CGNE) method, Hajarian
[5] presented an iterative algorithm for solving the general coupled discrete-time
periodic matrix equations. And the same author proposed the matrix form of the
biconjugate residual (BCR) algorithm for solving the forward PSME (1.2) in [7].
Note that the general periodic matrix equation is also a kind of important matrix
equation, which has important applications in many fields. Recently, Lv et al.
[24] constructed a finite iterative method for solving it. Subsequently, Hajarian
[10] presented three types of BCR method to find the generalized bisymmetric
periodic solutions of general periodic matrix equations. And the same author in [11]
designed four new iterative methods based on the CGNE, conjugate gradient normal
equation residual (CGNR), and least-squares QR factorization (LSQR) algorithms
to compute the reflexive periodic solutions of the general periodic matrix equations.

Apart from the periodic matrix equations, there are many other linear matrix
equations arising from many fields of science and engineering, and playing a very
significant role in various branches of them. Due to this fact, in the past few
decades, many researchers have devoted themselves to deriving a great deal of dif-
ferent methods to solve these matrix equations, including the conjugate gradient
iterative method [40], Newton method [16], parametric iterative algorithms [22,23],
gradient based iterative (GI) algorithms [35, 43] and so on. In addition, Li and
Wu [18] extended the single-step HSS (SHSS) method for saddle point problems.
Yan and Ma [39] designed an iterative algorithm to solve a class of generalized cou-
pled Sylvester-transpose matrix equations over bisymmetric or skew-anti-symmetric
matrices. And Wu and Zeng [37] proposed the ADMM-based methods to solve the
nearness symmetric solution of the system of matrix equations A1XB1 = C1 and
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A2XB2 = C2 recently. Besides, Wang and Song [34] proposed a new BCR algorithm
to compute the constraint solution of the coupled operator equations. In [25–27],
Shirilord and Dehghan constructed the efficient iteration methods for three differ-
ent matrix equations, and they also designed a stationary Landweber method with
momentum acceleration in [28]. Also, Huang and Cui [15] developed the modified
and accelerated relaxed gradient-based iterative algorithms for the complex con-
jugate and transpose matrix equations. What is more, Hajarian [8] established
the matrix form of the BCR algorithm for computing the generalized reflexive and
anti-reflexive solutions of the generalized Sylvester matrix equation, then the same
author generalized the Lanczos version of BCR algorithm to compute the symmet-
ric solutions of the general Sylvester matrix equations in [9]. In [42], Zhang estab-
lished the GI algorithm for solving the extended coupled Sylvester matrix equations
A1XB1+A2Y B2 = F1, C1XD1+C2Y D2 = F2 by using the hierarchical identifica-
tion principle. And Xie and Ma [38] derived the accelerated GI (AGI) algorithm to
solve the generalized Sylvester-transpose matrix equation AXB + CXTD = F by
taking advantage of information generated in the previous half-step and introducing
a relaxation factor.

For the generalized coupled Sylvester matrix equation

Al1X1Bl1 +Al2X2Bi2 + · · ·+AlqXqBlq = Gl, l = 1, 2, · · · , p, (1.4)

with Xt (t = 1, 2, . . . , q) being the unknown matrices that need to be determined,
Zhang [44] developed the residual norm steepest descent (RNSD), conjugate gra-
dient normal equation (CGNE) and biconjugate gradient stabilized (Bi-CGSTAB)
algorithms to solve (1.4). Subsequently, by constructing an objective function and
using the gradient search, Zhang [41] constructed the full-rank and reduced-rank
gradient-based algorithms for solving the matrix equation (1.4).

In addition, the generalized coupled Sylvester-conjugate matrix equation

El1X1Fl1 +Gl1X1Hl1 + · · ·+ ElqXqFlq +GlqXqHlq =Wl, l = 1, 2, . . . , p, (1.5)

with Xt (t = 1, 2, . . . , q) being the indeterminate matrices, is the general version of
(1.4). When Glt = 0 and Hlt = 0 (l = 1, . . . , p; t = 1, . . . , q), (1.5) reduces to (1.4).
For the matrix equation (1.5), Huang and Ma [14] introduced l relaxation factors
into the GI algorithm and derived two relaxed GI (RGI) algorithm. And they
proved the convergence of the RGI algorithms by utilizing the properties of the real
representation of a complex matrix. Very recently, Wang and Song [32] constructed
a modified RGI (MRGI) algorithm to solve the coupled Sylvester-conjugate matrix
equation (1.5). Then Wang et al. [30] developed a cyclic GI (CGI) algorithm by
introducing the modular operator, and the most significant improvement of this
algorithm is that less information is used during each iteration update.

As mentioned before, the DTPS and the GDTPS matrix equations arise widely
in scientific and engineering fields. Thus it is meaningful to design efficient algo-
rithms for solving these two kinds of matrix equations. Based on this fact, in this
work, we aim to construct some new and efficient algorithms to compute the itera-
tive solutions of the DTPS and the GDTPS matrix equations. We first review the
Jacobi GI (JGI) and the accelerated JGI (AJGI) algorithms for the DTPS matrix
equations in [31], and find that their convergence proofs are not correct and can be
improved. Then we establish the new convergence theorems of the JGI and AJGI
algorithm by using the properties of the vector stretching operator, matrix norm
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and Kronecker product of two matrices. Besides, to further improve the convergence
rates of the JGI and AJGI algorithms in [31], we apply a new update strategy to
the JGI algorithm [31], and then construct the effective Jacobi gradient based iter-
ative (EJGI) algorithm for the DTPS matrix equations, which is different from the
AJGI one in [31]. Numerical experiments show that the proposed EJGI algorithm
is more efficient than the GI [6], JGI and AJGI ones [31]. Also, we consider the it-
erative solutions of the GDTPS matrix equations. Based on the JGI algorithm [31],
we propose the modified Jacobi gradient based iterative (MJGI) algorithm for the
GDTPS matrix equations by combining the idea of the Jacobi method with the
update strategy. It is noteworthy that this idea stems from [19].

The main contributions of this paper are as follows:

• Propose the new convergence conditions of the JGI and the AJGI algorithms
in [31], which correct and improve the existing ones in [31].

• Apply a new update technique to the JGI algorithm in [31] and establish
the EJGI algorithm, which is different from the AJGI one and has higher
computational efficiency than the AJGI one.

• By combining the idea of Jacobi algorithm and the update strategy, we de-
sign the MJGI algorithm for the GDTPS matrix equations, and derive the
sufficient and necessary condition for the convergence of the MJGI algorithm.
Compared with the JGI algorithm, the proposed MJGI algorithm can use
the latest results to compute the next results and has higher computational
efficiency. Additionally, the MJGI algorithm requires less computational com-
plexity than the factor gradient iterative (FGI) one in [19].

The remainder of this paper is organized as follows. In Section 2, we list some
useful notations, definitions and lemmas that will be used throughout this paper.
In Section 3, we review the JGI and AJGI algorithms proposed in [31] for the DTPS
matrix equations (1.1) and establish their new convergence conditions. In Section 4,
we construct the EJGI algorithm for the DTPS matrix equations (1.1) and analyze
its convergence. Additionally, we derive a new algorithm referred to as the MJGI
algorithm for the GDTPS matrix equations and investigate its convergence property
in Section 5. In Section 6, several numerical examples are given to illustrate the
effectivenesses and advantages of the proposed EJGI and MJGI algorithms. Lastly,
some conclusions and outlooks are given to end this paper in Section 7.

2. Preliminaries

In this section, we list some notations, definitions and lemmas, which will be used
in the subsequent sections.

Let Rn×n and Cn×n be the sets of all n×n real matrices and all n×n complex
matrices, respectively. For a given matrix B ∈ Rn×n, the notations B−1, BT and
ρ(B) stand for the inverse, the transpose and the spectral radius of B, respectively.
If B is a square matrix, then tr(B) stands for the trace of B. The 2-norm and
Frobenius norm of B are denoted by ∥B∥2 =

√
ρ(BTB) and ∥B∥ =

√
tr(BTB),

respectively. Let B = D + R, with D and R being the diagonal and non-diagonal
parts of the matrix B, respectively.

In addition, we present several useful definitions below.
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Definition 2.1 ( [36]). For two matrices F = (fij) ∈ Cm×n and G = (gij) ∈ Ck×l,
the Kronecker product of F and G is defined as

F ⊗G =



f11G f12G · · · f1nG

f21G f22G · · · f2nG
...

...
...

fm1G fm2G · · · fmnG


= [fijG]m×n ∈ Cmk×nl. (2.1)

Definition 2.2 ( [33]). Let eks be the s-dimensional column vector whose k-th
element of eks is 1 and other elements are 0. Then the vec-permutation matrix
P (m,n) is defined as

P (t, s) :=



It ⊗ eT1s

It ⊗ eT2s
...

It ⊗ eTss


. (2.2)

Definition 2.3 ( [36]). Let G = [g1, g2, · · · , gs] ∈ Ct×s with gk being the k-th
column of G. The vector stretching function of G is defined as

vec(G) = [gT1 , g
T
2 , · · · , gTs ]T ∈ Cts. (2.3)

Next, some significant lemmas are reviewed in the following.

Lemma 2.1 ( [36]). Let F ∈ Cm×q, G ∈ Cs×t and Y ∈ Cq×s, then

(i) vec(FY G) = (GT ⊗ F )vec(Y );

(ii) vec(Y T ) = P (q, s)vec(Y ).

Lemma 2.2 ( [3]). Consider the matrix equation AY B = F , where A ∈ Rm×r, B ∈
Rs×n and F ∈ Rm×n are known matrices, and Y ∈ Rr×s needs to be determined.
For this matrix equation, an iterative algorithm is constructed as

Y (l + 1) = Y (l) + µAT (F −AY (l)B)BT , (2.4)

with

0 < µ <
2

∥A∥22∥B∥22
. (2.5)

If this matrix equation has a unique solution Y∗, then the iterative solution Y (l)
converges to the unique solution Y∗, that is lim

l→∞
Y (l) = Y∗.

3. New convergence analyses of the JGI and the
AJGI algorithms

In this section, we first review the Jacobi gradient based iterative (JGI) and the
accelerated Jacobi gradient based iterative (AJGI) algorithms established in [31]
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for the DTPS matrix equation (1.1), then some errors in the proofs of Theorem 3.2
and Theorem 3.3 in [31] are pointed out. At last, we deduce the new convergent
properties of the JGI and the AJGI algorithms, which correct and improve those
in [31].

Based on the Jacobi iterative algorithm and the hierarchical identification prin-
ciple, the JGI and the AJGI algorithms have been proposed for solving the DTPS
matrix equation (1.1) in [31].

In [31], the coefficient matrices Aj , Bj (j = 1, . . . , γ) of the DTPS matrix equa-
tion (1.1) are decomposed into the following forms:

Aj = D1,j +R1,j , (3.1)

Bj = D2,j +R2,j , (3.2)

where D1,j and D2,j are the diagonal parts of Aj and Bj , respectively.

Define

A0 = Aγ , B0 = Bγ , D1,0 = D1,γ , D2,0 = D2,γ ,

then the frameworks of the JGI and the AJGI algorithms are as follows.

Algorithm 3.1. The Jacobi gradient based iterative (JGI) algorithm [31]:

Step 1. Input matrices Aj ∈ Rm×m, Bj ∈ Rn×n, Cj ∈ Rm×n for j = 1, . . . , γ, and
two constants µ, η > 0. Choose the initial matrices Yj(0) ∈ Rm×m (j = 1, . . . , γ),
and set l = 0;

Step 2. Take Yj+γ (0) = Yj (0) , Aj+γ = Aj , Bj+γ = Bj , Cj+γ = Cj , D1,j+γ = D1,j

and D2,j+γ = D2,j ;

Step 3. If ξl =

√√√√√ γ∑
j=1

∥Cj−AjYj(l)−Yj+1(l)Bj∥2

γ∑
j=1

∥Cj−AjYj(0)−Yj+1(0)Bj∥2

< η, then stop; otherwise, go to Step

4;

Step 4. For l = 0, 1, 2, · · · , and j = 1, . . . , γ, calculate

Y1,j (l + 1) = Yj (l) + µD1,j (Cj −AjYj (l)− Yj+1 (l)Bj),

Y2,j (l + 1) = Yj (l) + µ (Cj−1 −Aj−1Yj−1 (l)− Yj (l)Bj−1)D2,j−1,

Yj (l + 1) =
Y1,j (l + 1) + Y2,j (l + 1)

2
,

Yj+γ (l + 1) = Yj (l + 1).

Step 5. Set l := l + 1 and return to Step 3.

Algorithm 3.2. The accelerated Jacobi gradient based iterative (AJGI) algorithm
[31]:

Step 1. Input matrices Aj ∈ Rm×m, Bj ∈ Rn×n, Cj ∈ Rm×n for i = 1, . . . , γ, and
three constants µ, η > 0 and 0 < ω < 1. Choose the initial matrices Yj (0) , Y2,j (0) ∈
Rm×n (j = 1, . . . , γ), and set l = 0;

Step 2. Take Yj+γ (0) = Yj (0) , Aj+γ = Aj , Bj+γ = Bj , Cj+γ = Cj , D1,j+γ = D1,j
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and D2,j+γ = D2,j ;

Step 3. If ξl =

√√√√√ γ∑
j=1

∥Cj−AjYj(l)−Yj+1(l)Bj∥2

γ∑
j=1

∥Cj−AjYj(0)−Yj+1(0)Bj∥2

< η, stop; otherwise, go to Step 4;

Step 4. For l = 0, 1, 2, · · · , and j = 1, . . . , γ, calculate

Y1,j (l + 1) = Yj (l) + µωD1,j (Cj −AjYj (l)− Yj+1 (l)Bj),

Ŷj (l) = (1− ω)Y1,j (l + 1) + ωY2,j (l),

Ŷj+γ (l) = Ŷj (l),

Y2,j (l + 1) = Ŷj (l) + µ (1− ω)
(
Cj−1 −Aj−1Ŷj−1 (l)− Ŷj (l)Bj−1

)
D2,j−1,

Yj (l + 1) = (1− ω)Y1,j (l + 1) + ωY2,j (l + 1),

Yj+γ (l + 1) = Yj (l + 1);

Step 5. Set l := l + 1 and return to Step 3.

