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THE EFFECTIVE AND MODIFIED JACOBI
GRADIENT BASED ITERATIVE
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Abstract In this paper, we discuss the new convergence properties of some
gradient based iterative (GI) algorithms and propose two new Gl-like algo-
rithms for solving the discrete-time periodic Sylvester (DTPS) matrix equa-
tions and its generalized version, which often arise in the fields of physics,
medicine and so forth. We first review the Jacobi GI (JGI) and accelerated
JGI (AJGI) algorithms (Appl. Numer. Math., 168 (2021) 251-273) for the
DTPS matrix equations, and establish the new and correct convergence con-
ditions of these two algorithms. Then we apply a new update strategy to
the JGI algorithm and develop the effective Jacobi gradient based iterative
(EJGI) algorithm for solving the DTPS matrix equations, which is differ-
ent from the AJGI one. Furthermore, based on the ideas of the JGI and
the Gauss-Seidel (G-S) algorithms, we construct the modified Jacobi gradient
based iterative (MJGI) algorithm for the generalized discrete-time periodic
Sylvester (GDTPS) matrix equations. Compared with the JGI algorithm, the
MJGI algorithm can make full use of the latest information to compute the
next result and lead to a faster convergence rate. By utilizing the properties of
the matrix norms, Kronecker product and techniques of inequalities, we prove
that two proposed iterative algorithms are convergent under proper restric-
tions. Finally, some numerical examples are given to validate the efficiencies
and advantages of the proposed EJGI and MJGI algorithms for DTPS and
GDTPS matrix equations.
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1. Introduction

In this paper, we aim to compute the numerical solution of the following discrete-
time periodic Sylvester (DTPS) matrix equations

AjY} +Y—j+1Bj = Cjaj = 1a2a e (11)

where the known matrices A; € R™*™ B; € R**", C; € R™*" and the unknown
matrices Y; € R™*"™ are periodic with period v, i.e., Aj4 = A;, Bj4y = B;,Cjyy =
Cjand Y, =Y;forj=1,...,7.

Linear discrete periodic systems are widely used in the fields of physics, biology,
medicine and many other engineering fields [1,2,4,12,13,17,20]. For example, the
following forward and backward periodic Sylvester matrix equations (PSMESs)

AiY;Bj + CYjaDj = F, (1.2)
and

A;Yj1Bi + C;Y;D; = Fj, (1.3)
with j =1,2,...,7, and Y; being the unknown matrices, are an indispensable part

of pole assignment and the design of state observers for linear discrete periodic
systems [21]. The forward PSME (1.2) is more general than (1.1), and contains the
DTPS matrix equation (1.1) as a special case. Up to now, a lot of efficient methods
have been proposed to solve various types of periodic matrix equations due to the
universal existence and significance of this kind of matrix equations. For instance,
Varga [29] designed some efficient and numerically reliable algorithms for solving
periodic Lyapunov matrix equations based on the periodic Schur decomposition.
Based on the conjugate gradient normal equation error (CGNE) method, Hajarian
[5] presented an iterative algorithm for solving the general coupled discrete-time
periodic matrix equations. And the same author proposed the matrix form of the
biconjugate residual (BCR) algorithm for solving the forward PSME (1.2) in [7].
Note that the general periodic matrix equation is also a kind of important matrix
equation, which has important applications in many fields. Recently, Lv et al.
[24] constructed a finite iterative method for solving it. Subsequently, Hajarian
[10] presented three types of BCR method to find the generalized bisymmetric
periodic solutions of general periodic matrix equations. And the same author in [11]
designed four new iterative methods based on the CGNE, conjugate gradient normal
equation residual (CGNR), and least-squares QR factorization (LSQR) algorithms
to compute the reflexive periodic solutions of the general periodic matrix equations.

Apart from the periodic matrix equations, there are many other linear matrix
equations arising from many fields of science and engineering, and playing a very
significant role in various branches of them. Due to this fact, in the past few
decades, many researchers have devoted themselves to deriving a great deal of dif-
ferent methods to solve these matrix equations, including the conjugate gradient
iterative method [40], Newton method [16], parametric iterative algorithms [22,23],
gradient based iterative (GI) algorithms [35,43] and so on. In addition, Li and
Wu [18] extended the single-step HSS (SHSS) method for saddle point problems.
Yan and Ma [39] designed an iterative algorithm to solve a class of generalized cou-
pled Sylvester-transpose matrix equations over bisymmetric or skew-anti-symmetric
matrices. And Wu and Zeng [37] proposed the ADMM-based methods to solve the
nearness symmetric solution of the system of matrix equations A; X B; = C7 and
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As X By = C5 recently. Besides, Wang and Song [34] proposed a new BCR algorithm
to compute the constraint solution of the coupled operator equations. In [25-27],
Shirilord and Dehghan constructed the efficient iteration methods for three differ-
ent matrix equations, and they also designed a stationary Landweber method with
momentum acceleration in [28]. Also, Huang and Cui [15] developed the modified
and accelerated relaxed gradient-based iterative algorithms for the complex con-
jugate and transpose matrix equations. What is more, Hajarian [8] established
the matrix form of the BCR algorithm for computing the generalized reflexive and
anti-reflexive solutions of the generalized Sylvester matrix equation, then the same
author generalized the Lanczos version of BCR algorithm to compute the symmet-
ric solutions of the general Sylvester matrix equations in [9]. In [42], Zhang estab-
lished the GI algorithm for solving the extended coupled Sylvester matrix equations
A1 XBy+AYBy = F,C1 XDy +CyY Dy = Fy by using the hierarchical identifica-
tion principle. And Xie and Ma [38] derived the accelerated GI (AGI) algorithm to
solve the generalized Sylvester-transpose matrix equation AXB 4+ CXTD = F by
taking advantage of information generated in the previous half-step and introducing
a relaxation factor.
For the generalized coupled Sylvester matrix equation

AnXiBp + ApXoBio + -+ Aig Xy By =G, 1 =1,2,--- | p, (1.4)

with Xy (t = 1,2,...,q) being the unknown matrices that need to be determined,
Zhang [44] developed the residual norm steepest descent (RNSD), conjugate gra-
dient normal equation (CGNE) and biconjugate gradient stabilized (Bi-CGSTAB)
algorithms to solve (1.4). Subsequently, by constructing an objective function and
using the gradient search, Zhang [41] constructed the full-rank and reduced-rank
gradient-based algorithms for solving the matrix equation (1.4).

In addition, the generalized coupled Sylvester-conjugate matrix equation

EnX1Fn+GnXiHpy + -+ Eg X Fig + Gu X Hig =W, l=1,2,...,p, (15)

with X; (t =1,2,...,q) being the indeterminate matrices, is the general version of
(1.4). When Gy =0and Hy, =01 =1,...,p;t=1,...,q), (1.5) reduces to (1.4).
For the matrix equation (1.5), Huang and Ma [14] introduced [ relaxation factors
into the GI algorithm and derived two relaxed GI (RGI) algorithm. And they
proved the convergence of the RGI algorithms by utilizing the properties of the real
representation of a complex matrix. Very recently, Wang and Song [32] constructed
a modified RGI (MRGI) algorithm to solve the coupled Sylvester-conjugate matrix
equation (1.5). Then Wang et al. [30] developed a cyclic GI (CGI) algorithm by
introducing the modular operator, and the most significant improvement of this
algorithm is that less information is used during each iteration update.

As mentioned before, the DTPS and the GDTPS matrix equations arise widely
in scientific and engineering fields. Thus it is meaningful to design efficient algo-
rithms for solving these two kinds of matrix equations. Based on this fact, in this
work, we aim to construct some new and efficient algorithms to compute the itera-
tive solutions of the DTPS and the GDTPS matrix equations. We first review the
Jacobi GI (JGI) and the accelerated JGI (AJGI) algorithms for the DTPS matrix
equations in [31], and find that their convergence proofs are not correct and can be
improved. Then we establish the new convergence theorems of the JGI and AJGI
algorithm by using the properties of the vector stretching operator, matrix norm
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and Kronecker product of two matrices. Besides, to further improve the convergence
rates of the JGI and AJGI algorithms in [31], we apply a new update strategy to
the JGI algorithm [31], and then construct the effective Jacobi gradient based iter-
ative (EJGI) algorithm for the DTPS matrix equations, which is different from the
AJGI one in [31]. Numerical experiments show that the proposed EJGI algorithm
is more efficient than the GI [6], JGI and AJGI ones [31]. Also, we consider the it-
erative solutions of the GDTPS matrix equations. Based on the JGI algorithm [31],
we propose the modified Jacobi gradient based iterative (MJGI) algorithm for the
GDTPS matrix equations by combining the idea of the Jacobi method with the
update strategy. It is noteworthy that this idea stems from [19].
The main contributions of this paper are as follows:

e Propose the new convergence conditions of the JGI and the AJGI algorithms
in [31], which correct and improve the existing ones in [31].

e Apply a new update technique to the JGI algorithm in [31] and establish
the EJGI algorithm, which is different from the AJGI one and has higher
computational efficiency than the AJGI one.

e By combining the idea of Jacobi algorithm and the update strategy, we de-
sign the MJGI algorithm for the GDTPS matrix equations, and derive the
sufficient and necessary condition for the convergence of the MJGI algorithm.
Compared with the JGI algorithm, the proposed MJGI algorithm can use
the latest results to compute the next results and has higher computational
efficiency. Additionally, the MJGI algorithm requires less computational com-
plexity than the factor gradient iterative (FGI) one in [19].

The remainder of this paper is organized as follows. In Section 2, we list some
useful notations, definitions and lemmas that will be used throughout this paper.
In Section 3, we review the JGI and AJGI algorithms proposed in [31] for the DTPS
matrix equations (1.1) and establish their new convergence conditions. In Section 4,
we construct the EJGI algorithm for the DTPS matrix equations (1.1) and analyze
its convergence. Additionally, we derive a new algorithm referred to as the MJGI
algorithm for the GDTPS matrix equations and investigate its convergence property
in Section 5. In Section 6, several numerical examples are given to illustrate the
effectivenesses and advantages of the proposed EJGI and MJGI algorithms. Lastly,
some conclusions and outlooks are given to end this paper in Section 7.

2. Preliminaries

In this section, we list some notations, definitions and lemmas, which will be used
in the subsequent sections.