Here, we re-present the function Z(k+1) from the proof of Theorem 3.2 in [31]
as follows

Z (l + 1) ≤
γ∑

j=1

(
1

2

∥∥∥Ỹ1,j (l + 1)
∥∥∥2 + 1

2

∥∥∥Ỹ2,j (l + 1)
∥∥∥2)

=

γ∑
i=1

[∥∥∥Ỹj (l)∥∥∥2 − µtr
(
Ỹ T
j (l)D1,j δ̃j (l) +D2,j Ỹ

T
j+1 (l) δ̃j (l)

)
+

1

2
µ2
∥∥∥D1,j δ̃j (l)

∥∥∥2 + 1

2
µ2
∥∥∥δ̃j (l)D2,j

∥∥∥2]
≤ Z (l)− µ

γ∑
j=1

∥∥∥δ̃j (l)∥∥∥2 + 1

2
µ2

γ∑
j=1

(
∥D1,j∥2 + ∥D2,j∥2

)∥∥∥δ̃j (l)∥∥∥2, (3.3)

where δ̃j = Aj Ỹj (l) + Ỹj+1 (l)Bj .
Based on Equation (3.10) in [31] and Equations (3.1)-(3.2), we can get∥∥∥δ̃j (l)∥∥∥2 = tr

(
δ̃Tj (l) δ̃j (l)

)
= tr

[(
Ỹ T
j (l)AT

j +BT
j Ỹ

T
j+1 (l)

)
δ̃j (l)

]
= tr

{[
Ỹ T
j (l)

(
D1,j +RT

1,j

)
+
(
D2,j +RT

2,j

)
Ỹ T
j+1 (l)

]
δ̃j (l)

}
= tr

[(
Ỹ T
j (l)D1,j +D2,j Ỹ

T
j+1 (l)

)
δ̃j (l)

]
+ tr

[(
Ỹ T
j (l)RT

1,j +RT
2,j Ỹ

T
j+1 (l)

)
δ̃j (l)

]
, (3.4)

which implies that
∥∥∥δ̃j (l)∥∥∥2 ≤ tr

[(
Ỹ T
j (l)D1,j +D2,j Ỹ

T
j+1 (l)

)
δ̃j (l)

]
may not be
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true. The reason is that the sign of tr
[(
Ỹ T
j (l)RT

1,j +RT
2,j Ỹ

T
j+1 (l)

)
δ̃j (l)

]
is uncer-

tain.
Thus, the derivation of Inequality (3.3) is not correct. Next we investigate the

new convergence condition of the JGI algorithm.

Theorem 3.1. Assume that the DTPS matrix equation (1.1) is consistent, i.e.,
the solution of the DTPS matrix equation (1.1) exists. Then the iterative sequences
{Yj(l)} (j = 1, . . . , γ) generated by Algorithm 3.1 converge to the unique solution
Y ∗ =

(
Y ∗
1 , Y

∗
2 , · · · , Y ∗

γ

)
for any initial matrices Yj (0) (j = 1, . . . , γ), if the param-

eter µ satisfies

γ∑
j=1

(
∥I − µD1,jAj∥2 + ∥I − µBj−1D2,j−1∥2 + µ∥D1,j−1∥2∥Bj−1∥2 + µ∥Aj∥2∥D2,j∥2

)
< 2.

(3.5)

Proof. We first prove that the solution of the DTPS matrix equation (1.1) is

unique. Assume that Ỹ ∗ =
(
Ỹ ∗
1 , Ỹ

∗
2 , · · · , Ỹ ∗

γ

)
and Ŷ ∗ =

(
Ŷ ∗
1 , Ŷ

∗
2 , · · · , Ŷ ∗

γ

)
are two

solutions of the DTPS matrix equation (1.1), then it holds that

Aj Ỹ
∗
j + Ỹ ∗

j+1Bj = Cj , Aj Ŷ
∗
j + Ŷ ∗

j+1Bj = Cj , j = 1, 2, . . . , γ.

It follows from Aj Ỹ
∗
j + Ỹ ∗

j+1Bj = Cj (j = 1, 2, . . . , γ) that

Ỹ ∗
j = Ỹ ∗

j + µD1,j

(
Cj −Aj Ỹ

∗
j − Ỹ ∗

j+1Bj

)
,

Ỹ ∗
j = Ỹ ∗

j + µ
(
Cj−1 −Aj−1Ỹ

∗
j−1 − Ỹ ∗

j Bj−1

)
D2,j−1,

from which one can deduce that

Ỹ ∗
j = Ỹ ∗

j +
µ

2
D1,j

(
Cj −Aj Ỹ

∗
j − Ỹ ∗

j+1Bj

)
+
µ

2

(
Cj−1 −Aj−1Ỹ

∗
j−1 − Ỹ ∗

j Bj−1

)
D2,j−1. (3.6)

In a manner similar to that done for (3.6), from Aj Ŷ
∗
j + Ŷ ∗

j+1Bj = Cj (j = 1, 2,
. . . , γ), we can derive

Ŷ ∗
j = Ŷ ∗

j +
µ

2
D1,j

(
Cj −Aj Ŷ

∗
j − Ŷ ∗

j+1Bj

)
+
µ

2

(
Cj−1 −Aj−1Ŷ

∗
j−1 − Ŷ ∗

j Bj−1

)
D2,j−1. (3.7)

Subtracting (3.7) from (3.6) yields that

Ỹ ∗
j − Ŷ ∗

j

= Ỹ ∗
j − Ŷ ∗

j − µ

2
D1,j

[
Aj(Ỹ

∗
j − Ŷ ∗

j ) + (Ỹ ∗
j+1 − Ŷ ∗

j+1)Bj

]
−µ
2

[
Aj−1(Ỹ

∗
j−1 − Ŷ ∗

j−1) + (Ỹ ∗
j − Ŷ ∗

j )Bj−1

]
D2,j−1, j = 1, . . . , γ. (3.8)

Let Ȳ ∗
j = Ỹ ∗

j − Ŷ ∗
j (j = 1, . . . , γ), then (3.8) can be written as

Ȳ ∗
j = Ȳ ∗

j − µ

2
D1,j

(
Aj Ȳ

∗
j + Ȳ ∗

j+1Bj

)
− µ

2

(
Aj−1Ȳ

∗
j−1 + Ȳ ∗

j Bj−1

)
D2,j−1
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=
1

2
Ȳ ∗
j − µ

2
D1,jAj Ȳ

∗
j − µ

2
D1,j Ȳ

∗
j+1Bj

+
1

2
Ȳ ∗
j − µ

2
Aj−1Ȳ

∗
j−1D2,j−1 −

µ

2
Ȳ ∗
j Bj−1D2,j−1

=
1

2
(I − µD1,jAj) Ȳ

∗
j +

1

2
Ȳ ∗
j (I − µBj−1D2,j−1)

−µ
2
D1,j Ȳ

∗
j+1Bj −

µ

2
Aj−1Ȳ

∗
j−1D2,j−1. (3.9)

By taking the 2-norm in (3.9) and using the properties of the matrix norm, we have∥∥Ȳ ∗
j

∥∥
2
=

∥∥∥∥12 (I − µD1,jAj) Ȳ
∗
j +

1

2
Ȳ ∗
j (I − µBj−1D2,j−1)

−1

2
µD1,j Ȳ

∗
j+1Bj −

1

2
µAj−1Ȳ

∗
j−1D2,j−1

∥∥∥∥
2

≤ 1

2
∥I − µD1,jAj∥2

∥∥Ȳ ∗
j

∥∥
2
+

1

2
∥I − µBj−1D2,j−1∥2

∥∥Ȳ ∗
j

∥∥
2

+
1

2
µ∥D1,j∥2∥Bj∥2

∥∥Ȳ ∗
j+1

∥∥
2
+

1

2
µ∥Aj−1∥2∥D2,j−1∥2

∥∥Ȳ ∗
j−1

∥∥
2
. (3.10)

Define Ū∗ =
γ∑

j=1

∥∥Ȳ ∗
j

∥∥
2
, then in view of (3.10) we deduce that

Ū∗ =

γ∑
j=1

∥∥Ȳ ∗
j

∥∥
2

≤
γ∑

j=1

[
1

2

(
∥I − µD1,jAj∥2 + ∥I − µBj−1D2,j−1∥2

) ∥∥Ȳ ∗
j

∥∥
2

]

+
1

2

γ∑
j=1

µ∥D1,j∥2∥Bj∥2
∥∥Ȳ ∗

j+1

∥∥
2
+

1

2

γ∑
j=1

µ∥Aj−1∥2∥D2,j−1∥2
∥∥Ȳ ∗

j−1

∥∥
2

=

γ∑
j=1

[
1

2

(
∥I − µD1,jAj∥2 + ∥I − µBj−1D2,j−1∥2

) ∥∥Ȳ ∗
j

∥∥
2

]

+
1

2

γ∑
j=1

µ∥D1,j−1∥2∥Bj−1∥2
∥∥Ȳ ∗

j

∥∥
2
+

1

2

γ∑
j=1

µ∥Aj∥2∥D2,j∥2
∥∥Ȳ ∗

j

∥∥
2

=
1

2

γ∑
j=1

(
∥I − µD1,jAj∥2 + ∥I − µBj−1D2,j−1∥2

+µ∥D1,j−1∥2∥Bj−1∥2 + µ∥Aj∥2∥D2,j∥2
) ∥∥Ȳ ∗

j

∥∥
2

≤ 1

2

γ∑
j=1

(
∥I − µD1,jAj∥2 + ∥I − µBj−1D2,j−1∥2

+ µ∥D1,j−1∥2∥Bj−1∥2 + µ∥Aj∥2∥D2,j∥2
) γ∑
j=1

∥∥Ȳ ∗
j

∥∥
2
. (3.11)

Denote

q =
1

2

γ∑
j=1

(
∥I − µD1,jAj∥2 + ∥I − µBj−1D2,j−1∥2 + µ∥D1,j−1∥2∥Bj−1∥2



EJGI and MJGI algorithms for matrix equations 2053

+µ∥Aj∥2∥D2,j∥2
)
,

then (3.11) leads to Ū∗ ≤ qŪ∗, and for any positive integer t, it holds that

0 ≤ Ū∗ ≤ qŪ∗ ≤ q2Ū∗ ≤ · · · ≤ qtŪ∗. (3.12)

Under the condition

γ∑
j=1

(
∥I − µD1,jAj∥2 + ∥I − µBj−1D2,j−1∥2 + µ∥D1,j−1∥2∥Bj−1∥2

+µ∥Aj∥2∥D2,j∥2
)
< 2,

i.e., q < 1, we have lim
t→+∞

qt = 0. Let t → +∞ in (3.12), then 0 ≤ Ū∗ =

γ∑
j=1

∥∥Ȳ ∗
j

∥∥
2
→ 0, and hence Ȳ ∗

j = 0 (j = 1, . . . , γ), i.e., Ỹ ∗
j = Ŷ ∗

j (j = 1, . . . , γ),

which leads to Ỹ ∗ =
(
Ỹ ∗
1 , Ỹ

∗
2 , · · · , Ỹ ∗

γ

)
=
(
Ŷ ∗
1 , Ŷ

∗
2 , · · · , Ŷ ∗

γ

)
= Ŷ ∗, thus we con-

clude that the solution of the DTPS matrix equation (1.1) is unique.
Let Y ∗ =

(
Y ∗
1 , Y

∗
2 , · · · , Y ∗

γ

)
be the unique solution of the DTPS matrix equation

(1.1). We define the following error matrices

Ỹj (l) = Yj (l)− Y ∗
j , Ỹ1,j (l) = Y1,j (l)− Y ∗

j , Ỹ2,j (l) = Y2,j (l)− Y ∗
j , j = 1, . . . , γ.

According to Algorithm 3.1, we obtain

Ỹ1,j (l + 1) = Ỹj (l)− µD1,j

(
Aj Ỹj (l) + Ỹj+1 (l)Bi

)
= Ỹj (l)− µD1,jAj Ỹj (l)− µD1,j Ỹj+1 (l)Bj , (3.13)

Ỹ2,j (l + 1) = Ỹj (l)− µ
(
Aj−1Ỹj−1 (l) + Ỹj (l)Bj−1

)
D2,j−1

= Ỹj (l)− µAj−1Ỹj−1 (l)D2,j−1 − µỸj (l)Bj−1D2,j−1, (3.14)

Ỹj (l + 1) =
1

2
Ỹ1,j (l + 1) +

1

2
Ỹ2,j (l + 1) . (3.15)

Then substituting (3.13)-(3.14) into (3.15) leads to

Ỹj (l + 1) =
1

2
Ỹj (l)−

1

2
µD1,jAj Ỹj (l) +

1

2
Ỹj (l)−

1

2
µỸj (l)Bj−1D2,j−1

−1

2
µD1,j Ỹj+1 (l)Bj −

1

2
µAj−1Ỹj−1 (l)D2,j−1

=
1

2
(I − µD1,jAj) Ỹj (l) +

1

2
Ỹj (l) (I − µBj−1D2,j−1)

−1

2
µD1,j Ỹj+1 (l)Bj −

1

2
µAj−1Ỹj−1 (l)D2,j−1. (3.16)

By taking the 2-norm in (3.16) and using the properties of the matrix norm, we
deduce that∥∥∥Ỹj (l + 1)

∥∥∥
2
=

∥∥∥∥12 (I − µD1,jAj) Ỹj (l) +
1

2
Ỹj (l) (I − µBj−1D2,j−1)

−1

2
µD1,j Ỹj+1 (l)Bj −

1

2
µAj−1Ỹj−1 (l)D2,j−1

∥∥∥∥
2
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≤ 1

2
∥I − µD1,jAj∥2

∥∥∥Ỹj (l)∥∥∥
2
+

1

2
∥I − µBj−1D2,j−1∥2

∥∥∥Ỹj (l)∥∥∥
2

+
1

2
µ∥D1,j∥2∥Bj∥2

∥∥∥Ỹj+1 (l)
∥∥∥
2
+

1

2
µ∥Aj−1∥2∥D2,j−1∥2

∥∥∥Ỹj−1 (l)
∥∥∥
2
.