Let R™*™ and C"*™ be the sets of all n x n real matrices and all n X n complex
matrices, respectively. For a given matrix B € R"*", the notations B~', BT and
p(B) stand for the inverse, the transpose and the spectral radius of B, respectively.
If B is a square matrix, then tr(B) stands for the trace of B. The 2-norm and
Frobenius norm of B are denoted by ||B|2 = /p(BTB) and ||B|| = /tr(BTB),
respectively. Let B = D + R, with D and R being the diagonal and non-diagonal
parts of the matrix B, respectively.

In addition, we present several useful definitions below.
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Definition 2.1 ( [36]). For two matrices F' = (f;;) € C™*™ and G = (g;;) € CF*!,
the Kronecker product of F' and G is defined as
G fi2G - f1,G

f21G f22G -+ fo, G

FeoG= = [fijG]mxn € kaxnl' (21)

Definition 2.2 ( [33]). Let egs be the s-dimensional column vector whose k-th
element of egs is 1 and other elements are 0. Then the vec-permutation matrix
P(m,n) is defined as
It & 6,{3
It ® eT
P(t,s) = L (2.2)

I ® 6?5

Definition 2.3 ( [36]). Let G = [g1,92, "+ ,g9s] € C'** with g being the k-th
column of G. The vector stretching function of G is defined as

vee(G) = [g1 93, ,9:]" € C"™. (23)
Next, some significant lemmas are reviewed in the following.
Lemma 2.1 ( [36]). Let F € C™*%, G € C**! and Y € C?*%, then
(i) vec(FYG) = (GT @ F)vec(Y);
(ii) vec(YT) = P(q,s)vec(Y).

Lemma 2.2 ( [3]). Consider the matriz equation AY B = F, where A € R™*" B €
R**™ gnd F € R™*" are known matrices, and Y € R"*% needs to be determined.
For this matriz equation, an iterative algorithm is constructed as

Y(+1)=Y()+ pAT(F — AY(1)B)BT, (2.4)
with

O<pu< (2.5)

2
1Al Bl

If this matriz equation has a unique solution Y., then the iterative solution Y (1)
converges to the unique solution Yy, that is llim Y()=Y..
— 00

3. New convergence analyses of the JGI and the
AJGI algorithms

In this section, we first review the Jacobi gradient based iterative (JGI) and the
accelerated Jacobi gradient based iterative (AJGI) algorithms established in [31]
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for the DTPS matrix equation (1.1), then some errors in the proofs of Theorem 3.2
and Theorem 3.3 in [31] are pointed out. At last, we deduce the new convergent
properties of the JGI and the AJGI algorithms, which correct and improve those
in [31].

Based on the Jacobi iterative algorithm and the hierarchical identification prin-
ciple, the JGI and the AJGI algorithms have been proposed for solving the DTPS
matrix equation (1.1) in [31].

In [31], the coefficient matrices A;, B; (j =1,...,7) of the DTPS matrix equa-
tion (1.1) are decomposed into the following forms:

Aj = DLj + Rlyj’ (31)
Bj = Daj + Ry,

where D, ; and D, ; are the diagonal parts of A; and B;, respectively.
Define

Ao =A,,Bo=B,,D10=Di1,,D20=Dan,
then the frameworks of the JGI and the AJGI algorithms are as follows.

Algorithm 3.1. The Jacobi gradient based iterative (JGI) algorithm [31]:

Step 1. Input matrices 4; € R™*™ B; € R™*" C; € R™*" for j =1,...,7v, and
two constants p,n > 0. Choose the initial matrices Y;(0) € R™*™ (j =1,...,7),
and set [ = 0;

Step 2. Take Y—j+7 (0) = Y} (0) ,AjJr»Y = Aj, BjJr—y = Bj, CjJF’Y = Cj, Dl,j+’y = Dl,j
and Dg’j+,Y = DQJ‘;

3 165 =AY () =Ys1 (DB, |2
Step 3. If § = | &= < 7, then stop; otherwise, go to Step

>

i=1

1€ —A;Y;(0)=Y;41(0)B; [
4.

)

Step 4. For [ =0,1,2,--- ,and j =1,...,7, calculate
Yij(1+1) =Y; () +pD; (C5 — AY; (1) = Y41 (1) By),

Yo, (1+1)=Y; (1) + pn(Cjm1 — Aj1Yj—1 (1) = Y; (1) Bj—1) D21,

Yi;(l+1)+Y: (I +1
Y](l+1): 1’j(+);— 2»](+)7

Yitn (14+1) = Y; (1+1).
Step 5. Set [ :=1+ 1 and return to Step 3.

Algorithm 3.2. The accelerated Jacobi gradient based iterative (AJGI) algorithm
[31]:

Step 1. Input matrices A; € R™*™, B; € R"*",C; € R™*" for i = 1,...,, and
three constants i, 7 > 0 and 0 < w < 1. Choose the initial matrices Y; (0) , Yz ; (0) €
RmX*n (] — 1’...,’}/), and set [ = 0;

Step 2. Take Yj 1+ (0) = Yj (0), Aj1y = Aj; Bjyy = B}, Cjy = Cj; D jiy = D1
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and Dy jyy = Daj;

311G — A3 (1)=Y; 41 () By |2

Step 3. If & = | 22 < n, stop; otherwise, go to Step 4;
2 1G5 =A;%5(0)=Y541(0) B2

Step 4. For [ =0,1,2,--- ,and j =1,...,7, calculate

Yi;(04+1)=Y; (1) + pwDy ; (C5 — A;Y; (1) = Y11 (1) By),

Vi(l)=(1-w) Y, (I+1)+wYa, (1),

ot

+v (l) =1 (l)7
Yoi (1+1) = ¥ () + (1 =w) (Gt = 4j1¥im1 () = ¥ () Byy ) Do,
V;(+)=1-w)Y1; ({+1)+wYs; (I+1),

Vi (L41) = Y (14 1);
Step 5. Set [ :=1+ 1 and return to Step 3.

Here, we re-present the function Z(k + 1) from the proof of Theorem 3.2 in [31]
as follows

Z(1+1)< i (1H171,j 1+ 1)”2 + %HY@] (I + 1)”2)

i[”y O~ utr (770 D133, 0) + Do V0 )5 )
+%M2HDM o + gl 0]
; <z>\]2+;fi(||D1,]<||2+||Dz,j|2) 0. 63

Where Sj = AJ}N/J (Z) + }’;‘—jJ’»l (l) Bj.
Based on Equation (3.10) in [31] and Equations (3.1)-(3.2), we can get

5 <Z>)

Hsj (1)H2 = tr (S].T (1

<

+or (VO RE, + RQTJYf;l 1)), (3.4)

~ 2 ~
which implies that Haj (Z)H < tr [(YT (1) Dy + DoV, (1)) j(Z)] may not be
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true. The reason is that the sign of ¢r {(%T (ORT,+RY YT, (l)) by (l)} is uncer-
tain.

Thus, the derivation of Inequality (3.3) is not correct. Next we investigate the
new convergence condition of the JGI algorithm.

Theorem 3.1. Assume that the DTPS matriz equation (1.1) is consistent, i.e.,
the solution of the DTPS matriz equation (1.1) exists. Then the iterative sequences
{Y;()} (j =1,...,7) generated by Algorithm 3.1 converge to the unique solution
Y* = (Yl*, Y5, 7Y'y*) for any initial matrices Y; (0) (j = 1,...,7), if the param-
eter v satisfies

5
> (I = D1 g A lly + 1T = pBj—1 Do 1lly + pll Di—1lly || Bi—tlly + pll Asllo | D2sll,) < 2
j=1

(3.5)
Proof. We first prove that the solution of the DTPS matrix equation (1.1) is
unique. Assume that Y+ = (571*7 )72*, e ,f@*) and Y* = (Yl*, 172*7 e ,?j) are two
solutions of the DTPS matrix equation (1.1), then it holds that

A)Y; + Y By =Cy, AV +Y7 B;=Cy, j=1,2,...,7.

It follows from A;Y}* + Y}, B; = C; (j =1,2,...,7) that

Vi =Y 4Dy (Cy - A¥; —¥7By)
f/j* = 173* + 1 (ijl - Ajflf/j*71 - %*qu) Dy 1,
from which one can deduce that
Vi =Y+ %Dl,j (Cj - AV - 573‘1133')
+£ (G = A a¥yy = ¥ Bja) Do, (3.6)

In a manner similar to that done for (3.6), from A; Y + Y_HB =C; (j =12,
..,7), we can derive

O ok Ok M Or ok
Y=Y+ §D1,J’ (Cj ~ Y] Y[ B, )
+£ (G = A3 a¥yy = ¥ Bja) Do, (3.7)

Subtracting (3.7) from (3.6) yields that

fff,*

1% 7 x O % {7k r
=Yy =5 D [Aj(Yj -Y")+ (Y, _Yj-&-l)B]}

1% 7k Or Ve Or % .
-£ {Aj_l(yj_lfyj_l)ﬂyj ij)Bj_l} Doj 1, j=1,...,7. (38)

Il
e

Let 171* = ffj* - Yj* (j=1,...,7), then (3.8) can be written as

= S 1 * ,U/ Ve ] Ve
Vi =Y = 5D (AY] + Y0 B)) = 5 (A YL + Y] Bj1) Daja

2
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1** * *
=V - ng A 201731/]“31
1 "k \* 7k
+5¥7 - gAj_lyj_lDzj_1 - ng Bj_1Ds ;1

1 "k 1 \*
=5~ MDl,jA‘)Y' + *Yj (I = pBj-1Ds,j-1)
u \
2 DLJY 1B — 2
By taking the 2-norm in (3.9) and using the properties of the matrix norm, we have

_ 1 1
Hn-*anQ(z WD AT+ N (0, e

_QMDl Y Bj — ,UAjflifj*leijl
2

1 1 _
§||I pD1 A, HY* *||I—NBJ‘—1D277‘—1|| HY'*
+= unDun 1B5 1|Vl + 5 A Do A L[|V, (3:10)

_ T
Define U* = ) HYJ* |2, then in view of (3.10) we deduce that
)

1 Vi
<3 [2 (I = puDy jAjlly + T — uBj—1Da i all,) ||Y; 2}

1< 2 _
+§Z D1l 1 Bl [ Y51 ||, + z:MHAj—lH2||D2,j—1||2HYJ’11H2
o

1 j:l
.|

1
2
1< . 1< .
5 2 D11l 1Bl Y5 [l + 5 D s 1Dzl ]1Y7
j=1

(I = uD1 j Azl + I — pBj—1 D21 ,) || ¥}

1 Y
= 52 (11 = pD1Ajll; + [ = pBj-1Dajall,

+pll D1l 1B -1 lly + wllA 15 11D2 511,) Y51,

1 vy
< 52 (I = uD1jAjlly + I = nBj-1 Dyl
j=1
’y —
+ 1l Dyt Bi-1lly + wll Azl 1D2511,) S (177, (3.11)
j=1