(3.17)

Next we define the following non-negative matrix norm function H(l)

H (l) =

γ∑
j=1

∥∥∥Ỹj (l)∥∥∥
2
,

which together with (3.17) gives

H (l + 1)

=

γ∑
j=1

∥∥∥Ỹj (l + 1)
∥∥∥
2

≤
γ∑

j=1

[
1

2

(
∥I − µD1,jAj∥2 + ∥I − µBj−1D2,j−1∥2

) ∥∥∥Ỹj (l)∥∥∥
2

]

+
1

2

γ∑
j=1

µ∥D1,j∥2∥Bj∥2
∥∥∥Ỹj+1 (l)

∥∥∥
2
+

1

2

γ∑
j=1

µ∥Aj−1∥2∥D2,j−1∥2
∥∥∥Ỹj−1 (l)

∥∥∥
2

=

γ∑
j=1

[
1

2

(
∥I − µD1,jAj∥2 + ∥I − µBj−1D2,j−1∥2

) ∥∥∥Ỹj (l)∥∥∥
2

]

+
1

2

γ∑
j=1

µ∥D1,j−1∥2∥Bj−1∥2
∥∥∥Ỹj (l)∥∥∥

2
+

1

2

γ∑
j=1

µ∥Aj∥2∥D2,j∥2
∥∥∥Ỹj (l)∥∥∥

2

=
1

2

γ∑
j=1

(
∥I − µD1,jAj∥2 + ∥I − µBj−1D2,j−1∥2

+ µ∥D1,j−1∥2∥Bj−1∥2 + µ∥Aj∥2∥D2,j∥2
) ∥∥∥Ỹj (l)∥∥∥

2

≤ 1

2

γ∑
j=1

(
∥I − µD1,jAj∥2 + ∥I − µBj−1D2,j−1∥2

+µ∥D1,j−1∥2∥Bj−1∥2 + µ∥Aj∥2∥D2,j∥2
) γ∑
j=1

∥∥∥Ỹj (l)∥∥∥
2

= qH (l) .

This leads to the following result

H (l + 1) ≤ qH (l) ≤ q2H (l − 1) ≤ · · · ≤ ql+1H (0) .

Hence, if q < 1, that is

γ∑
j=1

(
∥I − µD1,jAj∥2 + ∥I − µBj−1D2,j−1∥2 + µ∥D1,j−1∥2∥Bj−1∥2

+µ∥Aj∥2∥D2,j∥2
)
< 2,



EJGI and MJGI algorithms for matrix equations 2055

then lim
l→+∞

γ∑
j=1

∥∥∥Ỹj (l + 1)
∥∥∥
2
= 0 and therefore lim

l→+∞
Ỹj(l + 1) = 0 (j = 1, . . . , γ).

This shows that

lim
l→+∞

Yj (l + 1) = Y ∗
j , j = 1, 2, . . . , γ.

The proof is completed.

Now we turn to review the function Z(l+1) in the proof of Theorem 3.3 in [31]:

Z (l + 1) =

γ∑
j=1

∥∥∥(1− ω) Ỹ1,j (l + 1) + ωỸ2,j (l + 1)
∥∥∥2

≤ 2

γ∑
j=1

[
(1− ω)

2
∥∥∥Ỹ1,j (l + 1)

∥∥∥2 + ω2
∥∥∥Ỹ2,j (l + 1)

∥∥∥2]

= 2

γ∑
j=1

[
(1− ω)

2
∥∥∥Ỹj (l)∥∥∥2 − 2µω(1− ω)

2
tr
(
Ỹ T
j (l)D1,j δ̃j (l)

)
+ µ2ω2(1− ω)

2
∥∥∥D1,j δ̃j (l)

∥∥∥2 − 2µω2 (1− ω) tr

(˜̂
Y

T

j+1(l)ψ̃j (l)D2,j

)
+ω2

∥∥∥˜̂Y j(l)
∥∥∥2 + µ2ω2(1− ω)

2
∥∥∥ψ̃j (l)D2,j

∥∥∥2] (3.18)

≤ 2

γ∑
j=1

[
(1− ω)

2
∥∥∥Ỹj (l)∥∥∥2 − 2µω(1− ω)

2
∥∥∥δ̃j (l)∥∥∥2

+ µ2ω2(1− ω)
2∥D1,j∥2

∥∥∥δ̃j (l)∥∥∥2 − 2µω2 (1− ω)
∥∥∥ψ̃j (l)

∥∥∥2
+ ω2

∥∥∥˜̂Y j(l)
∥∥∥2 + µ2ω2(1− ω)

2
∥∥∥ψ̃j (l)

∥∥∥2∥D2,j∥2
]
, (3.19)

where δ̃j(l) = Aj Ỹj(l) + Ỹj+1(l)Bj and ψ̃j(l) = Aj
˜̂
Y j(l) +

˜̂
Y j+1(l)Bj .

By using the same analytical method applied in (3.4), we observe that∥∥∥δ̃j (l)∥∥∥2 = tr
{[
Ỹ T
j (l)

(
D1,j +RT

1,j

)
+
(
D2,j +RT

2,j

)
Ỹ T
j+1 (l)

]
δ̃j (l)

}
≤ tr

[
Ỹ T
j (l)D1,j δ̃j (l)

]
(3.20)

and ∥∥∥ψ̃j (l)
∥∥∥2 = tr

[ ˜̂
Y

T

j (l)A
T
j ψ̃j (l) + (D2,j +RT

2,j)
˜̂
Y

T

j+1(l)ψ̃j (l)

]
≤ tr

[
D2,j

˜̂
Y

T

j+1(l)ψ̃j (l)

]
= tr

[ ˜̂
Y

T

j+1(l)ψ̃j (l)D2,j

]
are not always true. Therefore, the derivation of (3.19) from (3.18) is not correct. In
what follows, we establish the correct convergence theorem of the AJGI algorithm.
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To this end, we first define the following matrix

𭟋 =



(1− ω)M1 ωM1 (1− ω)N1 ωN1 0 0 · · · 0 0 0 0

(1− ω)
2
V1 ωZ1 (1− ω)

2
P1 ω (1− ω)P1 0 0 · · · 0 0 (1− ω)

2
Wγ ωUγ

0 0 (1− ω)M2 ωM2 (1− ω)N2 ωN2 · · · 0 0 0 0

(1− ω)
2
W1 ωU1 (1− ω)

2
V2 ωZ2 (1− ω)

2
P2 ω (1− ω)P2 · · · 0 0 0 0

...
...

...
...

...
...

...
...

...
...

...

(1− ω)Nγ ωNγ 0 0 0 0 · · · 0 0 (1− ω)Mγ ωMγ

(1− ω)
2
Pγ ω (1− ω)Pγ 0 0 0 0 · · · (1− ω)

2
Wγ−1 ωUγ−1 (1− ω)

2
Vγ ωZγ


,

(3.21)

with

Mj = I ⊗ (I − µωD1,jAj) , Nj = −µωBT
j ⊗D1,j , Pj = Gj−1Nj , Wj = HjMj ,

Hj = −µ (1− ω)D2,j ⊗Aj , Gj = [I − µ (1− ω)BjD2,j ]
T ⊗ I,

Uj = Hj [(1− ω)Mj + I] , Vj = Gj−1Mj +Hj−1Nj−1,

Zj = Gj−1 [(1− ω)Mj + I] + (1− ω)Hj−1Nj−1, j = 1, . . . , γ.

Theorem 3.2. Assume that the DTPS matrix equation (1.1) is consistent, i.e.,
the solution of the DTPS matrix equation (1.1) exists. Then the iterative sequences
{Yj(l)} (j = 1, . . . , γ) generated by the AJGI algorithm converge to the unique
solution Y ∗ =

(
Y ∗
1 , Y

∗
2 , · · · , Y ∗

γ

)
for any initial matrices Yj (0) (j = 1, . . . , γ) if the

parameters µ and ω are selected to satisfy

ρ(𭟋) < 1,

where the matrix 𭟋 is defined as in (3.21).

Proof. First of all, we prove that the solution of the DTPS matrix equation (1.1)

is unique. Assume that Ỹ ∗ =
(
Ỹ ∗
1 , Ỹ

∗
2 , · · · , Ỹ ∗

γ

)
and Ŷ ∗ =

(
Ŷ ∗
1 , Ŷ

∗
2 , · · · , Ŷ ∗

γ

)
are

two solutions of the DTPS matrix equation (1.1), then we have

Aj Ỹ
∗
j + Ỹ ∗

j+1Bj = Cj , Aj Ŷ
∗
j + Ŷ ∗

j+1Bj = Cj , j = 1, 2, . . . , γ.

It follows from Aj Ỹ
∗
j + Ỹ ∗

j+1Bj = Cj (j = 1, 2, . . . , γ) that

Ỹ ∗
j = Ỹ ∗

j + µωD1,j

(
Cj −Aj Ỹ

∗
j − Ỹ ∗

j+1Bj

)
,

Ỹ ∗
j = Ỹ ∗

j + µ(1− ω)
(
Cj−1 −Aj−1Ỹ

∗
j−1 − Ỹ ∗

j Bj−1

)
D2,j−1,

Ỹ ∗
j = (1− ω) Ỹ ∗

j + ωỸ ∗
j , Ỹ

∗
j = (1− ω) Ỹ ∗

j + ωỸ ∗
j . (3.22)

Similarly, from Aj Ŷ
∗
j + Ŷ ∗

j+1Bj = Cj (j = 1, 2, . . . , γ), we can deduce that

Ŷ ∗
j = Ŷ ∗

j + µωD1,j

(
Cj −Aj Ŷ

∗
j − Ŷ ∗

j+1Bj

)
,

Ŷ ∗
j = Ŷ ∗

j + µ(1− ω)
(
Cj−1 −Aj−1Ŷ

∗
j−1 − Ŷ ∗

j Bj−1

)
D2,j−1,

Ŷ ∗
j = (1− ω) Ŷ ∗

j + ωŶ ∗
j , Ŷ

∗
j = (1− ω) Ŷ ∗

j + ωŶ ∗
j . (3.23)

Let Ȳ ∗
j = Ỹ ∗

j − Ŷ ∗
j (j = 1, . . . , γ). The combination of (3.22) and (3.23) gives

Ȳ ∗
j = Ȳ ∗

j − µωD1,j

(
Aj Ȳ

∗
j + Ȳ ∗

j+1Bj

)
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= Ȳ ∗
j − µωD1,jAj Ȳ

∗
j − µωD1,j Ȳ

∗
j+1Bj

= (I − µωD1,jAj) Ȳ
∗
j − µωD1,j Ȳ

∗
j+1Bj , (3.24)

Ȳ ∗
j = Ȳ ∗

j − µ(1− ω)
(
Aj−1Ȳ

∗
j−1 + Ȳ ∗

j Bj−1

)
D2,j−1

= Ȳ ∗
j − µ(1− ω)Aj−1Ȳ

∗
j−1D2,j−1 − µ(1− ω)Ȳ ∗

j Bj−1D2,j−1

= Ȳ ∗
j [I − µ (1− ω)Bj−1D2,j−1]− µ (1− ω)Aj−1Ȳ

∗
j−1D2,j−1, (3.25)

Ȳ ∗
j = (1− ω) Ȳ ∗

j + ωȲ ∗
j , (3.26)

Ȳ ∗
j = (1− ω) Ȳ ∗

j + ωȲ ∗
j . (3.27)

Taking the vec-operator on both sides of (3.24)-(3.27) results in

vec
(
Ȳ ∗
j

)
= [I ⊗ (I − µωD1,jAj)] vec

(
Ȳ ∗
j

)
−
(
µωBT

j ⊗D1,j

)
vec
(
Ȳ ∗
j+1

)
= Mjvec

(
Ȳ ∗
j

)
+Njvec

(
Ȳ ∗
j+1

)
, (3.28)

vec
(
Ȳ ∗
j

)
=
{
[I − µ (1− ω)Bj−1D2,j−1]

T ⊗ I
}
vec
(
Ȳ ∗
j

)
− [µ (1− ω)D2,j−1 ⊗Aj−1] vec

(
Ȳ ∗
j−1

)
= Gj−1vec

(
Ȳ ∗
j

)
+Hj−1vec

(
Ȳ ∗
j−1

)
, (3.29)

vec
(
Ȳ ∗
j

)
= (1− ω) vec

(
Ȳ ∗
j

)
+ ωvec

(
Ȳ ∗
j

)
, (3.30)

vec
(
Ȳ ∗
j

)
= (1− ω) vec

(
Ȳ ∗
j

)
+ ωvec

(
Ȳ ∗
j

)
, (3.31)

in terms of Lemma 2.1. By substituting (3.31) into (3.28), it holds that

vec
(
Ȳ ∗
j

)
= (1− ω)Mjvec

(
Ȳ ∗
j

)
+ ωMjvec

(
Ȳ ∗
j

)
+(1− ω)Njvec

(
Ȳ ∗
j+1

)
+ ωNjvec

(
Ȳ ∗
j+1

)
. (3.32)

By combining (3.32) with (3.30), we have

vec
(
Ȳ ∗
j

)
= (1− ω)

{
(1− ω)Mjvec

(
Ȳ ∗
j

)
+ ωMjvec

(
Ȳ ∗
j

)
+(1− ω)Njvec

(
Ȳ ∗
j+1

)
+ ωNjvec

(
Ȳ ∗
j+1

)}
+ ωvec

(
Ȳ ∗
j

)
= (1− ω)

2
Mjvec

(
Ȳ ∗
j

)
+ (1− ω)

2
Njvec

(
Ȳ ∗
j+1

)
+ω [(1− ω)Mj + I] vec

(
Ȳ ∗
j

)
+ ω (1− ω)Njvec

(
Ȳ ∗
j+1

)
. (3.33)

In addition, substituting (3.33) into (3.29) results in

vec
(
Ȳ ∗
j

)
= (1− ω)

2
Hj−1Mj−1vec

(
Ȳ ∗
j−1

)
+ ωHj−1 [(1− ω)Mj−1 + I] vec

(
Ȳ ∗
j−1

)
+(1− ω)

2
(Gj−1Mj +Hj−1Nj−1) vec

(
Ȳ ∗
j

)
+ω {Gj−1 [(1− ω)Mj + I] + (1− ω)Hj−1Nj−1} vec

(
Ȳ ∗
j

)
+(1− ω)

2
Gj−1Njvec

(
Ȳ ∗
j+1

)
+ ω (1− ω)Gj−1Njvec

(
Ȳ ∗
j+1

)
= (1− ω)

2
Wj−1vec

(
Ȳ ∗
j−1

)
+ ωUj−1vec

(
Ȳ ∗
j−1

)
+ (1− ω)

2
Vjvec

(
Ȳ ∗
j

)
+ωZjvec

(
Ȳ ∗
j

)
+ (1− ω)

2
Pjvec

(
Ȳ ∗
j+1

)
+ ω (1− ω)Pjvec

(
Ȳ ∗
j+1

)
. (3.34)

Then from (3.21), (3.32) and (3.34), we conclude that for any positive integer t, it



2058 X. Wu & Z. Huang

has 

vec
(
Ȳ ∗
1

)
vec
(
Ȳ ∗
1

)
vec
(
Ȳ ∗
2

)
vec
(
Ȳ ∗
2

)
...