Denote

1 vy
=5 > (I = Dy jAjlly + [T = pBj-1Da 1 lly + pll D j-1llyl|Bj-1ll,
Jj=1
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il Azl 1D2,4l,)
then (3.11) leads to U* < qU*, and for any positive integer ¢, it holds that
0<U*<qU* <@PU*<---<q'U". (3.12)
Under the condition

Y
> (I = uD1jAjlly + 1T = 1Bj1Dajally + | Dr 1ol Bi-ally
=1

il A [, [1D2,4l,) < 2,

ie, ¢ < 1, we have lim ¢’ = 0. Let t — +oco in (3.12), then 0 < U* =

t——+o0

J \ X ~ ~
JZ:lHY] , — 0, and hence Y] =0(=1,...,7), e, Y =Y (j =1,...,7),
which leads to Y* = ()71*»?2*»"' af/y*) = (Yl*;?Q*v"' ,?,Y*) = Y*, thus we con-

clude that the solution of the DTPS matrix equation (1.1) is unique.
Let Y* = (Yl*, Yo, Y'v*) be the unique solution of the DTPS matrix equation
(1.1). We define the following error matrices

V) =Y;()-Y, Yi;(0)=Y1;(1) =Y, Yo, () =Ya; () =Y/, j=1,....,7.

J

According to Algorithm 3.1, we obtain

Vi (04+1) = Y3 (1) = uDay (4355 () + V32 () B:)
=Y; (1) = pD1;A;Y; (1) = pD1 3 Yi41 (1) By, (3.13)
Yoy (1+1) =Y () = (A1Y5m0 () + Y5 (0 By ) Doy
=Y; () = pAj—1Yj1 (1) D21 — u¥; (1) Bj-1Dayj, (3.14)
Vi(+1) = %ffu (I+1)+ %Y/QJ (I41). (3.15)
Then substituting (3.13)-(3.14) into (3.15) leads to

Y; ((+1)

1 - 1~ 1 -~
Yj () = guD1AsY; (1) + 5Y; () = Y () Bj—1 D21

- 1 .
pD1;Yj1 (1) Bj — S pAj—1Yj1 (1) D2j—

2 2
1 ~ 1~
=5 U= uD1;A;) Y; () + 5Y; () (I = pBj-1D2,-1)
1 - 1 -
—5kD15Y4 (1) Bj — ShAj-1Yj-1 (1) Daj-1. (3.16)

By taking the 2-norm in (3.16) and using the properties of the matrix norm, we
deduce that

1~
3% () (I = pBj-1Dz,5-1)

- 1 .
|, =[5 0w v+

2

1 N 1 N
—5hD1 Vi1 () By — 5pudj-1Yj-1 (1) D2y

2
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1,

+ Sl LB, HYJH )|, + 5014511 Das [T )
(3.17)

1 1
§||I uDy; Al |5 0|, + 51T = B

Next we define the following non-negative matrix norm function H(I)

>[5l

which together with (3.17) gives

H(+1)

Il
.MQ

il

<3|

- 1 < -
S D ol Byly [ F2 ), + 5 2 sl Dl [ 52 0
=1 j=1

<
Il
—

M<

I
-

1 -

3 (I = Dy Ajlly + | — pBj—1 D2 j_1]|,) HY} (I)M
J
,

N =

+

(I = D1 jAjlly + | — pBj—1Ds 5 1]l,) HY/J (Z)HJ

I
N/

— Q
DN =

j=1
1 Y vy
5 Sl Byl |7 0]+ 5 S s Al 1Da0 % @]
j=1 j:l
1 Y
:§Z(HI uD1jAjlly + 11 — pBj—1Da, -1,
j=1
Dyl Byl + A5l 12501 |75 )
1 Y
< 52(“1 uD1jAjlly + 11 — pBj—1Da 51|,
j=1
A/ ~
D1l Bi -l + A5l 1D, S ¥ @]
j=1
=qH(l).
This leads to the following result
HI+1)<qgH()<@FH(I-1)<---< ¢ H(0).
Hence, if ¢ < 1, that is
2
> (I = D1 jAjlly + |11 = pBj—1Da2 j—1lly + pll D1 j-1ll, || Bi-1ll,
j=1

+ 1| 45,11 D2,5l,) < 2
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then lim E HY] 1+ 1)”2 = 0 and therefore lligl Vil+1) =0 =1,...,7).
— 00

l—>+oo

This shows that
lim V;(I+1)=Y/,j=12,...,7.

l—+oco

The proof is completed. O
Now we turn to review the function Z(I+1) in the proof of Theorem 3.3 in [31]:

)= 31y ey

<23 [0-wfis 0 o+ 0+ ]
227: [(1@2‘ H — 2uw(1 — w)3tr (Y (1) Dy.;5; (1))
Jj=1 , 7
# (1= Day O -2 0 -y or (V10008 0 D2,

+ 750+ a2 -5 0 D] (3.1)

25 [ -wr i off -2 o

j=1
221 =PI D P 0|~ 2w (- )| 0
+ w?HYj(l)H + p2?(1 - w)? (z)H 1Ds | ] (3.19)

where &;(1) = A;Y;(1) + Y31 (B and (1) = A;Y (1) + Y 142 () By.
By using the same analytical method applied in (3.4), we observe that

HSJ-(Z)HQ:trHYT(Z) (D1 + RL,) + (Do + RE) VL (0] 50}

< tr [Y (1) D1.;6; (z)} (3.20)

and

- 2 [~T - ~T .
530 =t [P AT, 0+ (Do + RE)Y 0035 0)

r ~T
< tr | DoV o (05 >]

= tr —~JT+1( D (1 )D27j]

are not always true. Therefore, the derivation of (3.19) from (3.18) is not correct. In
what follows, we establish the correct convergence theorem of the AJGI algorithm.
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To this end, we first define the following matrix

[(1—w) My winy (1—w) Ny why 0 0 S0 0 0 0
(1-w)?Vi w7 (1-w)?Pw(l—w)P 0 0 20 0 (1 - w)*W, wU,
0 0 (1 — w) My why (1 —w) Ny wNy S0 0 0 0

F = | 0-w?w oty (1—w)?Vs w2y (1-w)?Pyw(l—w)Py--- 0 0 0 0 R
(1-w)N, wN, 0 0 0 0 10 0 (1—w) M, wM,
LI —w)?P, w(1-w) P, 0 0 0 0 (= w) W WUy (1= )V, wZ,y |

(3.21)
with
Mj = I® (I - ,uwDLjAj), Nj = —/,L(UBJT ®D1,j, Pj = Gj_le, Wj = Hij,
Hj = —,U,(l —w) Dg,j ®AJ, GJ = [I—M(l —w)BjDz,j}T ®I,
Uj = H;[(1 —w) Mj + 1], Vj = GjaMj + Hj 1 Nj1,
Zj :Gj—l [(17W)Mj+1]+(17w)Hj_1Nj_1, j: 1,...,"}/

Theorem 3.2. Assume that the DTPS matriz equation (1.1) is consistent, i.e.,
the solution of the DTPS matriz equation (1.1) exists. Then the iterative sequences
{Y;()} (j = 1,...,7v) generated by the AJGI algorithm converge to the unique
solution Y* = (Y1 ,Y2 bt 7) for any initial matrices Y; (0) (j =1,...,7) if the
parameters p and w are selected to satisfy

p(F) <1,
where the matriz F is defined as in (3.21).

Proof. First of all, we prove that the solution of the DTPS matrix equation (1.1)
is unique. Assume that Y* = (Y1 ,Y2 R ~*) and V* = (Yl 7Y2 e ,Yj) are

two solutions of the DTPS matrix equation (1.1), then we have
AY —i—YHB 7CJ,AY*+Y+1B =C;, j=12,...,7.
It follows from Aij* + Y]*_HB =C; (j=1,2,...,7) that
Y/j* = ij* + ,LL(AJDL]' (C] — AJY/* Yii—lB )

Yi=Yi+pl-w) (Cj—l =AY, - YfBj—l) Daj-1,

Vi=(1-w)Y +wY], ¥/ =(1-w)Y+wY}. (3.22)
Similarly, from AjY* + Y+1B =C; (j=1,2,...,7), we can deduce that
j* = Yj* + /,LWDL]' (Cj — Ajy* Y+1B )
Yy =Y +p(l - w) (Cj—1 — ALY - %*qu) Dy -1,
Y/=(1-w) Y +wY, V' =(1-w)Y +wY/. (3.23)

Let Y =Y} =Y} (j=1,...,7). The combination of (3.22) and (3.23) gives

}7; = Y}»* —,ule)] (A Y —|—Y+1B )
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VDU — DT B

= (I — pwD1 ;A ) 37]* — MWDle_/jilBj? (3.24)
V=Y —p(l—w) (A4;1Y; + Y/ Bj 1) Dy

=Y —p(1l —w)A; 1Y Do j 1 — p(l —w)YBj 1Da 1

=Y/ [ —p(1-w)Bj 1Dy 1] —p(l—w)Aj 1Y 1Dy jq, (3.25)
Vi=({1-w)Y+wY/, (3.26)
Vi=(1-w)Y +wY;. (3.27)

Taking the vec-operator on both sides of (3.24)-(3.27) results in
vec (Y}*) = [I @ (I — pwDy ;A )] vee (V") — (uwB ® Dy j) vee (Y",)
= Mjvec (Y} ) + Njvec (Y]*H) , (3.28)
vee (V) = {1 = (1 —w) By 1 Doy 1]" @ I} vee (V)

—[n(1 =w) Dy j 1 ® Aj 1] vec (Y/",)

= Gj_yvec (Y}') + Hj_yvec (Y} ), (3.29)
vec (Y}') = (1 —w) vec (Y}") + wvec (Y]), (3.30)
vec (Y}) = (1 — w) vee (Y;) +wvee (Y]), (3.31)

in terms of Lemma 2.1. By substituting (3.31) into (3.28), it holds that
vec (Y") = (1 —w) Mjvec (Y;*) + wMjvec (Y})
+ (1 —w) Njvec (Y}, ) + wN;vec (Y},,) . (3.32)