vec
(
Ȳ ∗
γ

)
vec
(
Ȳ ∗
γ

)



= 𭟋



vec
(
Ȳ ∗
1

)
vec
(
Ȳ ∗
1

)
vec
(
Ȳ ∗
2

)
vec
(
Ȳ ∗
2

)
...

vec
(
Ȳ ∗
γ

)
vec
(
Ȳ ∗
γ

)



= 𭟋t



vec
(
Ȳ ∗
1

)
vec
(
Ȳ ∗
1

)
vec
(
Ȳ ∗
2

)
vec
(
Ȳ ∗
2

)
...

vec
(
Ȳ ∗
γ

)
vec
(
Ȳ ∗
γ

)



. (3.35)

If ρ(𭟋) < 1, then it follows that lim
t→+∞

𭟋t = 0. Let t → +∞ in (3.35), we obtain

vec
(
Ȳ ∗
j

)
= 0 (j = 1, . . . , γ), thus Ỹ ∗

j = Ŷ ∗
j (j = 1, . . . , γ). This implies that

Ỹ ∗ =
(
Ỹ ∗
1 , Ỹ

∗
2 , · · · , Ỹ ∗

γ

)
=
(
Ŷ ∗
1 , Ŷ

∗
2 , · · · , Ŷ ∗

γ

)
= Ŷ ∗, and therefore the solution of

the DTPS matrix equation (1.1) is unique.
Let Y ∗ =

(
Y ∗
1 , Y

∗
2 , · · · , Y ∗

γ

)
be the unique solution of the DTPS matrix equation

(1.1). Similar to Theorem 3.1, we define the error matrices

Ỹ1,j(l) = Y1,j (l)− Y ∗
j , Ỹ2,j (l) = Y2,j (l)− Y ∗

j ,˜̂
Y j(l) = Ŷj (l)− Y ∗

j , Ỹj (l) = Yj (l)− Y ∗
j , j = 1, . . . , γ. (3.36)

According to the iteration scheme of Algorithm 3.2, it holds that

Ỹ1,j (l + 1) = Ỹj (l)− µωD1,j

(
Aj Ỹj (l) + Ỹj+1 (l)Bj

)
= Ỹj (l)− µωD1,jAj Ỹj (l)− µωD1,j Ỹj+1 (l)Bj

= (I − µωD1,jAj) Ỹj (l)− µωD1,j Ỹj+1 (l)Bj , (3.37)

Ỹ2,j (l + 1) =
˜̂
Y j(l)− µ(1− ω)

(
Aj−1

˜̂
Y j−1(l) +

˜̂
Y j(l)Bj−1

)
D2,j−1

=
˜̂
Y j(l)− µ(1− ω)Aj−1

˜̂
Y j−1(l)D2,j−1 − µ(1− ω)

˜̂
Y j(l)Bj−1D2,j−1

=
˜̂
Y j(l) [I − µ (1− ω)Bj−1D2,j−1]− µ (1− ω)Aj−1

˜̂
Y j−1(l)D2,j−1,

(3.38)˜̂
Y j(l) = (1− ω) Ỹ1,j (l + 1) + ωỸ2,j (l) , (3.39)

Ỹj (l + 1) = (1− ω) Ỹ1,j (l + 1) + ωỸ2,j (l + 1) . (3.40)

By taking the vec-operator on both sides of (3.37)-(3.40) and using Lemma 2.1, we
have

vec
[
Ỹ1,j (l + 1)

]
= [I ⊗ (I − µωD1,jAj)] vec

[
Ỹj (l)

]
−
(
µωBT

j ⊗D1,j

)
vec
[
Ỹj+1 (l)

]



EJGI and MJGI algorithms for matrix equations 2059

=Mjvec
[
Ỹj (l)

]
+Njvec

[
Ỹj+1 (l)

]
, (3.41)

vec
[
Ỹ2,j (l + 1)

]
=
{
[I − µ (1− ω)Bj−1D2,j−1]

T ⊗ I
}
vec
[ ˜̂
Y j(l)

]
− [µ (1− ω)D2,j−1 ⊗Aj−1] vec

[ ˜̂
Y j−1(l)

]
=Gj−1vec

[ ˜̂
Y j(l)

]
+Hj−1vec

[ ˜̂
Y j−1(l)

]
, (3.42)

vec
[ ˜̂
Y j(l)

]
=(1− ω) vec

[
Ỹ1,j (l + 1)

]
+ ωvec

[
Ỹ2,j (l)

]
, (3.43)

vec
[
Ỹj(l + 1)

]
=(1− ω) vec

[
Ỹ1,j (l + 1)

]
+ ωvec

[
Ỹ2,j (l + 1)

]
. (3.44)

Substituting (3.44) into (3.41) yields that

vec
[
Ỹ1,j (l + 1)

]
= (1− ω)Mjvec

[
Ỹ1,j (l)

]
+ ωMjvec

[
Ỹ2,j (l)

]
+ (1− ω)Njvec

[
Ỹ1,j+1 (l)

]
+ ωNjvec

[
Ỹ2,j+1 (l)

]
. (3.45)

By combining (3.45) with (3.43), it has

vec
[ ˜̂
Y j(l)

]
= (1− ω)

{
(1− ω)Mjvec

[
Ỹ1,j (l)

]
+ ωMjvec

[
Ỹ2,j (l)

]
+(1− ω)Njvec

[
Ỹ1,j+1 (l)

]
+ ωNjvec

[
Ỹ2,j+1 (l)

]}
+ ωvec

[
Ỹ2,j (l)

]
= (1− ω)

2
Mjvec

[
Ỹ1,j (l)

]
+ (1− ω)

2
Njvec

[
Ỹ1,j+1 (l)

]
+ ω [(1− ω)Mj + I] vec

[
Ỹ2,j (l)

]
+ ω (1− ω)Njvec

[
Ỹ2,j+1 (l)

]
. (3.46)

Besides, substituting (3.46) into (3.42) results in

vec
[
Ỹ2,j (l + 1)

]
= (1− ω)

2
Hj−1Mj−1vec

[
Ỹ1,j−1 (l)

]
+ ωHj−1 [(1− ω)Mj−1 + I] vec

[
Ỹ2,j−1 (l)

]
+ (1− ω)

2
(Gj−1Mj +Hj−1Nj−1) vec

[
Ỹ1,j (l)

]
+ ω {Gj−1 [(1− ω)Mj + I] + (1− ω)Hj−1Nj−1} vec

[
Ỹ2,j (l)

]
+ (1− ω)

2
Gj−1Njvec

[
Ỹ1,j+1 (l)

]
+ ω (1− ω)Gj−1Njvec

[
Ỹ2,j+1 (l)

]
= (1− ω)

2
Wj−1vec

[
Ỹ1,j−1 (l)

]
+ ωUj−1vec

[
Ỹ2,j−1 (l)

]
+ (1− ω)

2
Vjvec

[
Ỹ1,j (l)

]
+ ωZjvec

[
Ỹ2,j (l)

]
+ (1− ω)

2
Pjvec

[
Ỹ1,j+1 (l)

]
+ ω (1− ω)Pjvec

[
Ỹ2,j+1 (l)

]
. (3.47)
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Then it follows from (3.21), (3.45) and (3.47) that

vec
[
Ỹ1,1 (l + 1)

]
vec
[
Ỹ2,1 (l + 1)

]
vec
[
Ỹ1,2 (l + 1)

]
vec
[
Ỹ2,2 (l + 1)

]
...

vec
[
Ỹ1,γ (l + 1)

]
vec
[
Ỹ2,γ (l + 1)

]



= 𭟋



vec
[
Ỹ1,1 (l)

]
vec
[
Ỹ2,1 (l)

]
vec
[
Ỹ1,2 (l)

]
vec
[
Ỹ2,2 (l)

]
...

vec
[
Ỹ1,γ (l)

]
vec
[
Ỹ2,γ (l)

]



. (3.48)

Therefore, the matrix 𭟋 in (3.48) is the iteration matrix of the AJGI algorithm, then
the necessary and sufficient condition for the convergence of the AJGI algorithm is

ρ(𭟋) < 1,

which completes the proof of this theorem.

Remark 3.1. Although the convergence condition of the AJGI algorithm is given
in Theorem 3.2, intervals of the step size factor µ and the relaxation factor ω have
not been determined. The reason is that the parameters ω, µ are contained in the
matrices in 𭟋, and they can not be separated from the matrices in 𭟋. Thus it is
difficult to derive the convergence intervals of ω, µ, and this problem needs to be
investigated in our future work.

4. The EJGI algorithm for the DTPS matrix equa-
tions

In this section, to further improve the efficiency of the AJGI algorithm proposed
in [31], based on Lemma 2.2, we introduce a new update technique for the JGI al-
gorithm [31], and construct an effective JGI (EJGI) algorithm for the DTPS matrix
equations, which is different from the AJGI algorithm and has better numerical
performance. Then we investigate the convergence property of the EJGI algorithm.
The framework of the EJGI algorithm is as follows.

Algorithm 4.1. The effective Jacobi gradient based iterative (EJGI) algorithm:

Step 1. Input matrices Aj ∈ Rm×m, Bj ∈ Rn×n, Cj ∈ Rm×n for j = 1, . . . , γ, and
three constants µ, η > 0 and 0 < ω < 1. Choose the initial matrices Yj (0) ∈ Rm×n

(j = 1, . . . , γ), and set l = 0;

Step 2. Take Yj+γ (0) = Yj (0) , Aj+γ = Aj , Bj+γ = Bj , Cj+γ = Cj , D1,j+γ = D1,j

and D2,j+γ = D2,j ;

Step 3. If ηl =

√√√√√ γ∑
j=1

∥Cj−AjYj(l)−Yj+1(l)Bj∥2

γ∑
j=1

∥Cj−AjYj(0)−Yj+1(0)Bj∥2

< η, stop; otherwise, go to Step 4;

Step 4. For l = 0, 1, 2, . . . , and j = 1, . . . , γ, calculate
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Y1,j (l + 1) = Yj (l) + µωD1,j (Cj −AjYj (l)− Yj+1 (l)Bj),

Ŷj (l) = (1− ω)Y1,j (l + 1) + ωYj (l),

Ŷj+γ (l) = Ŷj (l),

Y2,j (l + 1) = Ŷj (l) + µ (1− ω)
(
Cj−1 −Aj−1Ŷj−1 (l)− Ŷj (l)Bj−1

)
D2,j−1,

Yj (l + 1) = (1− ω)Y1,j (l + 1) + ωY2,j (l + 1),

Yj+γ (l + 1) = Yj (l + 1);

Step 5. Set l := l + 1 and return to Step 3.

Remark 4.1. Compared with the AJGI algorithm, the proposed EJGI algorithm
is obtained by using a new and different update technique to the JGI algorithm. In
the AJGI algorithm, Ŷj (l) are computed by Y1,j (l + 1) and Y2,j (l) (j = 1, · · · , γ).
While in the proposed EJGI algorithm, Y2,j (l) are replaced by Yj (l) to compte

Ŷj (l) (j = 1, · · · , γ). Although the frameworks of the AJGI algorithm [31] and the
proposed EJGI algorithm are similar and the only differences between these two
algorithms are the formulas for Ŷj(l) (j = 1, · · · , γ), the latter one may perform
better than the former one. The reason is that Yj (l) = (1− ω)Y1,j (l) + ωY2,j (l)
may be better than Y2,j (l) if the relaxation factor ω is chosen properly. And this
fact will be illustrated by numerical experiments in Section 6.

In what follows, we establish the convergence theorem of the proposed EJGI
algorithm.

Theorem 4.1. Suppose that the DTPS matrix equation (1.1) is consistent, i.e.,
the solution of the DTPS matrix equation (1.1) exists. Then the iterative sequences
{Yj(l)} (j = 1, . . . , γ) generated by Algorithm 4.1 converge to the unique solution
Y ∗ =

(
Y ∗
1 , Y

∗
2 , · · · , Y ∗

γ

)
for any initial matrices Yj (0) (j = 1, . . . , γ), if the param-

eters µ and ω satisfy

(1− ω)

γ∑
j=1

(
∥I − µωD1,jAj∥2 + µω∥D1,j−1∥2∥Bj−1∥2

)
+ω

γ∑
j=1

[
∥I − µ(1− ω)Bj−1D2,j−1∥2 + µ(1− ω)∥Aj∥2∥D2,j∥2

]
p < 1,

where

p =

γ∑
j=1

[
∥I − µω (1− ω)D1,jAj∥2 + µω (1− ω)∥D1,j−1∥2∥Bj−1∥2

]
.

Proof. By assumptions, we can prove that the solution of the DTPS matrix equa-
tion (1.1) is unique by applying the similar method utilized in Theorem 3.1. Let
Y ∗ =

(
Y ∗
1 , Y

∗
2 , · · · , Y ∗

γ

)
be the unique solution of the DTPS matrix equation (1.1).

It follows from Algorithm 4.1 and the notations in (3.36) that

Ỹ1,j (l + 1) = Ỹj (l)− µωD1,j

(
Aj Ỹj (l) + Ỹj+1 (l)Bj

)
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= Ỹj (l)− µωD1,jAj Ỹj (l)− µωD1,j Ỹj+1 (l)Bj , (4.1)

and

Ỹ2,j (l + 1) =
˜̂
Y j(l)− µ(1− ω)

(
Aj−1

˜̂
Y j−1(l) +

˜̂
Y j(l)Bj−1

)
D2,j−1

=
˜̂
Y j(l)− µ(1− ω)Aj−1

˜̂
Y j−1(l)D2,j−1 − µ(1− ω)

˜̂
Y j(l)Bj−1D2,j−1.