By combining (3.32) with (3.30), we have

vee (V") = (1 —w) {(1 —w) Mjvec (Y]*) + wMjvec (YJ*)

+ (1 —w) Njvee (Yj'y,) +wNjvee (Y} ) } + wvec (Y})
=(1-w) Mvec(Y )+ (1 —w) Nvec(Y]H)

+w (1 —w) Mj + Ivec (V") +w (1 —w) Njvee (Yj'y,) . (3.33)
In addition, substituting (3.33) into (3.29) results in

vee (77)

=(1- w)zHJ 1M _yvee (Y] ) +wHj 1 [(1 —w) My + I]vec (Y] )
+(1 = w)? (Gj-1Mj + H;—1N;_1) vec (Y})
+w{Gj1[(1 —w) Mj + I+ (1 — w) Hj_1Nj_1} vec (Y}")
+(1 — w)*G,_1 Njvec (Y} 1) + w1 —w)Gj_1Njvee (Y;5,)

=(1- w)QWJ vee (Y1) +wUj_yvee (Y1) 4+ (1 — w)QV vec (V')

+wZjvec (Y}') + (1 — w)* Pjvec (Y1) +w (1 —w) Pjvec (V). (3.34)

Then from (3.21), (3.32) and (3.34), we conclude that for any positive integer ¢, it
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has

(3.35)

vec (Y,;k) vec (Y,;") vec (Y,;k)
vec (Y; ) vec (}77* ) vec (177* )

If p(F) < 1, then it follows that tl}rﬁl Ft=0. Let t - 400 in (3.35), we obtain
vec (YJ*) =0( =1,...,7), thus )N/J* = YJ* (j = 1,...,7v). This implies that
Y* = (171*,)72*, e ,f’,y*) = (}71*,)72*, e ’Y'v*) = Y*, and therefore the solution of
the DTPS matrix equation (1.1) is unique.
Let Y* = (Yl*7 Yo, Y’v*) be the unique solution of the DTPS matrix equation
(1.1). Similar to Theorem 3.1, we define the error matrices
Vi (1) =Y, (1) =Y}, Yo (1) =Ya,; (1) = Y],

Vi) =) - Y, V) =Y () - Y =1, (3.36)

According to the iteration scheme of Algorithm 3.2, it holds that

Vi (1+1) = ¥ (1) — oDy (A% (1) + Vi1 () By
=Y; (1) = pwD1,; A;Y; (1) = pwDs Vi1 (1) B
= (I = pwD1;A;)Y; (1) — .“WDM i+ (1) B, (3.37)

Vg (1+1) = V5(0) = p(1 =) (41751 () + V5 ()B; 1) Daja

V() — p(1 - W)Aj—1Yj—1(l)D2,j—1 —p(1 = w)Y;(1)Bj_1D2 1

Vi [ —p(1=w)BjaDyja] = p (1 —w) Aj 1Y 1 (1) Doy,

(3.38)
Vi) =(1-w) Vi, (+1) +wla, (1), (3.39)
Vi(l+1)=(1-w)Vi;(+1)+wYs,;(+1). (3.40)

By taking the vec-operator on both sides of (3.37)-(3.40) and using Lemma 2.1, we
have

vec {)717]- I+ 1)}

=[I ® (I — pwD; jA;)] vec [}7 (l)} — (WwB] @ Dy ;) vec |:}~/j+1 (Z)]
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=M;vec [)7] (l)} + Njvec |:}~/j+1 (l)} ) (3.41)
vec {ffw 1+ 1)}

= {[I —pn(1=w)Bj 1Dy ] ® I} vec F/f‘(”}
i }

—[p(1—w) D1 ® Aj ] vec {Yj )

—G,_vec [f/j(z)} + Hj_yvec [f/j,l(z)} : (3.42)
vee [V;(0)]

— (1 — w)vec [Yq,j I+ 1)] + wvec [YQJ (z)} : (3.43)

vec [z(z + 1)]
= (1 — w) vec {Y/I,j I+ 1)} + wvec [172,]» I+ 1)} . (3.44)
Substituting (3.44) into (3.41) yields that
vee V15 (14 1)] = (1= w) Myvee V1,5 ()] +wMjvee [Va,; ()]
+ (1 — w) Njvec [Yfl,jﬂ (Z)] +wh;vee [Y@,N (z)] . (3.45)
By combining (3.45) with (3.43), it has
-— [fg(z)}
—(1-w) {(1 — w) M;vec [Yﬁj (1)} +wMjvec [YZJ (z)}
+ (1 - w) Njvec [?ml (1)} + W, vec [Y/Q,M (1)] } + wvec [Y/Q,j (1)}
= (1 - w)®Mvec [Y/l,j (5)} + (1 — w)2N;vec [YG,M (z)}
+w[(1 —w) M; + I] vec [YQJ (1)} +w (1 —w) Njvec [%M (z)} . (3.46)
Besides, substituting (3.46) into (3.42) results in
vec {YQ] I+ 1)]
= (1w Hj 1 M yvee [Fao0 ()] + wH; o [(1 = w) My 1 + I vee [Va,51 ()]
+ (1= w)?(Gy_1 M, + H;_1Nj_1) vec [Y/Lj (1)}
+w{Goa (1= w) My + 1]+ (1= w) Hy- 1Ny 1} vee [ Vo (1)
+ (1 — w)?G,_1N;vee [f/ml (l)] +w(l—w)Gj_1N;vee [YQJH (1)}
= (1= @)’ W_avee [V;-1 ()] +wUj-yvec a1 (1)
+ (1 — w)?Vjvee [Yl,j (z)} +wZjvee [?Q,j (z)}

+ (1 — w)?Pyvec [?1,j+1 (Z)} +w (1 —w) Pyvec [YQJH (Z)] . (3.47)
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Then it follows from (3.21), (3.45) and (3.47) that

vec Y1 1 (I+ 1)_ vec | Y11 (l)
vec [Yg,l I+ 1)} vec [)72,1 (Z)}
vec Y172 I+ 1)- vec -)71,2 (l)
vec Y2 2o (I + 1): =F | vec :)7272 (l): (3.48)

vec »}7177 I+ 1)_ vec —}71,7 (l)

vec _)7277 1+ 1)_ vec —)7277 (l)

Therefore, the matrix f in (3.48) is the iteration matrix of the AJGI algorithm, then
the necessary and sufficient condition for the convergence of the AJGI algorithm is

p(F) <1,
which completes the proof of this theorem. O

Remark 3.1. Although the convergence condition of the AJGI algorithm is given
in Theorem 3.2, intervals of the step size factor p and the relaxation factor w have
not been determined. The reason is that the parameters w, u are contained in the
matrices in f, and they can not be separated from the matrices in F. Thus it is
difficult to derive the convergence intervals of w, u, and this problem needs to be
investigated in our future work.

4. The EJGI algorithm for the DTPS matrix equa-
tions

In this section, to further improve the efficiency of the AJGI algorithm proposed
in [31], based on Lemma 2.2, we introduce a new update technique for the JGI al-
gorithm [31], and construct an effective JGI (EJGI) algorithm for the DTPS matrix
equations, which is different from the AJGI algorithm and has better numerical
performance. Then we investigate the convergence property of the EJGI algorithm.
The framework of the EJGI algorithm is as follows.

Algorithm 4.1. The effective Jacobi gradient based iterative (EJGI) algorithm:

Step 1. Input matrices A; € R™*™, B; € R™*",C; € R™*™ for j =1,...,7, and
three constants p, 7 > 0 and 0 < w < 1. Choose the initial matrices Y; (0) € R™*"
(j=1,...,7), and set | = 0;

Step 2. Take ijJr,y (0) = Y} (0) 7Aj+’7 = Aj, BjJr»\/ = Bj, Cj+»y = Cj, Dl,j+'y = Dl,j
and Da 1y = Da j;

2

2 G =A;Y;() Y41 (D) B;112
Step 3. If ny = | 22 < 1, stop; otherwise, go to Step 4;
2 165 =A;%;(0)=Y;41(0)BI?

j=1

2

Step 4. For [ =0,1,2,...,and j =1,...,7, calculate
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Yi;(04+1)=Y; (1) +pwDi ; (C; — A;Y; (1) = Y11 (1) By),

V()= (1w, (1 +1) +wY; (),

Nadt

o (1) = Y5 (D),
Vo (141 =Y;()+p(1l-w) (ijl — A1 Yo (1) = Y5 (1) ijl) Dy j_1,
ij (l+ 1) = (1 —w)YLj (l+1) "‘FUJYYQJ‘ (l—l—l),

Vit (14+1) = Y (14 1);
Step 5. Set [ :=1+ 1 and return to Step 3.

Remark 4.1. Compared with the AJGI algorithm, the proposed EJGI algorithm
is obtained by using a new and different update technique to the JGI algorithm. In
the AJGI algorithm, Y;j (1) are computed by Y3 ; (I 4+ 1) and Ya; (1) (j = 1,--- ,7).
While in the proposed EJGI algorithm, Y5 ; (1) are replaced by Y; (I) to compte
Yj(l) (j =1,---,7). Although the frameworks of the AJGI algorithm [31] and the
proposed EJGI algorithm are similar and the only differences between these two
algorithms are the formulas for YJ(Z) (j = 1,---,7), the latter one may perform
better than the former one. The reason is that Y; (I) = (1 —w) Y7 () + wYa; (1)
may be better than Y5 ; (I) if the relaxation factor w is chosen properly. And this
fact will be illustrated by numerical experiments in Section 6.

In what follows, we establish the convergence theorem of the proposed EJGI
algorithm.

Theorem 4.1. Suppose that the DTPS matriz equation (1.1) is consistent, i.e.,
the solution of the DTPS matriz equation (1.1) exists. Then the iterative sequences
{Y;(O} (j = 1,...,7) generated by Algorithm 4.1 converge to the unique solution
Y* = (Yl*, Yo, 7) for any initial matrices Y; (0) (j = 1,...,7), if the param-
eters u and w satisfy

,
(1= w) > (IT = pwDs jAjlly + pwl| D1yl 1B -1l,)

Jj=1

+w > I = p(1 = w)Bj 1D j 1 ly + p(1 = w) | A; [, D2l ]p < 1,

Jj=1

where
2l
p=> [IT— o (1 =w) Dy Al + pew (1= w)[| D1yl Bj-1ll,)-
j=1

Proof. By assumptions, we can prove that the solution of the DTPS matrix equa-
tion (1.1) is unique by applying the similar method utilized in Theorem 3.1. Let
Y* = (Yf“7 Yo, ,Yj) be the unique solution of the DTPS matrix equation (1.1).
Tt follows from Algorithm 4.1 and the notations in (3.36) that

Vg (1) = Y5 (1) = oD (4,5 (1) + Y40 () By)
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=Y, () = pwDy jA;Y; (1) — pwDy ;Y41 (1) By (4.1)

and

Vo (141) = V() = (1 =) (417, 1() +Y(0Bj 1) Do

= V(1) = p(1 = w) Ay 1V 1 ()Daj1 — (1 — @)V (1) By_1 D1
(4.2)

By combining (4.1) with (4.2), we have

Vi) = (1-w)Yi; (1+1) +wY; ()
= (1= w) [V () = D13 4;Y; () = oD Y541 () By | + %5 ()
=Y; (1) = pw (1 = w) Dy jA;Y; (1) — pw (1 = w) Dy ;Y41 (1) By
= [ — pw (1= w) Dy A)) ¥y () = po (1 =) Dry Vs () By, (43)
and

Yi(l+1)=(1 (I+1)+wYso,; (I+1)

—w) Y,
= (1 -w) |Y; (1) = pwD13A;Y; (1) = pwDy ;Y511 (1) B

+wlY;(1) — p(1 - W)Ajflf/jfl(l)DZ,jfl — (1 = w)Y;(1)B;j-1Da, ;1]
= (1= w)¥; (1) = (1l = w) D1 A;Y; (1) = pew(1 = w) D1 Y511 (1) By
+ V(1) = (1 = ) Ay 1V y_1 (D) Dy
— o1~ )Y (1) Bj-1 Doy
= (1 = w)[ — pwD1 ;A;]Y;(1) = po(1 — w) D1 ;Y511 () Bj
— (1 = @) Ay 1Y 1 (Do + Y (O[T — (1 — w) By Doy
(4.4)

By taking the 2-norm in (4.3) and (4.4), and using the properties of the matrix
norm, it holds that

ffj(l)Hz
= T = s (1 = ) D1 451 ¥ (1) = peo (1= ) D Vi () B |,

< 1T = o (1= ) Da s Ay

YW+ mw (1 =) 1D 1,181,

it (1) ,
(4.5)

and
0],
= @ = w11 = gD 41T 0) = 1 = @) D1V (0B,

— (1 = w)Aj 1Y 1 () Dajor + wY (I = p(l = w)Bj—1Daj1]ll2
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< (=) = oD Al |75 O + o1 = )P 11,151l | Vi @)

+ Wl = (1 = w)Bj1 Dl | V50

(1= @) Aj -3l D ||V 52 ) (46)

From (4.5), we can derive the following inequality

>-[vi0],
j:
:
ZHI o (1= w) Dy Aj |95 @)

~

Z l—w ‘DLJ

=

1B31s||¥52 0

_ 2_3 11 = o (1= ) Da 5 |5 0

Y

# 3 m(= ) Dra ol Bl 1% 0|,

.
=" [ = o (1 = @) Dy jAylly + oo (1= @) [ D1 1By ll] |75 @)
Jj=1
Y Y B
<7 (I = oo (1= w) Dyl + o (1= ) 1D g1l Bi-alle] Y- |9 0
Jj=1 i=
(4.7)
Let
Y
p=_[II = pw (@ —w) Dy A, + pw (1 = w)[[ D1 jall,lBi-1ll,)
j=1
then (4.7) can be written as
2l ~ Y B
S, <X |0l (4.8)
j=1 j=1

Below we construct a non-negative function Z(l) as follows

-3 |5l,

which together with (4.6) and (4.8) yields that

Z(+1)
Y
l+1H
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<3 (1 - W) - pwDy A, HY \

j=1

7 ol = @)A1l Dl [ V520
j=1

+ 3wl = 1 = w)Bjoa Dzl V50
j—l

+ Zuw L= Dl lIBslly | Tia 0]

~

=2

Y
S (1 - W) — Dy 4, HY ‘

j=1

+ 3 (= )l I1B5 1l |75 )

j=

+ 3wl = (1= @) By Dol V50

=

j=1
il =
+ 3 (1 = | A 1Dl | V5 00
j=1
’Y ~
= (1 =) Y (I = D1y Al + ol D 51 By-ally) |5 )|,
j=1
2
w3 I = (1 = @) B 1Dz gally + (1 = @)A1 D21] V500,
Jj=1

Y Y
< (1=w) Y (I = D1 Ayl + ol Dyl Bially) D |5 0,
j=1

j=

—

2 2
w3 (1 = (1 = @) By D yally + (1 = )| A D1,
Jj=1 Jj=1
2
< (1=w) Y2 (I = oD Ayl + ol DB ZHY ),
j=1 j=1

+ WZ (1 = 11 = w)Bj—1 D2 j1ly + p(1 — w)|| 4]l ]| D2,

j=1

{(1@_

~ 2l
o 3 (M =1 =) BymaDasaly 1 =4, 1D ) }ZH

M-

(IF — pwDy j Ajlly + pe|| Dy -1 llylIBj-1ll,)
1

2]p:g2H§Z(l

),

(4.9)
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Let
.
Q=(1-w) ) (II—pwDi;Ajlly + pwl|Dy 1], Bj-1ll,)
Jj=1
5l
+wd I = p(l = w)Bj_1Ds 1]y + p(1 = )[4l D2jll,]p.  (4.10)
j=1
Then (4.9) can be written as
Z(1+1)<QZ(1),
which leads to
ZI+1)<QZ(1)<Q*Z(1-1)<---<Q™Z(0).
Thus if @ < 1, then it holds that
’y ~
Jm 3| e+, -o
Jj=1

and therefore lim 177(1 +1)=0(=1---,7),ie,

l—+oc0
The proof of this theorem is completed. O

5. The MJGI algorithm for the GDTPS matrix
equations

In this section, we consider the iterative solution of the following generalized DTPS
(GDTPS) matrix equations

P q
ZAj,stBj,s + Z EjwYj1Fjo=0C5,=12,-- 7, (5.1)
s=1 v=1

where the known matrices A;,, Ej, € R™*™ B;,, F;, € R™”" C; € R™*" and
the unknown matrices Y; € R™*™ are periodic with period v, ie., Aj;y s =
Ajss Bjtr,s = Biss Ejiyo = Ejo, Fjiyo = Fjo, Cjiy = Cj and Vi = Yj.

First of all, we split the system matrices A; s, Bj s, Ejov, Fjo (j =1,...,7,8 =
1,...,p,uv=1,...,q) of the GDTPS matrix equation (5.1) into the following forms:

Ajs =D\ + R

S 7,87
Bj, =D + R
By = D)+ R

Fj, = DY) + R

) ; Jyvo
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where D(l) D(Q) D(?’) D(4) are the diagonal parts of A; ., Bj s, Ej v, Fjv, respec-
tively. In [31] Wang and Song also extended the JGI algorithm to solve the GDTPS
matrix equations by replacing the coefficient matrices by their diagonal parts. Be-
fore developing a new algorithm for the GDTPS matrix equations, we review the
JGI algorithm proposed in [31] for the GDTPS matrix equations as follows.

Algorithm 5.1. The JGI algorithm for the GDTPS matrix equations (5.1) [31]:

Step 1. Input matrices A;,, Fj, € R™*™ B;, F;, € R C; € R™*" for
j=1L....,v,s =1,....,p,v = 1,...,q, and two constants u,n > 0. Choose the

initial matrices Y} (0) e R™*™ (=1,...,7), and set | = 0;
Step 2. Take Yj i, (0) = ) Y;(0), A (])+’Y$( : AJ szJ(-S-)'v 8 G )BJ 50 B -S-(’v)v = Ej, v(v ?J-F’Y,’U
(1 2 2 3 4
= Fj.,Cij1y = Cj, DH,YS:DJS,DJJWS Dy5, Dy, = Dj, and D; 0 =
DW.
J,v7
51105 = 25 Ap ey (0By = 3 By ¥ (DFy ol
Step 3. If § = | & = = < 1, then stop; other-

b C;— Zl A;,sY;(0)Bj s — 21 EjvYj41(0)Fj o |?
j = o=

wise, go to Step 4;
Step 4. For [ =0,1,2,... and j =1,...,7, calculate

p p q
D4y, D) |c; - <Z A kY5 (D) Bik + > By (1) Fg;t) D),
s=1 k=1 t=1
}/273' (l =+ 1)

q
1)+ MZ Dj(‘?:)1 v [Cim1
v=1
P q 4
- (Z A kY () Bk + Y Ei1dY) (Z)Fj—l,tﬂ DY, .,
k=1

t=1

Yi;(l+1)+Y (I +1
Y}(lﬁ*l): 17](+ ); 2»](+ )’

Yiar (1) =Y, (14 1),

Step 5. Set [ :=1+ 1 and return to Step 3.

In the following, we apply the update strategy to Algorithm 5.1 and then propose
the modified Jacobi gradient based iterative (MJGI) algorithm for the GDTPS
matrix equations. The details are presented as follows.

It can be observed that Y7 ; (I +1) is computed by Y; (I) and Y11 (1) (j =
1,...,7). Then for j = v, we can calculate Y; , (I+1) by Y, (I) and Y, (I) =
Y1 (). Note that when we compute Y;, (I + 1), the matrix Y; ({4 1) has been
determined. To improve the convergence rate of the JGI algorithm, motivated
by the ideas of the FGI algorithm in [19] and the Gauss-Seidel iteration method,
we replace Y; (I) by the latest information Y; ({4 1) to compute Y3, ({+1). In
addition, we see that Y5 ; (I 4+ 1) are computed by Y;_1 ({) and Y; (1) ( =1,...,7).
Also, for j = 2,3,---,7, when we compute Y5, (I + 1), the matrices Y;_ (I + 1)
have been obtained. Similar to the above analysis, in second line of Step 4 of the
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JGI algorithm, Y;_; (I) are replaced by Y;_1 (I +1) to compute Y5 ; (I +1). By
summarizing the above discussions, we can establish the following modified JGI
(MJGI) algorithm for the GDTPS matrix equations (5.1).