(4.2)

By combining (4.1) with (4.2), we have

˜̂
Y j(l) = (1− ω) Ỹ1,j (l + 1) + ωỸj (l)

= (1− ω)
[
Ỹj (l)− µωD1,jAj Ỹj (l)− µωD1,j Ỹj+1 (l)Bj

]
+ ωỸj (l)

= Ỹj (l)− µω (1− ω)D1,jAj Ỹj (l)− µω (1− ω)D1,j Ỹj+1 (l)Bj

= [I − µω (1− ω)D1,jAj ] Ỹj (l)− µω (1− ω)D1,j Ỹj+1 (l)Bj , (4.3)

and

Ỹj (l + 1) = (1− ω) Ỹ1,j (l + 1) + ωỸ2,j (l + 1)

= (1− ω)
[
Ỹj (l)− µωD1,jAj Ỹj (l)− µωD1,j Ỹj+1 (l)Bj

]
+ ω[

˜̂
Y j(l)− µ(1− ω)Aj−1

˜̂
Y j−1(l)D2,j−1 − µ(1− ω)

˜̂
Y j(l)Bj−1D2,j−1]

= (1− ω)Ỹj (l)− µω(1− ω)D1,jAj Ỹj (l)− µω(1− ω)D1,j Ỹj+1 (l)Bj

+ ω
˜̂
Y j(l)− µω(1− ω)Aj−1

˜̂
Y j−1(l)D2,j−1

− µω(1− ω)
˜̂
Y j(l)Bj−1D2,j−1

= (1− ω)[I − µωD1,jAj ]Ỹj(l)− µω(1− ω)D1,j Ỹj+1(l)Bj

− µω(1− ω)Aj−1
˜̂
Y j−1(l)D2,j−1 + ω

˜̂
Y j(l)[I − µ(1− ω)Bj−1D2,j−1].

(4.4)

By taking the 2-norm in (4.3) and (4.4), and using the properties of the matrix
norm, it holds that∥∥∥˜̂Y j(l)

∥∥∥
2

=
∥∥∥[I − µω (1− ω)D1,jAj ] Ỹj (l)− µω (1− ω)D1,j Ỹj+1 (l)Bj

∥∥∥
2

≤ ∥I − µω (1− ω)D1,jAj∥2
∥∥∥Ỹj (l)∥∥∥

2
+ µω (1− ω) ∥D1,j∥2∥Bj∥2

∥∥∥Ỹj+1 (l)
∥∥∥
2
,

(4.5)

and ∥∥∥Ỹj (l + 1)
∥∥∥
2

=
∥∥∥(1− ω)[I − µωD1,jAj ]Ỹj(l)− µω(1− ω)D1,j Ỹj+1(l)Bj

− µω(1− ω)Aj−1
˜̂
Y j−1(l)D2,j−1 + ω

˜̂
Y j(l)[I − µ(1− ω)Bj−1D2,j−1]∥2
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≤ (1− ω)∥I − µωD1,jAj∥2
∥∥∥Ỹj (l)∥∥∥

2
+ µω(1− ω)∥D1,j∥2∥Bj∥2

∥∥∥Ỹj+1 (l)
∥∥∥
2

+ ω∥I − µ(1− ω)Bj−1D2,j−1∥2
∥∥∥˜̂Y j(l)

∥∥∥
2

+ µω(1− ω)∥Aj−1∥2∥D2,j−1∥2
∥∥∥˜̂Y j−1(l)

∥∥∥
2
. (4.6)

From (4.5), we can derive the following inequality

γ∑
j=1

∥∥∥˜̂Y j(l)
∥∥∥
2

≤
γ∑

j=1

∥I − µω (1− ω)D1,jAj∥2
∥∥∥Ỹj (l)∥∥∥

2

+

γ∑
j=1

µω (1− ω)∥D1,j∥2∥Bj∥2
∥∥∥Ỹj+1 (l)

∥∥∥
2

=

γ∑
j=1

∥I − µω (1− ω)D1,jAj∥2
∥∥∥Ỹj (l)∥∥∥

2

+

γ∑
j=1

µω (1− ω)∥D1,j−1∥2∥Bj−1∥2
∥∥∥Ỹj (l)∥∥∥

2

=

γ∑
j=1

[
∥I − µω (1− ω)D1,jAj∥2 + µω (1− ω)∥D1,j−1∥2∥Bj−1∥2

] ∥∥∥Ỹj (l)∥∥∥
2

≤
γ∑

j=1

[
∥I − µω (1− ω)D1,jAj∥2 + µω (1− ω)∥D1,j−1∥2∥Bj−1∥2

] γ∑
j=1

∥∥∥Ỹj (l)∥∥∥
2
.

(4.7)

Let

p =

γ∑
j=1

[
∥I − µω (1− ω)D1,jAj∥2 + µω (1− ω)∥D1,j−1∥2∥Bj−1∥2

]
,

then (4.7) can be written as

γ∑
j=1

∥∥∥˜̂Y j(l)
∥∥∥
2
≤ p

γ∑
j=1

∥∥∥Ỹj (l)∥∥∥
2
. (4.8)

Below we construct a non-negative function Z(l) as follows

Z (l) =

γ∑
j=1

∥∥∥Ỹj (l)∥∥∥
2
,

which together with (4.6) and (4.8) yields that

Z (l + 1)

=

γ∑
j=1

∥∥∥Ỹj (l + 1)
∥∥∥
2
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≤
γ∑

j=1

(1− ω)∥I − µωD1,jAj∥2
∥∥∥Ỹj (l)∥∥∥

2

+

γ∑
j=1

µω(1− ω)∥Aj−1∥2∥D2,j−1∥2
∥∥∥˜̂Y j−1(l)

∥∥∥
2

+

γ∑
j=1

ω∥I − µ(1− ω)Bj−1D2,j−1∥2
∥∥∥˜̂Y j(l)

∥∥∥
2

+

γ∑
j=1

µω(1− ω)∥D1,j∥2∥Bj∥2
∥∥∥Ỹj+1 (l)

∥∥∥
2

=

γ∑
j=1

(1− ω)∥I − µωD1,jAj∥2
∥∥∥Ỹj (l)∥∥∥

2

+

γ∑
j=1

µω(1− ω)∥D1,j−1∥2∥Bj−1∥2
∥∥∥Ỹj (l)∥∥∥

2

+

γ∑
j=1

ω∥I − µ(1− ω)Bj−1D2,j−1∥2
∥∥∥˜̂Y j(l)

∥∥∥
2

+

γ∑
j=1

µω(1− ω)∥Aj∥2∥D2,j∥2
∥∥∥˜̂Y j(l)

∥∥∥
2

= (1− ω)

γ∑
j=1

(
∥I − µωD1,jAj∥2 + µω∥D1,j−1∥2∥Bj−1∥2

) ∥∥∥Ỹj (l)∥∥∥
2

+ ω

γ∑
j=1

[
∥I − µ(1− ω)Bj−1D2,j−1∥2 + µ(1− ω)∥Aj∥2∥D2,j∥2

] ∥∥∥ ˜̂Y j(l)
∥∥∥
2

≤ (1− ω)

γ∑
j=1

(
∥I − µωD1,jAj∥2 + µω∥D1,j−1∥2∥Bj−1∥2

) γ∑
j=1

∥∥∥Ỹj (l)∥∥∥
2

+ ω

γ∑
j=1

[
∥I − µ(1− ω)Bj−1D2,j−1∥2 + µ(1− ω)∥Aj∥2∥D2,j∥2

] γ∑
j=1

∥∥∥˜̂Y j(l)
∥∥∥
2

≤ (1− ω)

γ∑
j=1

(
∥I − µωD1,jAj∥2 + µω∥D1,j−1∥2∥Bj−1∥2

) γ∑
j=1

∥∥∥Ỹj (l)∥∥∥
2

+ ω

γ∑
j=1

[
∥I − µ(1− ω)Bj−1D2,j−1∥2 + µ(1− ω)∥Aj∥2∥D2,j∥2

]
p

γ∑
j=1

∥∥∥Ỹj (l)∥∥∥
2

=

(1− ω)

γ∑
j=1

(
∥I − µωD1,jAj∥2 + µω∥D1,j−1∥2∥Bj−1∥2

)

+ω

γ∑
j=1

[
∥I − µ(1− ω)Bj−1D2,j−1∥2 + µ(1− ω)∥Aj∥2∥D2,j∥2

]
p


γ∑

j=1

∥∥∥Ỹj (l)∥∥∥
2
.

(4.9)
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Let

Q = (1− ω)

γ∑
j=1

(
∥I − µωD1,jAj∥2 + µω∥D1,j−1∥2∥Bj−1∥2

)
+ ω

γ∑
j=1

[
∥I − µ(1− ω)Bj−1D2,j−1∥2 + µ(1− ω)∥Aj∥2∥D2,j∥2

]
p. (4.10)

Then (4.9) can be written as

Z (l + 1) ≤ QZ (l) ,

which leads to

Z (l + 1) ≤ QZ (l) ≤ Q2Z (l − 1) ≤ · · · ≤ Ql+1Z (0) .

Thus if Q < 1, then it holds that

lim
l→+∞

γ∑
j=1

∥∥∥Ỹj (l + 1)
∥∥∥
2
= 0,

and therefore lim
l→+∞

Ỹj(l + 1) = 0 (j = 1, · · · , γ), i.e.,

lim
l→+∞

Yj (l + 1) = Y ∗
j , j = 1, 2, · · · , γ.

The proof of this theorem is completed.

5. The MJGI algorithm for the GDTPS matrix
equations

In this section, we consider the iterative solution of the following generalized DTPS
(GDTPS) matrix equations

p∑
s=1

Aj,sYjBj,s +

q∑
v=1

Ej,vYj+1Fj,v = Cj , j = 1, 2, · · · , γ, (5.1)

where the known matrices Aj,s, Ej,v ∈ Rm×m, Bj,s, Fj,v ∈ Rn×n, Cj ∈ Rm×n and
the unknown matrices Yj ∈ Rm×n are periodic with period γ, i.e., Aj+γ,s =
Aj,s, Bj+γ,s = Bj,s, Ej+γ,v = Ej,v, Fj+γ,v = Fj,v, Cj+γ = Cj and Yj+γ = Yj .

First of all, we split the system matrices Aj,s, Bj,s, Ej,v, Fj,v (j = 1, . . . , γ, s =
1, . . . , p, v = 1, . . . , q) of the GDTPS matrix equation (5.1) into the following forms:

Aj,s = D
(1)
j,s +R

(1)
j,s ,

Bj,s = D
(2)
j,s +R

(2)
j,s ,

Ej,v = D
(3)
j,v +R

(3)
j,v ,

Fj,v = D
(4)
j,v +R

(4)
j,v ,
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where D
(1)
j,s , D

(2)
j,s , D

(3)
j,v , D

(4)
j,v are the diagonal parts of Aj,s, Bj,s, Ej,v, Fj,v, respec-

tively. In [31], Wang and Song also extended the JGI algorithm to solve the GDTPS
matrix equations by replacing the coefficient matrices by their diagonal parts. Be-
fore developing a new algorithm for the GDTPS matrix equations, we review the
JGI algorithm proposed in [31] for the GDTPS matrix equations as follows.

Algorithm 5.1. The JGI algorithm for the GDTPS matrix equations (5.1) [31]:

Step 1. Input matrices Aj,s, Ej,v ∈ Rm×m, Bj,s, Fj,v ∈ Rn×n, Cj ∈ Rm×n for
j = 1, . . . , γ, s = 1, . . . , p, v = 1, . . . , q, and two constants µ, η > 0. Choose the
initial matrices Yj (0) ∈ Rm×n (j = 1, . . . , γ), and set l = 0;

Step 2. Take Yj+γ (0) = Yj (0) , Aj+γ,s = Aj,s, Bj+γ,s = Bj,s, Ej+γ,v = Ej,v, Fj+γ,v

= Fj,v, Cj+γ = Cj , D
(1)
j+γ,s = D

(1)
j,s , D

(2)
j+γ,s = D

(2)
j,s , D

(3)
j+γ,v = D

(3)
j,v and D

(4)
j+γ,v =

D
(4)
j,v ;

Step 3. If ξl =

√√√√√ γ∑
j=1

∥Cj−
p∑

s=1
Aj,sYj(l)Bj,s−

q∑
v=1

Ej,vYj+1(l)Fj,v∥2

γ∑
j=1

∥Cj−
p∑

s=1
Aj,sYj(0)Bj,s−

q∑
v=1

Ej,vYj+1(0)Fj,v∥2

< η, then stop; other-

wise, go to Step 4;

Step 4. For l = 0, 1, 2, . . . and j = 1, . . . , γ, calculate

Y1,j (l + 1)

= Yj (l) + µ

p∑
s=1

D
(1)
j,s

[
Cj −

(
p∑

k=1

Aj,kYj (l)Bj,k +

q∑
t=1

Ej,tYj+1 (l)Fj,t

)]
D

(2)
j,s ,

Y2,j (l + 1)

= Yj (l) + µ

q∑
v=1

D
(3)
j−1,v [Cj−1

−

(
p∑

k=1

Aj−1,kYj−1 (l)Bj−1,k +

q∑
t=1

Ej−1,tYj (l)Fj−1,t

)]
D

(4)
j−1,v,

Yj (l + 1) =
Y1,j (l + 1) + Y2,j (l + 1)

2
,

Yj+γ (l + 1) = Yj (l + 1) .

Step 5. Set l := l + 1 and return to Step 3.

In the following, we apply the update strategy to Algorithm 5.1 and then propose
the modified Jacobi gradient based iterative (MJGI) algorithm for the GDTPS
matrix equations. The details are presented as follows.

It can be observed that Y1,j (l + 1) is computed by Yj (l) and Yj+1 (l) (j =
1, . . . , γ). Then for j = γ, we can calculate Y1,γ (l + 1) by Yγ (l) and Yγ+1 (l) =
Y1 (l). Note that when we compute Y1,γ (l + 1), the matrix Y1 (l + 1) has been
determined. To improve the convergence rate of the JGI algorithm, motivated
by the ideas of the FGI algorithm in [19] and the Gauss-Seidel iteration method,
we replace Y1 (l) by the latest information Y1 (l + 1) to compute Y1,γ (l + 1). In
addition, we see that Y2,j (l + 1) are computed by Yj−1 (l) and Yj (l) (j = 1, . . . , γ).
Also, for j = 2, 3, · · · , γ, when we compute Y2,γ (l + 1), the matrices Yj−1 (l + 1)
have been obtained. Similar to the above analysis, in second line of Step 4 of the



EJGI and MJGI algorithms for matrix equations 2067

JGI algorithm, Yj−1 (l) are replaced by Yj−1 (l + 1) to compute Y2,j (l + 1). By
summarizing the above discussions, we can establish the following modified JGI
(MJGI) algorithm for the GDTPS matrix equations (5.1).