Algorithm 5.2. The modified Jacobi gradient based iterative (MJGI) algorithm
for the GDTPS matrix equations (5.1):
Rmxm B F t e RTLXTL Cj E Rmxn fOI‘

Step 1. Input matrices A;,, E; s
i=1L....,0v,s=1....p,v =1 ...,q7 and two conbtants u,n > 0. Choose the
initial matrices Y; (0) € R™*™ (j =1,...,7), and set | = 0;

Step 2. Take Y; (O)ZYJ‘@) Ajty,s = AJS’BJ+’YS Bjss Ejiyo = Eju, Fiyy o

(1) 1 (2) (2) H(3) (3) 4 _
—FJU,C’]JW*C],D]_HNfD“,D]JWéfDH,DH_WU D; and D;Y =
D',

j0
. p q
2o C— 20 Ay sY;(D)Bj s — Z Ej oY (D F; 0|2
Step 3. If & = | 22 — < 7, then stop; other-
2 IG5 = 3 4,:Y;(0)B Z E; Y 11(0)Fj0|?

wise, go to Step 4;
Step 4. For [ =0,1,2,... and j =1,...,, calculate

L L : @)
D+ud DY |C; - (Z A Y5 () Big + Y EjY (1) Fj,t) i
s=1 L k=1 t=1
j: 1727"' 7’7_1ﬂ
= 1 _ » q )
)+ “ZD( oy - (Z kY5 () Bik+y  EjiYiea (1+1) Fmt) DE.
L k=1 t=1
J="
Yo (1+1)
+ M Z Dj(g)l v

q
—1— (Z Aj_1xYj1 () Bj717k+z E;_1.Y; () Fjl,t)} D](4)1 =1,

t=1
- 3
+/’LZD§ )lv

x |Cj- 1(2/1] 1eYj-1 (1+1) By 1k+ZEg 1,.Y5 (1) Fj— 1t>]D§4_)1,w
k=1 t=1
j:2,37"‘777
Yii(l+1)+Ys, (1+1
vy = DA D Gy

2 ) ) )
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Step 5. Set [ :=1+ 1 and return to Step 3.

Below we derive the necessary and sufficient condition for the convergence of the
MJGI algorithm by utilizing the properties of the vector stretching operator and
the Kronecker product of two matrices. To this end, we define the following two
matrices:

(000 - 0 0 (b0 0 - o |
G 00 - 0 0 0 asby 0 - 0
N LT ] I LR L 52
000 ¢, 20 0 000 - ayybyy
5,00 0 ¢ 10] 0000 - a |

with

q q
D;,Q)Bjjjk ® Dj(,ls)AJJC + Z Z Dyi)l,vF]”T—l,t ® D‘g?i)l,ij_lat’
1 v=1 t=1

(Dfs)Fft ® DSS)EJ#)’

£
-
-

[
Il
—
=

Il

i
M)~
1)

w
Il
-
~~
Il
-

M=
M=

(ngB}jk ® D§?3Aj,k), F=1,. .

Cj:

@
Il
—
B
Il
—

Theorem 5.1. Assume that the GDTPS matriz equation (5.1) is consistent, i.e.,
the solution of the GDTPS matriz equation (5.1) exists. Then the iterative sequences
{Y;(D}( = 1,...,7) generated by Algorithm 5.2 converge to the unique solution
Y* = (Yl*,YQ*, e ,Y,y*) for any initial matrices Y;(0) (j = 1,...,7) if and only if
the parameter u satisfies

0 [(1 + %L)ﬂ (I - gH)] <1

Proof. By assumptions, we can prove that the solution of the GDTPS matrix
equation (5.1) is unique by applying the similar method utilized in Theorem 3.2.

Let Y* = (Yl*, Yo, ,YA;‘) be the unique solution of the GDTPS matrix equation

(5.1). According to (3.36), we have
Yi(0) =Y, ()-Y;, Yo ; (1) =Ya; (1)-Y;,Y; (1) =Y; (1))=Y, j=1,...,7. (5.3)
Based on Algorithm 5.2, we distinguish the following cases to discuss:
e When j =1, it has
Yi1(I+1)

pe

1,s

P q
Ch — <Z A Y1 (1) Big + Z Ey Y, (1) F1,t>
k=1

t=1

P
=Yi()+u)_ DY)
s=1

(5.4)
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Yo1(I4+1)
q D q
=N +n) DY) |Cy = (ZA%ka (D Byt Eyai (1) F’y,t) DY,
v=1 k=1 t=1
(5.5)
Yii(l+1)+Yo1(I+1
vi (1) = 2l );r 21 (L+1) (5.6)

Then it follows from (5.3)—(5.6) that
Yi(l+1)
Vi (D) + Ve (14 1)

2
p " p _ q B
S b (Z ALY () Bry + Y BrYa (1) FM> D)

k=1 t=1

q p q q
5 DD DALY, () By D~ S ST DI Y (1) P DY)
(5.7)

By taking vector straightening operator on both sides of (5.7), we get

vec [}71 1+ 1)}

P P q q
o’ 2 1
= |}~mn 9 (E E D§,3BlT,k ® Dg,s)Al,k + E E DS/%Z;F»% & Dﬁ’ﬂw)

s=1 k=1 v=1t=1

xvee [T1 ()] = £ 30" (DRET, © DB, Jvee [72 ()]

in view of Lemma 2.1.

e When j =2,--- ,v—1, it holds that
Yi; (1+1)

P
=Y; () +pY DY
s=1

p q
x lcj - (Z AjiY; () Bk + Y EjiYis (1) ijt> D, (5.9)
k=1

t=1
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3

p q
x [le - (Z Aj kY1 (141) Bioaw+ Y Ej14Y; (1) Fth) ] DY, .

k=1 =1
(5.10)
Vi (l+1)= Y (ZH);Y“ (t+1) (5.11)
Then from (5.3) and (5.9)—(5.11), straightforward computations show that
Y (1+1)

:Y/lj(l—f‘l)—Fffzj(l—Fl)

P q
- u ) ) ) 2
=Y; () -3 ZD( ) (Z AinY; () Bjx+ > EjiYig (l)Fj,t> D
- t=1
q
n <ZAJ W () Bt B, <l>Fj_1,t>
o t=1

4 4
K 3
7§ZZD§—)M} J= 1tY (1) Fj- 1tDJ 1,0 (5.12)

Using vector straightening operator on both sides of relation (5.12) and ap-
plying Lemma 2.1 yield that

vec [}7] I+ 1)}

p
M 2 1 4
= [1—2 <§ > D?B!, D! )Ajk+§ § D, FL, @D, UEj_l,tﬂ

q p
H 4
3 >0 (Dy(‘—)l Blie D, vAj—Lk)VeC [ -1 (1 + 1)}

which is equivalent to

P
%Z (D4§4—)1 Blwe D, vAj—Lk)VeC [ -1 (1 + 1)}
v=1k=1
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+ vec [ T(+1)
bS8 pe (1) ~N- )
T T
- 1_5 (ZZDLSB] k®DasAJ¥k+ZZDg 10F5-1 t®DJ 1.0Ej 1t>‘|
s=1 k=1 v=1 t=1
; ENN (D 1)
X vee {Yj (Z)} -5y (D] Fl, @ DV E; )vec [YJH (1)}
s=1t=1
j=2,...,7—1 (5.13)
e When j = v, it follows that
Yi,(+1)
P
1)+ ,LLZD,()}Z
s=1
P q
x [Cv —~ <Z Ay kYy (1) By + Y By Yi(1+1) Fw> D), (5.14)
k=1 t=1
Yo, (I+1)
+ UZ D'(ys 1,0 -
P q A
- (Z A'yfl,kyﬂyfl (l + 1) Bwfl,k + Z E’Y*LtY’Y (l) FwM)} D§ )1 RIB)
k=1 t=1
(5.15)
Yio(l+1)+Y, (1 +1
Y, (4+1)= Ly (U >;L 2 I+ D) (5.16)
Then the combination of (5.3) and (5.14)—(5.16) results in
Y, (141)
. 5}1,7 (l+ 1) +}~/2"y (l“!‘ 1)
B 2
u P ~ q .
) ZD@ (Z Ay ¥y () By + ) EyaVi(L41) F) D,
k=1 t=1

p q
+3. 0%, <Z Ay )Yy U4+ 1) Bk + > By 14Y5 (D) Fw—M)
k=1

t=1

p p
_ v _ K (1) (2)
=Y, ( 5 ;;D A, 1Y, (1) By D)

DME, Y1 (1+1)F, D)

] M@

y P
_52
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Dsfl,vAv—l,kf/ﬂ/—l (1 +1) By_1,DY

\
=
M=

~y—1,v

\
N =

M- 1
M- 114

D'(ygjlv = 1tY (l) Y= 1tD'y 1,v° (517)

<
Il
—
~+
Il

1

By applying the vector stretching function to (5.17) and according to Lemma
1, it has

vec [YW (I+ 1)}
M p p
2 T 1
I — 5 <Z ZD’(Y%B’YJC & .D,(y gA'y k
- @) 3)
D WL S|

X vec {f@ (l)} — gz Z (DEYQFA{Tt ® DglgE%t>vec [}71 1+ 1)}

q p
_%ZZ(DQ{)MBT @D AL m)vec[ = 1(l+1)} (5.18)

s=1t=1
K ke (4) (3)
+§ZZ<D7 IUBle.@D’y l’UA'Y 1k>VeC|:Y,Y 1(l+1):|
v=1k=1
+ vec {Ny I+ 1)}
Py
A @) gT (1)
= I 2(2217%3 ® DA
s=1k=1
a q .
15 9 LI | X0 A
v=1t=1
In view of (5.8), (5.13) and (5.19), we deduce that
vec _)71 I+ 1)} vec |V} (l)]
vec _572 I+ 1)} vec | Y (l)]
K . —(r_* :
(I + 2L> : - (I 2H) : , (5.20)
vee |V, (1 + 1)} vec |V, (l)}
vec _)77 1+ 1)} vec _f/fy (l)}
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where the matrices L and H are defined as in (5.2). It is evident that [ + §L is a
nonsingular matrix, then it follows from (5.20) that

vec :171 I+ 1)} vec :171 (1)}
vec :Yz 1+ 1)} vec Y2 (z)}
- (I + %L)_1 (I - %H) : . (5.21)
vec :Yq,l I+ 1)} vec :Yq,l (1)]
vec :Y/7 I+ 1)} | | vec :ﬁ (l)] |

and the matrix (I + 4L) ! (I — LH) is the iteration matrix of the MJGI algorithm.
Therefore, the MJGI algorithm is convergent if and only if the parameter p satisfies

p|(r+52) " (1= 41)] <1,

which completes the proof of this theorem. O

6. Numerical experiments

This section provides several numerical examples to validate the effectiveness and
advantages of the proposed algorithms, and compare their numerical performances
with those of the GI, JGI and AJGI ones, with respect to the number of iteration
steps (IT) and the elapsed time in seconds (CPU). All numerical experiments are
computed in MATLAB (version R2018b) on a personal computer with AMD Ryzen
7 5800H, CPU 3.20 GHz and 16.0 GB memory.

Example 6.1. Counsider the discrete-time periodic Sylvester (DTPS) matrix equa-
tions

AJY] +}/J+1Bj = ij .7: 17273a

with the following coefficient matrices:

[ 27 09] [ 27 0.9
A= ® Izpp + I200 ® )
-1.12.3 -1.12.3
[ 4.2 1.3_ [ 4.2 1.3-
Ay = ® Iapp + I200 ® .
_—1.9 3.8_ _—1.9 3.8_
6.1 3.8 6.1 3.8
Az= ® Izpp + I200 ® ;
_—3.1 6.3_ _—3.1 6.3_
1.5 -0.2 1.5 -0.2
B = ® Iogo + Io00 @ ;
0.4 1.0 0.4 1.0
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2.1 -04 2.1 -04
By= ® Ia00 + I200 ® ;
0.4 2.0 0.4 2.0
3.1 -0.6 3.1 -0.6
B3 = ® Ia00 + I200 ® ;
_0.7 3.5 | _0.7 3.5 |
13.2 10.6 13.2 10.6
Ci= ® I200+ 1200 ® ,
i 0.6 8.4 | i 0.6 8.4 |
26.4 21.2 26.4 21.2
Co= ® I200+ 1200 ® ;
1.2 16.8 1.2 16.8
38.6 32.1 38.6 32.1
Cs3= ® Ia00 + I200 ®
1.6 24.2 1.6 24.2

In our computations, the initial matrices are taken to be
Y;(0) = 107 x I400,5 = 1,2, 3,

and all iterations are terminated once

3
2 1€ = A% (D) = Yia (1) B;|?
j:

RES =

=1
IC1I* + | Call® + 1C51®

with 1 being a positive number, or [ reaches the maximal number of iteration steps
Imax = 10000.

For all tested algorithms, their parameters are the experimentally found optimal
ones which minimize their IT. And the experimental optimal parameters, IT, CPU
time and RES of the GI, JGI, AJGI and EJGI algorithms for Example 6.1 with
respect to five different values of n are listed in Table 1. Comparing the numerical
results of Table 1, we see that all tested algorithms can successfully compute ap-
proximate solutions satisfying the prescribed stopping criterion, and their IT and
CPU time increase gradually with decreasing of 1. Meanwhile, the proposed EJGI
algorithm performs better than the GI, JGI and AJGI ones in terms of both the IT
and CPU time. The IT and CPU time of the EJGI algorithms are less than half of
those for the GI one, and are almost one half of those of the JGI one. Additionally,
the proposed EJGI algorithm is more stable than the other ones in view of IT, due
to the fact that the variational range of the IT of the former one is smaller than
those of the latter ones. Finally, the numerical results in Table 1 show that the
new updated technique applied in the EJGI algorithm can improve the convergence
speed of the AJGI and JGI ones effectively, and the EJGI algorithm has higher
computational efficiency than the AJGI and JGI ones.

To better show the superiority of the proposed EJGI algorithm, RES(log10) of
four tested algorithms with respect to IT are depicted in Figure 1 for four different
values of 7. It follows from Figure 1 that all tested algorithms are convergent, and
the EJGI algorithm has advantages over the other ones in view of IT, because it
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requires less IT to achieve the termination criterion. Additionally, the advantage
of the EJGI algorithm becomes more pronounced as the value of 1 decreases. This
further confirms that the superiority of the EJGI algorithm for solving the discrete-
time periodic Sylvester matrix equations. These conclusions are in accordance with
the results of Table 1, and indicate that the convergent speed of the EJGI algorithm
is the fastest among the tested algorithms.

Table 1. IT, CPU and RES of four GI-like algorithms for Example 6.1 with five values of 7.

Algorithm n
10—11 10—12 10—13 10—14 10—15
GI IT 193 213 233 254 274

n=132e—-02 CPU 4.2756 4.7080 5.1694 5.6498 6.1270
RES 9.7007e-12 9.8186e-13 9.9392e-14 8.9720e-15 9.0839e-16

JGI IT 167 184 201 218 235

n=137e—02 CPU 3.6882 3.9536 4.3340 4.6930 5.1178
RES 9.6503e-12 9.5642e-13 9.3266e-14 9.0767e-15 9.0251e-16

AJGI IT 94 103 112 122 131
pw=>54e—-02 CPU 2.0608 2.2297 2.4185 2.6734 2.8348

w = i RES 8.9108e-12 9.1837e-13 9.5810e-14 7.9475e-15 8.4493e-16
EJGI IT 84 91 99 106 114
n=091le—02 CPU 1.7813 1.9564 2.1095 2.3178 2.4503
w=1 RES 9.3393e-12 8.8473e-13 7.7208e-14 9.6760e-15 9.2025e-16

6

Example 6.2. Counsider the discrete-time periodic Sylvester (DTPS) matrix equa-
tions

Ajy}‘ + Y}+1Bj = Cj, ] = 1,2,3,

where the coefficient matrices are as follows:

A1 =1, ® G; +0.022E5 @ triu(ones(5,5)) + 0.015E; ® tril(ones(5,5)),
As = I, ® Gy + 0.013E5 ® triu(ones(5,5)) + 0.020E; ® tril(ones(5,5)),
As =1, ® G3 + 0.016E2 @ tril(ones(5,5)) + 0.013E; ® triu(ones(5,5)),
By =1, ® Hy + 0.012E; ® tril(ones(5,5)) + 0.016 1 ® triu(ones(5,5)),
By =1, ® Hs + 0.011F; ® triu(ones(5,5)) + 0.021 E; ® tril(ones(5,5)),
B3 = I, ® H3 + 0.014F; ® tril(ones(5,5)) + 0.015E; ® triu(ones(5,5)),

Cy =L T +0.52F; & triu(ones(5,5)) + 0.31E, ® tril(ones(5,5
Cy =1, ® Ty + 0.29E; ® triu(ones(5,5)) + 0.34E; & tril(ones(5,5
C3 =1, ® T3+ 0.54F; ® tril(ones(5,5)) + 0.41FE; ® tril(ones(5,5)),

)
)
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Figure 1. Comparisons for the convergence curves of four GI-like algorithms for Example 6.1.

with

_3.0725 0.0975 0.1576 0.1419 0.6557_
0.9058 1.8103 0.9706 0.4218 0.0357
G1 = | 0.1270 0.5469 2.7743 0.9157 0.8491 | ,
0.9134 0.9575 0.4854 4.0874 0.9340
0.6324 0.9649 0.8003 0.9595 2.9334

_2.1122 0.3517 0.2858 0.0759 0.1299_
0.1966 2.6938 0.7572 0.0540 0.5688
G2 = | 0.2511 0.5853 2.5827 0.5308 0.4694 | ,
0.6160 0.5497 0.3804 2.4573 0.0119

0.4733 0.9172 0.5678 0.9340 2.7544
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G3

Hy =

Hy =

Hs =

Ty

T =

—7.4617 0.9200 0.1939 0.5488 0.6273
0.0199 —1.7766 0.9048 0.9316 0.6991
0.4199 0.3678 —7.23740.3352 0.3972
0.7597 0.6208 0.6318 —6.4845 0.4136

_0.1529 0.7621 0.6154 0.4057 0.0579
—0.2311 0.1033 0.7919 0.9005 —0.3529
0.0068 0.0185 0.0470 —0.0169 0.5132
0.2860 0.0214 0.2382 —1.0898 —0.0099
0.8913 0.4447 0.1763 0.8936 1.0085

_0.0962 0.6979 0 0 0.0010
0.6822 0.3353 0.3998 0 0
0.1028 0.8600 0.0740 0.2897 0
0.5417 0.8537 0.6449 —0.5403 0.5681

0.1509 0.4936 —0.8180 0.5341 —0.3587

-0.2536 0.1259 0 0 0
0.2235 0.1233 0.1798 0 0
0.5155 0.6604 0.0513 —0.0592 0 5
0.3340 0.5298 0.6808 0.1317 0.0150

—0.4329 0.5405 0.4611 0.0503 0.0431

—5.7240 0.4984 0.7513 0.9593 0.8407

0.6797 —5.0403 0.2551 0.5472 0.2543
0.6551 0.3404 —5.4940 0.1386 0.8143
0.1626 0.5853 0.6991 —5.8507 0.2435

—5.7240 0.4984 0.7513 0.9593 0.8407
0.6797 —5.0403 0.2551 0.5472 0.2543
0.6551 0.3404 —5.4940 0.1386 0.8143
0.1626 0.5853 0.6991 —5.8507 0.2435

0.1190 0.2238 0.8909 0.2575 —5.0707

0.1190 0.2238 0.8909 0.2575 —5.0707

0.7939 0.7313 —0.2344 0.3919 —2.4036
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—5.7240 0.4984 0.7513 0.9593 0.8407
0.6797 —5.0403 0.2551 0.5472 0.2543
T5=10.6551 0.3404 —5.4940 0.1386 0.8143 )
0.1626 0.5853 0.6991 —5.8507 0.2435

0.1190 0.2238 0.8909 0.2575 —5.0707

01 00
E, = , By =
00 10

In this example, we choose the initial matrices to be
Y;(0) =107°% x I19,5 = 1,2,3

and adopt the termination criterion as in Example 6.1, i.e.,

3
Zl IC; = A;Y; (1) = Yiga (1) By
RES = | 1= <
IC1II* + 1C2]1* + [|Cs®

with n > 0 or [ exceeds the prescribed maximal number of iteration steps 10000.