Algorithm 5.2. The modified Jacobi gradient based iterative (MJGI) algorithm
for the GDTPS matrix equations (5.1):

Step 1. Input matrices Aj,s, Ej,v ∈ Rm×m, Bj,s, Fj,t ∈ Rn×n, Cj ∈ Rm×n for
j = 1, . . . , γ, s = 1, . . . , p, v = 1, . . . , q, and two constants µ, η > 0. Choose the
initial matrices Yj (0) ∈ Rm×n (j = 1, . . . , γ), and set l = 0;

Step 2. Take Yj+γ (0) = Yj (0) , Aj+γ,s = Aj,s, Bj+γ,s = Bj,s, Ej+γ,v = Ej,v, Fj+γ,v

= Fj,v, Cj+γ = Cj , D
(1)
j+γ,s = D

(1)
j,s , D

(2)
j+γ,s = D

(2)
j,s , D

(3)
j+γ,v = D

(3)
j,v and D

(4)
j+γ,v =

D
(4)
j,v ;

Step 3. If ξl =

√√√√√ γ∑
j=1

∥Cj−
p∑

s=1
Aj,sYj(l)Bj,s−

q∑
v=1

Ej,vYj+1(l)Fj,v∥2

γ∑
j=1

∥Cj−
p∑

s=1
Aj,sYj(0)Bj,s−

q∑
v=1

Ej,vYj+1(0)Fj,v∥2

< η, then stop; other-

wise, go to Step 4;

Step 4. For l = 0, 1, 2, . . . and j = 1, . . . , γ, calculate

Y1,j (l + 1)

=



Yj (l) + µ

p∑
s=1

D
(1)
j,s

[
Cj −

(
p∑

k=1

Aj,kYj (l)Bj,k +

q∑
t=1

Ej,tYj+1 (l)Fj,t

)]
D

(2)
j,s ,

j = 1, 2, · · · , γ − 1,

Yj (l) + µ

p∑
s=1

D
(1)
j,s

[
Cj −

(
p∑

k=1

Aj,kYj (l)Bj,k+

q∑
t=1

Ej,tYj+1 (l + 1)Fj,t

)]
D

(2)
j,s ,

j = γ,

Y2,j (l + 1)

=



Yj (l) + µ

q∑
v=1

D
(3)
j−1,v

×

[
Cj−1−

(
p∑

k=1

Aj−1,kYj−1 (l)Bj−1,k+

q∑
t=1

Ej−1,tYj (l)Fj−1,t

)]
D

(4)
j−1,v, j=1,

Yj (l) + µ

q∑
v=1

D
(3)
j−1,v

×

[
Cj−1 −

(
p∑

k=1

Aj−1,kYj−1 (l + 1)Bj−1,k +

q∑
t=1

Ej−1,tYj (l)Fj−1,t

)]
D

(4)
j−1,v,

j = 2, 3, · · · , γ,

Yj (l + 1) =
Y1,j (l + 1) + Y2,j (l + 1)

2
, j = 1, 2, · · · , γ,

Yj+γ (l + 1) = Yj (l + 1) , j = 1, 2, · · · , γ;
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Step 5. Set l := l + 1 and return to Step 3.

Below we derive the necessary and sufficient condition for the convergence of the
MJGI algorithm by utilizing the properties of the vector stretching operator and
the Kronecker product of two matrices. To this end, we define the following two
matrices:

L =



0 0 0 · · · 0 0

c1 0 0 · · · 0 0

0 c2 0 · · · 0 0

...
...

. . .
. . .

...
...

0 0 0 cγ−2 0 0

bγ 0 0 0 cγ−1 0


, H =



a1 b1 0 0 · · · cγ

0 a2 b2 0 · · · 0

0 0 a3 b3 · · · 0

...
...

...
. . .

. . .
...

0 0 0 · · · aγ−1 bγ−1

0 0 0 0 · · · aγ


(5.2)

with

aj =

p∑
s=1

p∑
k=1

D
(2)
j,sB

T
j,k ⊗D

(1)
j,sAj,k +

q∑
v=1

q∑
t=1

D
(4)
j−1,vF

T
j−1,t ⊗D

(3)
j−1,vEj−1,t,

bj =

p∑
s=1

q∑
t=1

(
D

(2)
j,sF

T
j,t ⊗D

(1)
j,sEj,t

)
,

cj =

q∑
v=1

p∑
k=1

(
D

(4)
j,vB

T
j,k ⊗D

(3)
j,vAj,k

)
, j = 1, . . . , γ.

Theorem 5.1. Assume that the GDTPS matrix equation (5.1) is consistent, i.e.,
the solution of the GDTPS matrix equation (5.1) exists. Then the iterative sequences
{Yj(l)}(j = 1, . . . , γ) generated by Algorithm 5.2 converge to the unique solution
Y ∗ =

(
Y ∗
1 , Y

∗
2 , · · · , Y ∗

γ

)
for any initial matrices Yj(0) (j = 1, . . . , γ) if and only if

the parameter µ satisfies

ρ

[(
I +

µ

2
L
)−1 (

I − µ

2
H
)]

< 1.

Proof. By assumptions, we can prove that the solution of the GDTPS matrix
equation (5.1) is unique by applying the similar method utilized in Theorem 3.2.
Let Y ∗ =

(
Y ∗
1 , Y

∗
2 , · · · , Y ∗

γ

)
be the unique solution of the GDTPS matrix equation

(5.1). According to (3.36), we have

Ỹ1,j(l) = Y1,j (l)−Y ∗
j , Ỹ2,j (l) = Y2,j (l)−Y ∗

j , Ỹj (l) = Yj (l)−Y ∗
j , j = 1, . . . , γ. (5.3)

Based on Algorithm 5.2, we distinguish the following cases to discuss:

• When j = 1, it has

Y1,1 (l + 1)

= Y1 (l) + µ

p∑
s=1

D
(1)
1,s

[
C1 −

(
p∑

k=1

A1,kY1 (l)B1,k +

q∑
t=1

E1,tY2 (l)F1,t

)]
D

(2)
1,s ,

(5.4)
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Y2,1 (l + 1)

= Y1 (l) + µ

q∑
v=1

D(3)
γ,v

[
Cγ −

(
p∑

k=1

Aγ,kYγ (l)Bγ,k+

q∑
t=1

Eγ,tY1 (l)Fγ,t

)]
D(4)

γ,v,

(5.5)

Y1 (l + 1) =
Y1,1 (l + 1) + Y2,1 (l + 1)

2
. (5.6)

Then it follows from (5.3)–(5.6) that

Ỹ1 (l + 1)

=
Ỹ1,1 (l + 1) + Ỹ2,1 (l + 1)

2

= Ỹ1 (l)−
µ

2

[
p∑

s=1

D
(1)
1,s

(
p∑

k=1

A1,kỸ1 (l)B1,k +

q∑
t=1

E1,tỸ2 (l)F1,t

)
D

(2)
1,s

+

q∑
v=1

D(3)
γ,v

(
p∑

k=1

Aγ,kỸγ (l)Bγ,k +

q∑
t=1

Eγ,tỸ1 (l)Fγ,t

)
D(4)

γ,v

]

= Ỹ1 (l)−
µ

2

p∑
s=1

p∑
k=1

D
(1)
1,sA1,kỸ1 (l)B1,kD

(2)
1,s−

µ

2

p∑
s=1

q∑
t=1

D
(1)
1,sE1,tỸ2 (l)F1,tD

(2)
1,s

− µ

2

q∑
v=1

p∑
k=1

D(3)
γ,vAγ,kỸγ (l)Bγ,kD

(4)
γ,v−

µ

2

q∑
v=1

q∑
t=1

D(3)
γ,vEγ,tỸ1 (l)Fγ,tD

(4)
γ,v.

(5.7)

By taking vector straightening operator on both sides of (5.7), we get

vec
[
Ỹ1 (l + 1)

]
=

[
Imn − µ

2

(
p∑

s=1

p∑
k=1

D
(2)
1,sB

T
1,k ⊗D

(1)
1,sA1,k +

q∑
v=1

q∑
t=1

D(4)
γ,vF

T
γ,t ⊗D(3)

γ,vEγ,t

)]

× vec
[
Ỹ1 (l)

]
− µ

2

p∑
s=1

q∑
t=1

(
D

(2)
1,sF

T
1,t ⊗D

(1)
1,sE1,t

)
vec
[
Ỹ2 (l)

]
− µ

2

q∑
v=1

p∑
k=1

(
D(4)

γ,vB
T
γ,k ⊗D(3)

γ,vAγ,k

)
vec
[
Ỹγ (l)

]
, (5.8)

in view of Lemma 2.1.

• When j = 2, · · · , γ − 1, it holds that

Y1,j (l + 1)

= Yj (l) + µ

p∑
s=1

D
(1)
j,s

×

[
Cj −

(
p∑

k=1

Aj,kYj (l)Bj,k +

q∑
t=1

Ej,tYj+1 (l)Fj,t

)]
D

(2)
j,s , (5.9)

Y2,j (l + 1)
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= Yj (l) + µ

q∑
v=1

D
(3)
j−1,v

×

[
Cj−1−

(
p∑

k=1

Aj−1,kYj−1 (l+1)Bj−1,k+

q∑
t=1

Ej−1,tYj (l)Fj−1,t

)]
D

(4)
j−1,v,

(5.10)

Yj (l + 1) =
Y1,j (l + 1) + Y2,j (l + 1)

2
. (5.11)

Then from (5.3) and (5.9)–(5.11), straightforward computations show that

Ỹj (l + 1)

=
Ỹ1,j (l + 1) + Ỹ2,j (l + 1)

2

= Ỹj (l)−
µ

2

[
p∑

s=1

D
(1)
j,s

(
p∑

k=1

Aj,kỸj (l)Bj,k +

q∑
t=1

Ej,tỸj+1 (l)Fj,t

)
D

(2)
j,s

+

q∑
v=1

D
(3)
j−1,v

(
p∑

k=1

Aj−1,kỸj−1 (l + 1)Bj−1,k +

q∑
t=1

Ej−1,tỸj (l)Fj−1,t

)
×D(4)

j−1,v

]
= Ỹj (l)−

µ

2

p∑
s=1

p∑
k=1

D
(1)
j,sAj,kỸj (l)Bj,kD

(2)
j,s

− µ

2

p∑
s=1

q∑
t=1

D
(1)
j,sEj,tỸj+1 (l)Fj,tD

(2)
j,s

− µ

2

q∑
v=1

p∑
k=1

D
(3)
j−1,vAj−1,kỸj−1 (l + 1)Bj−1,kD

(4)
j−1,v

− µ

2

q∑
v=1

q∑
t=1

D
(3)
j−1,vEj−1,tỸj (l)Fj−1,tD

(4)
j−1,v. (5.12)

Using vector straightening operator on both sides of relation (5.12) and ap-
plying Lemma 2.1 yield that

vec
[
Ỹj (l + 1)

]
=

[
I−µ

2

(
p∑

s=1

p∑
k=1

D
(2)
j,sB

T
j,k⊗D

(1)
j,sAj,k+

q∑
v=1

q∑
v=1

D
(4)
j−1,vF

T
j−1,t⊗D

(3)
j−1,vEj−1,t

)]

× vec
[
Ỹj (l)

]
− µ

2

p∑
s=1

q∑
t=1

(
D

(2)
j,sF

T
j,t ⊗D

(1)
j,sEj,t

)
vec
[
Ỹj+1 (l)

]
− µ

2

q∑
v=1

p∑
k=1

(
D

(4)
j−1,vB

T
j−1,k ⊗D

(3)
j−1,vAj−1,k

)
vec
[
Ỹj−1 (l + 1)

]
,

which is equivalent to

µ

2

q∑
v=1

p∑
k=1

(
D

(4)
j−1,vB

T
j−1,k ⊗D

(3)
j−1,vAj−1,k

)
vec
[
Ỹj−1 (l + 1)

]
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+ vec
[
Ỹj (l + 1)

]
=

[
I−µ

2

(
p∑

s=1

p∑
k=1

D
(2)
j,sB

T
j,k⊗D

(1)
j,sAj,k+

q∑
v=1

q∑
t=1

D
(4)
j−1,vF

T
j−1,t⊗D

(3)
j−1,vEj−1,t

)]

× vec
[
Ỹj (l)

]
− µ

2

p∑
s=1

q∑
t=1

(
D

(2)
j,sF

T
j,t ⊗D

(1)
j,sEj,t

)
vec
[
Ỹj+1 (l)

]
,

j = 2, . . . , γ − 1. (5.13)

• When j = γ, it follows that

Y1,γ (l + 1)

=Yγ (l) + µ

p∑
s=1

D(1)
γ,s

×

[
Cγ −

(
p∑

k=1

Aγ,kYγ (l)Bγ,k +

q∑
t=1

Eγ,tY1 (l + 1)Fγ,t

)]
D(2)

γ,s, (5.14)

Y2,γ (l + 1)

=Yγ (l) + µ

q∑
v=1

D
(3)
γ−1,v [Cγ−1

−

(
p∑

k=1

Aγ−1,kYγ−1 (l + 1)Bγ−1,k +

q∑
t=1

Eγ−1,tYγ (l)Fγ−1,t

)]
D

(4)
γ−1,v,

(5.15)

Yγ (l + 1) =
Y1,γ (l + 1) + Y2,γ (l + 1)

2
. (5.16)

Then the combination of (5.3) and (5.14)–(5.16) results in

Ỹγ (l + 1)

=
Ỹ1,γ (l + 1) + Ỹ2,γ (l + 1)

2

= Ỹγ (l)−
µ

2

[
p∑

s=1

D(1)
γ,s

(
p∑

k=1

Aγ,kỸγ (l)Bγ,k +

q∑
t=1

Eγ,tỸ1 (l + 1)Fγ,t

)
D(2)

γ,s

+

q∑
v=1

D
(3)
γ−1,v

(
p∑

k=1

Aγ−1,kỸγ−1 (l + 1)Bγ−1,k +

q∑
t=1

Eγ−1,tỸγ (l)Fγ−1,t

)

×D(4)
γ−1,v

]
= Ỹγ (l)−

µ

2

p∑
s=1

p∑
k=1

D(1)
γ,sAγ,kỸγ (l)Bγ,kD

(2)
γ,s

− µ

2

p∑
s=1

q∑
t=1

D(1)
γ,sEγ,tỸ1 (l + 1)Fγ,tD

(2)
γ,s
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− µ

2

q∑
v=1

p∑
k=1

D
(3)
γ−1,vAγ−1,kỸγ−1 (l + 1)Bγ−1,kD

(4)
γ−1,v

− µ

2

q∑
v=1

q∑
t=1

D
(3)
γ−1,vEγ−1,tỸγ (l)Fγ−1,tD

(4)
γ−1,v. (5.17)

By applying the vector stretching function to (5.17) and according to Lemma
2.1, it has

vec
[
Ỹγ (l + 1)

]
=

[
I − µ

2

(
p∑

s=1

p∑
k=1

D(2)
γ,sB

T
γ,k ⊗D(1)

γ,sAγ,k

+

q∑
v=1

q∑
t=1

D
(4)
γ−1,vF

T
γ−1,t ⊗D

(3)
γ−1,vEγ−1,t

)]

× vec
[
Ỹγ (l)

]
− µ

2

p∑
s=1

q∑
t=1

(
D(2)

γ,sF
T
γ,t ⊗D(1)

γ,sEγ,t

)
vec
[
Ỹ1 (l + 1)

]
− µ

2

q∑
v=1

p∑
k=1

(
D

(4)
γ−1,vB

T
γ−1,k ⊗D

(3)
γ−1,vAγ−1,k

)
vec
[
Ỹγ−1 (l + 1)

]
, (5.18)

which can be rewritten into the following equivalent form

µ

2

p∑
s=1

q∑
t=1

(
D(2)

γ,sF
T
γ,t ⊗D(1)

γ,sEγ,t

)
vec
[
Ỹ1 (l + 1)

]
+
µ

2

q∑
v=1

p∑
k=1

(
D

(4)
γ−1,vB

T
γ−1,k ⊗D

(3)
γ−1,vAγ−1,k

)
vec
[
Ỹγ−1 (l + 1)

]
+ vec

[
Ỹγ (l + 1)

]
=

[
I − µ

2

(
p∑

s=1

p∑
k=1

D(2)
γ,sB

T
γ,k ⊗D(1)

γ,sAγ,k

+

q∑
v=1

q∑
t=1

D
(4)
γ−1,vF

T
γ−1,t ⊗D

(3)
γ−1,vEγ−1,t

)]
vec
[
Ỹγ (l)

]
. (5.19)

In view of (5.8), (5.13) and (5.19), we deduce that

(
I +

µ

2
L
)



vec
[
Ỹ1 (l + 1)

]
vec
[
Ỹ2 (l + 1)

]
...

vec
[
Ỹγ−1 (l + 1)

]
vec
[
Ỹγ (l + 1)

]


=
(
I − µ

2
H
)



vec
[
Ỹ1 (l)

]
vec
[
Ỹ2 (l)

]
...

vec
[
Ỹγ−1 (l)

]
vec
[
Ỹγ (l)

]


, (5.20)
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where the matrices L and H are defined as in (5.2). It is evident that I + µ
2L is a

nonsingular matrix, then it follows from (5.20) that

vec
[
Ỹ1 (l + 1)

]
vec
[
Ỹ2 (l + 1)

]
...

vec
[
Ỹγ−1 (l + 1)

]
vec
[
Ỹγ (l + 1)

]


=
(
I +

µ

2
L
)−1 (

I − µ

2
H
)



vec
[
Ỹ1 (l)

]
vec
[
Ỹ2 (l)

]
...

vec
[
Ỹγ−1 (l)

]
vec
[
Ỹγ (l)

]


, (5.21)

and the matrix
(
I + µ

2L
)−1 (

I − µ
2H
)
is the iteration matrix of the MJGI algorithm.

Therefore, the MJGI algorithm is convergent if and only if the parameter µ satisfies

ρ

[(
I +

µ

2
L
)−1 (

I − µ

2
H
)]

< 1,

which completes the proof of this theorem.

6. Numerical experiments

This section provides several numerical examples to validate the effectiveness and
advantages of the proposed algorithms, and compare their numerical performances
with those of the GI, JGI and AJGI ones, with respect to the number of iteration
steps (IT) and the elapsed time in seconds (CPU). All numerical experiments are
computed in MATLAB (version R2018b) on a personal computer with AMD Ryzen
7 5800H, CPU 3.20 GHz and 16.0 GB memory.

Example 6.1. Consider the discrete-time periodic Sylvester (DTPS) matrix equa-
tions

AjYj + Yj+1Bj = Cj , j = 1, 2, 3,

with the following coefficient matrices:

A1=

 2.7 0.9

−1.1 2.3

⊗ I200 + I200 ⊗

 2.7 0.9

−1.1 2.3

 ,
A2=

 4.2 1.3

−1.9 3.8

⊗ I200 + I200 ⊗

 4.2 1.3

−1.9 3.8

 ,
A3=

 6.1 3.8

−3.1 6.3

⊗ I200 + I200 ⊗

 6.1 3.8

−3.1 6.3

 ,
B1=

 1.5 −0.2

0.4 1.0

⊗ I200 + I200 ⊗

 1.5 −0.2

0.4 1.0

 ,
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B2=

2.1 −0.4

0.4 2.0

⊗ I200 + I200 ⊗

2.1 −0.4

0.4 2.0

 ,
B3=

3.1 −0.6

0.7 3.5

⊗ I200 + I200 ⊗

3.1 −0.6

0.7 3.5

 ,
C1=

13.2 10.6

0.6 8.4

⊗ I200+I200 ⊗

13.2 10.6

0.6 8.4

 ,
C2=

26.4 21.2

1.2 16.8

⊗ I200+I200 ⊗

26.4 21.2

1.2 16.8

 ,
C3=

38.6 32.1

1.6 24.2

⊗ I200 + I200 ⊗

38.6 32.1

1.6 24.2

 .
In our computations, the initial matrices are taken to be

Yj(0) = 10−6 × I400, j = 1, 2, 3,

and all iterations are terminated once

RES =

√√√√√√
3∑

j=1

∥Cj −AjYj (l)− Yj+1 (l)Bj∥2

∥C1∥2 + ∥C2∥2 + ∥C3∥2
≤ η

with η being a positive number, or l reaches the maximal number of iteration steps
lmax = 10000.

For all tested algorithms, their parameters are the experimentally found optimal
ones which minimize their IT. And the experimental optimal parameters, IT, CPU
time and RES of the GI, JGI, AJGI and EJGI algorithms for Example 6.1 with
respect to five different values of η are listed in Table 1. Comparing the numerical
results of Table 1, we see that all tested algorithms can successfully compute ap-
proximate solutions satisfying the prescribed stopping criterion, and their IT and
CPU time increase gradually with decreasing of η. Meanwhile, the proposed EJGI
algorithm performs better than the GI, JGI and AJGI ones in terms of both the IT
and CPU time. The IT and CPU time of the EJGI algorithms are less than half of
those for the GI one, and are almost one half of those of the JGI one. Additionally,
the proposed EJGI algorithm is more stable than the other ones in view of IT, due
to the fact that the variational range of the IT of the former one is smaller than
those of the latter ones. Finally, the numerical results in Table 1 show that the
new updated technique applied in the EJGI algorithm can improve the convergence
speed of the AJGI and JGI ones effectively, and the EJGI algorithm has higher
computational efficiency than the AJGI and JGI ones.

To better show the superiority of the proposed EJGI algorithm, RES(log10) of
four tested algorithms with respect to IT are depicted in Figure 1 for four different
values of η. It follows from Figure 1 that all tested algorithms are convergent, and
the EJGI algorithm has advantages over the other ones in view of IT, because it
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requires less IT to achieve the termination criterion. Additionally, the advantage
of the EJGI algorithm becomes more pronounced as the value of η decreases. This
further confirms that the superiority of the EJGI algorithm for solving the discrete-
time periodic Sylvester matrix equations. These conclusions are in accordance with
the results of Table 1, and indicate that the convergent speed of the EJGI algorithm
is the fastest among the tested algorithms.

Table 1. IT, CPU and RES of four GI-like algorithms for Example 6.1 with five values of η.

Algorithm η

10−11 10−12 10−13 10−14 10−15

GI IT 193 213 233 254 274

µ = 1.32e− 02 CPU 4.2756 4.7080 5.1694 5.6498 6.1270

RES 9.7007e-12 9.8186e-13 9.9392e-14 8.9720e-15 9.0839e-16

JGI IT 167 184 201 218 235

µ = 1.37e− 02 CPU 3.6882 3.9536 4.3340 4.6930 5.1178

RES 9.6503e-12 9.5642e-13 9.3266e-14 9.0767e-15 9.0251e-16

AJGI IT 94 103 112 122 131

µ = 5.4e− 02 CPU 2.0608 2.2297 2.4185 2.6734 2.8348

ω = 1
4 RES 8.9108e-12 9.1837e-13 9.5810e-14 7.9475e-15 8.4493e-16

EJGI IT 84 91 99 106 114

µ = 9.1e− 02 CPU 1.7813 1.9564 2.1095 2.3178 2.4503

ω = 1
6 RES 9.3393e-12 8.8473e-13 7.7208e-14 9.6760e-15 9.2025e-16

Example 6.2. Consider the discrete-time periodic Sylvester (DTPS) matrix equa-
tions

AjYj + Yj+1Bj = Cj , j = 1, 2, 3,

where the coefficient matrices are as follows:

A1 = I2 ⊗G1 + 0.022E2 ⊗ triu(ones(5, 5)) + 0.015E1 ⊗ tril(ones(5, 5)),

A2 = I2 ⊗G2 + 0.013E2 ⊗ triu(ones(5, 5)) + 0.020E1 ⊗ tril(ones(5, 5)),

A3 = I2 ⊗G3 + 0.016E2 ⊗ tril(ones(5, 5)) + 0.013E1 ⊗ triu(ones(5, 5)),

B1 = I2 ⊗H1 + 0.012E2 ⊗ tril(ones(5, 5)) + 0.016E1 ⊗ triu(ones(5, 5)),

B2 = I2 ⊗H2 + 0.011E2 ⊗ triu(ones(5, 5)) + 0.021E1 ⊗ tril(ones(5, 5)),

B3 = I2 ⊗H3 + 0.014E2 ⊗ tril(ones(5, 5)) + 0.015E1 ⊗ triu(ones(5, 5)),

C1 = I2 ⊗ T1 + 0.52E2 ⊗ triu(ones(5, 5)) + 0.31E1 ⊗ tril(ones(5, 5)),

C2 = I2 ⊗ T2 + 0.29E2 ⊗ triu(ones(5, 5)) + 0.34E1 ⊗ tril(ones(5, 5)),

C3 = I2 ⊗ T3 + 0.54E2 ⊗ tril(ones(5, 5)) + 0.41E1 ⊗ tril(ones(5, 5)),
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Figure 1. Comparisons for the convergence curves of four GI-like algorithms for Example 6.1.

with

G1 =



3.0725 0.0975 0.1576 0.1419 0.6557

0.9058 1.8103 0.9706 0.4218 0.0357

0.1270 0.5469 2.7743 0.9157 0.8491

0.9134 0.9575 0.4854 4.0874 0.9340

0.6324 0.9649 0.8003 0.9595 2.9334


,

G2 =



2.1122 0.3517 0.2858 0.0759 0.1299

0.1966 2.6938 0.7572 0.0540 0.5688

0.2511 0.5853 2.5827 0.5308 0.4694

0.6160 0.5497 0.3804 2.4573 0.0119

0.4733 0.9172 0.5678 0.9340 2.7544


,
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G3 =



−7.4617 0.9200 0.1939 0.5488 0.6273

0.0199 −1.7766 0.9048 0.9316 0.6991

0.4199 0.3678 −7.2374 0.3352 0.3972

0.7597 0.6208 0.6318 −6.4845 0.4136

0.7939 0.7313 −0.2344 0.3919 −2.4036


,

H1 =



0.1529 0.7621 0.6154 0.4057 0.0579

−0.2311 0.1033 0.7919 0.9005 −0.3529

0.0068 0.0185 0.0470 −0.0169 0.5132

0.2860 0.0214 0.2382 −1.0898 −0.0099

0.8913 0.4447 0.1763 0.8936 1.0085


,

H2 =



0.0962 0.6979 0 0 0.0010

0.6822 0.3353 0.3998 0 0

0.1028 0.8600 0.0740 0.2897 0

0.5417 0.8537 0.6449 −0.5403 0.5681

0.1509 0.4936 −0.8180 0.5341 −0.3587


,

H3 =



0.2536 0.1259 0 0 0

0.2235 0.1233 0.1798 0 0

0.5155 0.6604 0.0513 −0.0592 0

0.3340 0.5298 0.6808 0.1317 0.0150

−0.4329 0.5405 0.4611 0.0503 0.0431


,

T1 =



−5.7240 0.4984 0.7513 0.9593 0.8407

0.6797 −5.0403 0.2551 0.5472 0.2543

0.6551 0.3404 −5.4940 0.1386 0.8143

0.1626 0.5853 0.6991 −5.8507 0.2435

0.1190 0.2238 0.8909 0.2575 −5.0707


,

T2 =



−5.7240 0.4984 0.7513 0.9593 0.8407

0.6797 −5.0403 0.2551 0.5472 0.2543

0.6551 0.3404 −5.4940 0.1386 0.8143

0.1626 0.5853 0.6991 −5.8507 0.2435

0.1190 0.2238 0.8909 0.2575 −5.0707


,
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T3 =



−5.7240 0.4984 0.7513 0.9593 0.8407

0.6797 −5.0403 0.2551 0.5472 0.2543

0.6551 0.3404 −5.4940 0.1386 0.8143

0.1626 0.5853 0.6991 −5.8507 0.2435

0.1190 0.2238 0.8909 0.2575 −5.0707


,

E1 =

0 1

0 0

 , E2 =

0 0

1 0

 .
In this example, we choose the initial matrices to be

Yj(0) = 10−6 × I10, j = 1, 2, 3

and adopt the termination criterion as in Example 6.1, i.e.,

RES =

√√√√√√
3∑

j=1

∥Cj −AjYj (l)− Yj+1 (l)Bj∥2

∥C1∥2 + ∥C2∥2 + ∥C3∥2
≤ η

with η > 0 or l exceeds the prescribed maximal number of iteration steps 10000.
As in Example 6.1, the parameters adopted in the GI, JGI, AJGI and EJGI

algorithms for Example 6.2 are the experimentally found optimal ones, which are
obtained experimentally by minimizing the corresponding iteration steps. In Table
2, we list the parameters, IT, CPU time and RES of the tested algorithms for Ex-
ample 6.2 with five different values of η. According to the numerical results in Table
2, we can conclude some observations: Firstly, all tested algorithms are valid for all
cases. Secondly, the IT of all tested algorithms are increasing with the decreasing
of η. Thirdly, the numerical performances of the JGI and the AJGI algorithms
are comparable, and they outperform the GI one with respect to computational
efficiency. Fourthly, among the tested algorithms, the proposed EJGI algorithm
performs the best in view of IT and CPU time, and the advantage becomes more
pronounced as η decreases. Besides, the IT and CPU time of the EJGI algorithm
are almost one in ten of those for the GI one. Finally, the EJGI algorithm is the
most stable among the tested algorithms, because the variational range of IT of the
EJGI algorithm is the smallest compared with other tested ones. In summary, the
EJGI algorithm has higher computational efficiency than the GI, JGI and AJGI
ones, and applying the new updated technique to the JGI one can ameliorate the
convergence speeds and efficiencies of the GI, JGI and AJGI ones.

In Figure 2, we compare the RES(log10) curves of the GI, JGI, AJGI and EJGI
algorithms in terms of IT with η = 10−13 and η = 10−14. It can be seen from
Figure 2 that the IT of the JGI, AJGI and EJGI algorithms are far less than that
of the GI one. This indicates that the JGI, AJGI and EJGI algorithms have faster
convergence rates than the GI one, which coincides with the results in Table 2. To
further confirm the effectiveness of the proposed EJGI algorithm compared with
the JGI and AJGI ones, the graphs of RES(log10) against number of iterations for
four different values of η are displayed in Figure 3. By observation, we find that
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Table 2. IT, CPU and RES of four GI-like algorithms for Example 6.2 with five values of η.

Algorithm η

10−10 10−11 10−12 10−13 10−14

GI IT 6587 7339 8090 8841 9595

µ = 5.988e− 02 CPU 0.2202 0.2751 0.2821 0.3060 0.3232

RES 9.9984e-11 9.9697e-12 9.9718e-13 9.9795e-14 9.9910e-15

JGI IT 731 813 896 978 1061

µ = 6.82e− 02 CPU 0.0222 0.0333 0.0399 0.0438 0.0344

RES 9.8601e-11 9.9699e-12 9.8119e-13 9.9302e-14 9.7611e-15

AJGI IT 724 806 887 969 1050

µ = 7.565e− 01 CPU 0.0222 0.0320 0.0357 0.0345 0.0342

ω = 1
22 RES 9.9059e-11 9.7627e-12 9.9075e-13 9.7742e-14 9.8805e-15

EJGI IT 682 759 835 912 988

µ = 2.175e− 1 CPU 0.0207 0.0284 0.0279 0.0254 0.0271

ω = 1
1.1 RES 9.8787e-11 9.7136e-12 9.8593e-13 9.7236e-14 9.8030e-15

among these tested algorithms, the EJGI one is the most effective algorithm as
its residual reduces the fastest, and the advantage of the EJGI algorithm becomes
more pronounced as the value of η decreases. This is consistent with the results in
Table 2.

Figure 2. Comparisons for the convergence curves of four GI-like algorithms for Example 6.1 with
η = 10−13 and η = 10−14.

Example 6.3. Consider the generalized discrete-time periodic Sylvester (GDTPS)
matrix equations

2∑
s=1

Aj,sYjBj,s +

2∑
v=1

Ej,vYj+1Fj,v = Cj , j = 1, 2, 3,
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Figure 3. Comparisons for the convergence curves of the JGI, AJGI and EJGI algorithms for Example
6.2.

where the coefficient matrices are as follows

A11 = I20 ⊗G11 + 0.022E2 ⊗ triu(ones(30, 30)) + 0.015E3 ⊗ tril(ones(30, 30)),

A12 = I20 ⊗G12 + 0.012E1 ⊗ triu(ones(30, 30)) + 0.017E4 ⊗ tril(ones(30, 30)),

A21 = I20 ⊗G21 + 0.011E2 ⊗ triu(ones(30, 30)) + 0.021E4 ⊗ tril(ones(30, 30)),

A22 = I20 ⊗G22 + 0.012E1 ⊗ triu(ones(30, 30)) + 0.025E2 ⊗ tril(ones(30, 30)),

A31 = I20 ⊗G31 + 0.031E3 ⊗ triu(ones(30, 30)) + 0.008E4 ⊗ tril(ones(30, 30)),

A32 = I20 ⊗G32 + 0.024E2 ⊗ triu(ones(30, 30)) + 0.013E1 ⊗ tril(ones(30, 30)),

B11 = I20 ⊗H11 + 0.020E4 ⊗ triu(ones(30, 30)) + 0.018E3 ⊗ tril(ones(30, 30)),

B12 = I20 ⊗H12 + 0.032E4 ⊗ triu(ones(30, 30)) + 0.011E1 ⊗ tril(ones(30, 30)),

B21 = I20 ⊗H21 + 0.017E3 ⊗ triu(ones(30, 30)) + 0.025E2 ⊗ tril(ones(30, 30)),

B22 = I20 ⊗H22 + 0.026E3 ⊗ triu(ones(30, 30)) + 0.035E1 ⊗ tril(ones(30, 30)),

B31 = I20 ⊗H31 + 0.032E2 ⊗ triu(ones(30, 30)) + 0.025E4 ⊗ tril(ones(30, 30)),

B32 = I20 ⊗H32 + 0.012E3 ⊗ triu(ones(30, 30)) + 0.033E1 ⊗ tril(ones(30, 30)),
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E11 = T11 ⊗ I20 + 0.012E1 ⊗ triu(ones(30, 30)) + 0.025E2 ⊗ tril(ones(30, 30)),

E12 = T12 ⊗ I20 + 0.032E3 ⊗ triu(ones(30, 30)) + 0.012E4 ⊗ tril(ones(30, 30)),

E21 = T21 ⊗ I20 + 0.022E3 ⊗ triu(ones(30, 30)) + 0.045E1 ⊗ tril(ones(30, 30)),

E22 = T22 ⊗ I20 + 0.023E4 ⊗ triu(ones(30, 30)) + 0.015E2 ⊗ tril(ones(30, 30)),

E31 = T31 ⊗ I20 + 0.019E2 ⊗ triu(ones(30, 30)) + 0.021E4 ⊗ tril(ones(30, 30)),

E32 = T32 ⊗ I20 + 0.021E1 ⊗ triu(ones(30, 30)) + 0.018E3 ⊗ tril(ones(30, 30)),

F11 =W11 ⊗ I20 + 0.023E2 ⊗ triu(ones(30, 30)) + 0.015E1 ⊗ tril(ones(30, 30)),

F12 =W12 ⊗ I20 + 0.012E4 ⊗ triu(ones(30, 30)) + 0.012E3 ⊗ tril(ones(30, 30)),

F21 =W21 ⊗ I20 + 0.017E1 ⊗ triu(ones(30, 30)) + 0.015E3 ⊗ tril(ones(30, 30)),

F22 =W22 ⊗ I20 + 0.013E2 ⊗ triu(ones(30, 30)) + 0.015E4 ⊗ tril(ones(30, 30)),

F31 =W31 ⊗ I20 + 0.029E4 ⊗ triu(ones(30, 30)) + 0.011E2 ⊗ tril(ones(30, 30)),

F32 =W32 ⊗ I20 + 0.011E3 ⊗ triu(ones(30, 30)) + 0.028E1 ⊗ tril(ones(30, 30)),

C1 = I20 ⊗ V1 + V1 ⊗ I20, C2 = I20 ⊗ V2 + V2 ⊗ I20, C3 = I20 ⊗ V3 + V3 ⊗ I20,

with

G11 =


3.2796 0 0

0.9058 0 0.5469

0.1270 0.0975 3.3732

 , G12 =


2.6844 0.0357 0.6787

0.9595 2.3810 0.7577

0.9595 0 0

 ,

G21 =


0 0.0206 0.1140

0.0478 0 0.3962

0.5940 0.8986 −1.0405

 , G22 =


0.1339 −0.5163 −0.1176

−0.1176 1.0520 −0.1478

−0.6505 −0.6618 0.2441

 ,

G31 =


−8 0.0838 0.3524

0.7482 −8.4872 0.8258

0.4 0.9133 −7.9728

 , G32 =


0 0.8001 0

0 3.5764 0

0.2599 0.8 3.6588

 ,

H11 =


1 0 0

0 1 0

0 0 1

 , H12 =


1 0 0

0 1 0

0 0 1

 , H21 =


1 0 0

0 1 0

0 0 1

 , H22 =


1 0 0

0 1 0

0 0 1

 ,

H31 =


1 0 0

0 1 0

0 0 1

 , H32 =


1 0 0

0 0.9 0

0 0 1

 , T11 =


5 0 0

0 5 0

0 0 5

 , T12 =


1 0 0

0 1 0

0 0 1

 ,

T21 =


15 0 0

0 15 0

0 0 15

 , T22 =


1 0 0

0 1 0

0 0 1

 , T31 =


8 0 0

0 8 0

0 4 8

 , T32 =


1 0 0

0 1 0

0 0 1

 ,
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W11 =


0 0.03 0

0 4.6934 0

0.9502 0 1.8495

 , W12 =


−4.7 0 0.7513

0.4984 −2.0892 0.2551

0.9597 0.2238 −2.6312

 ,

W21 =


−1.5165 0.3500 0.6160

0.2435 −1.5892 0

0.9293 0.2511 −1.7162

 , W22 =


0 0.7792 0.5688

0.0540 −1.2131 0.4694

0.53 0.1299 0

 ,

W31 =


−3.1652 −0.4357 −0.4302

−0.1707 −1.5373 −0.1848

−0.2277 −0.9234 −3.0385

 , W32 =


0.28 0.31 0.0855

0.11 0 0.2625

0.2967 0 1.8946

 ,

V1 =


10.6009 0.9114 2.9006

50.9111 19.5182 16.3448

48.8167 6.5514 7.1615

 , V2 =


3.0733 −8.6223 0.4267

−0.7762 −3.2363 −13.3910

−19.4331 4.4601 10.7858

 ,

V3 =


−0.7251 −7.3488 3.0989

−1.7189 −19.4865 −31.2162

−46.5468 5.0599 5.4487

 ,

E1 =

0 1

0 0

 , E2 =

0 0

1 0

 , E3 =

0 0

1 0

 , E4 =

0 0

0 1

 .
For this example, we adopt

Yj(0) = 10−6 × I60, j = 1, 2, 3,

as the initial matrices for all tested algorithms, and all iterations are terminated
once

RES =

√
r (l + 1)

r (0)
< δ,

with δ being a positive constant and

r (l) =

3∑
j=1

∥∥∥∥∥Cj −
2∑

s=1

Aj,sYj (l)Bj,s −
2∑

v=1

Ej,vYj+1 (l)Fj,v

∥∥∥∥∥
2

,

or the number of iteration steps l reaches the prescribed maximal number of iteration
steps lmax = 10000. And the latter case is marked by “Fail” and “–” in tables.

As for Examples 6.1–6.2, the parameters of the GI, JGI and MJGI algorithms
are adopted to be the experimentally found optimal ones which minimize their
IT. In Table 3, we compare the numerical results of the three tested algorithms
for Example 6.3 with five different values of δ. From the results in Table 3, it is
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Figure 4. Comparisons for the convergence curves of three GI-like algorithms for Example 6.3 with
δ = 10−11 and δ = 10−12.

Figure 5. Comparisons for the convergence curves of the JGI and MJGI algorithms for Example 6.3.
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Table 3. IT, CPU and RES of three tested algorithms for Example 6.3 with five values of δ.

Algorithm δ

10−11 10−12 10−13 10−14 10−15

GI IT 1980 2191 2402 2615 Fail

µ = 2.43e− 3 CPU 3.9936 4.7360 4.9651 5.1907 –

RES 9.9423e-12 9.8927e-13 9.8948e-14 9.9586e-15 –

JGI IT 494 540 588 633 701

µ = 3.81e− 3 CPU 1.1895 1.2923 1.3002 1.4048 1.5182

RES 9.9490e-12 9.5835e-13 9.6901e-14 9.9507e-15 9.9620e-16

MJGI IT 442 482 525 566 620

µ = 4.22e− 3 CPU 1.0044 1.1603 1.1428 1.2306 1.3378

RES 9.5747e-12 9.9003e-13 9.7730e-14 9.7858e-15 9.9989e-16

observed that all tested algorithms are convergent for all cases except that the GI
algorithm fails to converge for δ = 10−15. And when the calculation error decreases,
the IT and CPU time of the tested algorithms increase. In addition, the proposed
MJGI algorithm has better numerical performance than the other ones due to the
fact that the IT and CPU time of the former one are always less than those of
the GI and JGI ones. And the advantage of the MJGI algorithm becomes more
pronounced as the value of δ becomes smaller, because the numerical performance
gap between the MJGI algorithm and GI, JGI algorithms is increasingly larger with
the decreases of δ. Also, the IT and CPU time of the MJGI algorithm are nearly
one fourth of those of the GI one. Last but not least, the changing scope of the
IT for the proposed MJGI algorithm is smaller than those of the GI and JGI ones,
which indicates that the stability of the MJGI algorithm is the highest among all
tested algorithms. All in all, the technique utilized in the MJGI algorithm can
improve the convergence speeds of the GI and JGI ones, and the MJGI algorithm
outperforms the other ones from the point of view of computing efficiency.

To better validate the advantage of the MJGI algorithm, we present the graphs
of RES(log10) against IT of the three tested algorithms in Figure 4 for δ = 10−11

and δ = 10−12. As shown in Figure 4, all algorithms are convergent while the
MJGI algorithm has faster convergence rate than the GI and JGI ones as the IT
of the MJGI algorithm is the least among the tested algorithms. This is consistent
with the results in Table 3. To further verify the superiority of the proposed MJGI
algorithm to the JGI one, we plot the IT curves of the MJGI and JGI algorithms
with respect to four different values of δ in Figure 5. From Figure 5, we observe
that the MJGI algorithm performs better than the JGI one in view of IT, and the
advantage of the MJGI algorithm is more obvious when the value of δ becomes
smaller.

7. Conclusions

In this work, we first correct some errors in the convergence proofs of the JGI and
the AJGI algorithms in [31], and establish new and correct convergence conditions
of these two algorithms. Then by applying a new update technique to the JGI
algorithm, we develop a new algorithm called the EJGI algorithm for the DTPS
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matrix equations, which is different from the AJGI one and has advantage over the
AJGI one. In addition, we combine the idea of the Jacobi method with the up-
date strategy, and construct the MJGI algorithm for the GDTPS matrix equations,
which requires less computations than the GI one. Besides, compared with the
JGI algorithm, the MJGI algorithm can use the latest results to compute the next
results, which leads to a faster convergence rate. In addition, by making use of the
properties of the vector stretching operator, matrix norm and Kronecker product of
two matrices, we establish the convergence theorems of the the EJGI and the MJGI
algorithms. Finally, numerical experiments are performed to show the effectiveness
and the superiorities of the new algorithms.

However, the convergent intervals of the parameters µ, ω in the EJGI and the
MJGI algorithms and their optimal values have not been derived at present. We will
investigate these problems in our future work, which are meaningful to implement
the EJGI and the MJGI algorithms effectively in practical applications.
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