As in Example 6.1, the parameters adopted in the GI, JGI, AJGI and EJGI
algorithms for Example 6.2 are the experimentally found optimal ones, which are
obtained experimentally by minimizing the corresponding iteration steps. In Table
2, we list the parameters, IT, CPU time and RES of the tested algorithms for Ex-
ample 6.2 with five different values of 7. According to the numerical results in Table
2, we can conclude some observations: Firstly, all tested algorithms are valid for all
cases. Secondly, the IT of all tested algorithms are increasing with the decreasing
of 1. Thirdly, the numerical performances of the JGI and the AJGI algorithms
are comparable, and they outperform the GI one with respect to computational
efficiency. Fourthly, among the tested algorithms, the proposed EJGI algorithm
performs the best in view of IT and CPU time, and the advantage becomes more
pronounced as 71 decreases. Besides, the IT and CPU time of the EJGI algorithm
are almost one in ten of those for the GI one. Finally, the EJGI algorithm is the
most stable among the tested algorithms, because the variational range of IT of the
EJGI algorithm is the smallest compared with other tested ones. In summary, the
EJGI algorithm has higher computational efficiency than the GI, JGI and AJGI
ones, and applying the new updated technique to the JGI one can ameliorate the
convergence speeds and efficiencies of the GI, JGI and AJGI ones.

In Figure 2, we compare the RES(logl0) curves of the GI, JGI, AJGI and EJGI
algorithms in terms of IT with n = 107!2 and n = 104, It can be seen from
Figure 2 that the IT of the JGI, AJGI and EJGI algorithms are far less than that
of the GI one. This indicates that the JGI, AJGI and EJGI algorithms have faster
convergence rates than the GI one, which coincides with the results in Table 2. To
further confirm the effectiveness of the proposed EJGI algorithm compared with
the JGI and AJGI ones, the graphs of RES(log10) against number of iterations for
four different values of n are displayed in Figure 3. By observation, we find that
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Table 2. IT, CPU and RES of four GI-like algorithms for Example 6.2 with five values of n.

Algorithm n
10710 10~ 10712 10713 107
GI IT 6587 7339 8090 8841 9595

1 =>5.988e —02 CPU 0.2202 0.2751 0.2821 0.3060 0.3232
RES 9.9984e-11 9.9697e-12 9.9718e-13 9.9795e-14 9.9910e-15

JGI IT 731 813 896 978 1061

©n=206.82e—02 CPU 0.0222 0.0333 0.0399 0.0438 0.0344
RES 9.8601e-11 9.9699e-12 9.8119e-13 9.9302e-14 9.7611e-15

AJGI IT 724 806 887 969 1050

1 ="7.565e — 01 CPU 0.0222 0.0320 0.0357 0.0345 0.0342

w = % RES 9.9059e-11 9.7627e-12 9.9075e-13 9.7742e-14 9.8805e-15
EJGI IT 682 759 835 912 988
w=2175e—-1 CPU 0.0207 0.0284 0.0279 0.0254 0.0271

w = ﬁ RES 9.8787e-11 9.7136e-12 9.8593e-13 9.7236e-14 9.8030e-15

among these tested algorithms, the EJGI one is the most effective algorithm as
its residual reduces the fastest, and the advantage of the EJGI algorithm becomes
more pronounced as the value of 1 decreases. This is consistent with the results in
Table 2.

n=le-13 n=le-14
0
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Figure 2. Comparisons for the convergence curves of four GI-like algorithms for Example 6.1 with
n=10"% and n = 1071

Example 6.3. Consider the generalized discrete-time periodic Sylvester (GDTPS)
matrix equations

2 2
S A YiBj+ Y EjuYjaF, =Cjj =123,

s=1 v=1
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Figure 3. Comparisons for the convergence curves of the JGI, AJGI and EJGI algorithms for Example
6.2.

where the coefficient matrices are as follows

+ 0.015E3 @ tril(ones(30, 30)),
+ 0.017E4 @ tril(ones(30, 30)),
+ 0.021 E4 ® tril(ones(30,30)),
+ 0.025F5 ® tril(ones(30, 30)),
+ 0.008 B4 ® tril(ones(30, 30)
+ 0.013E; ® tril(ones(30, 30)
(ones(30,30)
(ones(30,30)
(ones(30,30)
(ones(30,30)
(ones(30,30)
(ones(30,30)

A1 = I ® Gi1 + 0.022E5 ® triu(ones(30,30))
)
)
)
)
)
)+ 0.018F3 ® tril 30, 30
)
)
)
)
)

(ones( )
Az = I ® G2 + 0.012F; ® triu(ones(30, 30)
Ay = Iy ® Go1 + 0.011F5 ® triu(ones(30, 30)
Asgs = Iy @ Gas + 0.012F; ® triu(ones(30, 30)
As1 = I ® G31 + 0.031E3 ® triu(ones(30, 30) ,
Asa = Iz ® Gs2 + 0.024F5 ® triu(ones(30, 30)
By = Iy ® Hyp + 0.020E, ® triu(ones(30, 30)
Bis = Iy ® His + 0.032E, ® triu(ones(30, 30)
Bo1 = Iy ® Ha + 0.017E3 @ triu(ones(30, 30)
Bos = I ® Hos + 0.026E5 ® triu(ones(30, 30)
B3y = Iy ® Hz1 + 0.032E5 ® triu(ones(30, 30)
Bss = I50 ® H3e + 0.012F5 ® triu(ones(30, 30)

ones ,
4+ 0.011F; ® tril(ones(30, 30
4 0.025F5 ® tril(ones(30, 30
4+ 0.035F1 ® tril(ones(30, 30
+ 0.025F4 ® tril(ones(30, 30

4+ 0.033FE1 ® tril(ones(30, 30

)
)
)
)

)
)
)
)
)
);
)
)
)
)
)
)

)
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Ey1 =T11 ® Iy + 0.012E7 ® triu(ones(30, 30
Eis = Ti2 ® Iy + 0.032E3 ® triu(ones(30, 30
By = T51 @ Ing + 0.022E3 ® triu(ones(30, 30
Eoy = The ® Ing + 0.023E, ® triu(ones(30, 30
E31 = T31 ® Iy + 0.019E5 ® triu(ones(30, 30
E3o = T35 ® Iy + 0.021 FE1 ® triu(ones(30, 30
Fi1 = Wi ® Iy + 0.023E; ® triu(ones(30, 30
Fio = W13 ® Iso + 0.012E, ® triu(ones(30, 30
Fy; = Wo1 ® Ing + 0.017E; ® triu(ones(30, 30
(ones(
(ones(

)
)
)
)
)
)

)

) (ones(

)+ 0.012E3 ® tril(ones(30, 30
) + 0.015E3 ® tril(ones(30, 30
) (ones(
) (ones(

)
)
),
Foy = Woy ® Isg + 0.013E5 ® triu(ones(30, 30 )
F31 = W31 ® Isg + 0.029F, ® triu(ones(30,30 )
)

+ 0.015FE4 ® tril(ones(30, 30

?

)
)
)
)
)
) + 0.018F3 ® tril(ones(30, 30
)
)
)
)
)

Ci=I@Vi+Vi®Iy, Co=1I®Ve+Vo® Iz, C3=10® V3 + V3 ® Iz,
with

_3.2796 0 0 2.6844 0.0357 0.6787
Gi1= (09058 0 0.5469 | , Gi2 = | 0.9595 2.3810 0.7577 | -

| 0.1270 0.0975 3.3732 0.9595 0 0
[0 0.0206 0.1140 0.1339 —0.5163 —0.1176
Ga1=[0.0478 0 0.3962 |, Ga2 = | —0.1176 1.0520 —0.1478 | ,
| 0.5940 0.8986 —1.0405 —0.6505 —0.6618 0.2441
[ 8 0.0838 0.3524 0 0.8001 O
Gs31 = | 0.7482 —8.4872 0.8258 |, G2 = 0 35764 0 ;
0.4 0.9133 —7.9728 0.2599 0.8 3.6588
(100 (100 100 100

Hii1=1010|, H2=|010|, Hau=|010]|, Hae=1(010],
1001 001 001 001

(100 (100 500 100
Hs = |010|, H2=|0090]|, Tii=1{050]|, Tia= {0101,

001] 001 005 001
150 0 100 800 100
To1=10150 |, T22=[010|, Z3:= |080 |, I32= 010,
0 0 15 001 048 001
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0 003 0 47 0 0.7513
Wii=| 0 46934 0 |, W= |0.4984 —2.0802 0.2551 |
109502 0 1.8495 0.9597 0.2238 —2.6312
[ _1.5165 0.3500 0.6160 | [0 0.7792 0.5688
War= | 02435 —1.5802 0 |, Was = | 0.0540 —1.2131 0.4694 | ,
| 09293 0.2511 —1.7162 | 053 01299 0
[ _3.1652 —0.4357 —0.4302 | [ 0.28 0.310.0855
Wai = | —0.1707 —1.5373 —0.1848 | , Waa = | 011 0 0.2625 | ,
| —0.2277 —0.9234 —3.0385 | 0.2067 0 1.8946
[10.6009 0.9114 2.9006 3.0733 —8.6223 0.4267
Vi = [50.911119.5182 16.3448 | , Vo = | —0.7762 —3.2363 —13.3910 | ,
| 48.8167 65514 7.1615 ~19.4331 4.4601 10.7858

-70.7251 —7.3488  3.0989
Va=| —1.7189 —19.4865 —31.2162 | ,

| —46.5468 5.0599  5.4487

01 00 00 00
E1: 7E2: 7E3: 7E4*
00 10 10 01

For this example, we adopt
YJ(O) = 1076 X 1607j = 17273a

as the initial matrices for all tested algorithms, and all iterations are terminated
once

r(l+1)
ES = )
R sy =0
with ¢ being a positive constant and
2 2 2
r0)=>|Cr =Y AY; () Bjs = > BiYiea () Fol|
j=1 s=1 v=1

or the number of iteration steps [ reaches the prescribed maximal number of iteration
steps lmax = 10000. And the latter case is marked by “Fail” and “—” in tables.

As for Examples 6.1-6.2, the parameters of the GI, JGI and MJGI algorithms
are adopted to be the experimentally found optimal ones which minimize their
IT. In Table 3, we compare the numerical results of the three tested algorithms
for Example 6.3 with five different values of §. From the results in Table 3, it is
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Figure 4. Comparisons for the convergence curves of three GI-like algorithms for Example 6.3 with
§=10""" and § = 1072

5=1e-11 5=1e-12

RES(log10)

0 100 200 300 400 500 o 100 200 300 400 500 600

200 300 400 500 600 700

o 100 200 300 400 500 600 0 100
IT

IT

Comparisons for the convergence curves of the JGI and MJGI algorithms for Example 6.3.
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Table 3. IT, CPU and RES of three tested algorithms for Example 6.3 with five values of J.

Algorithm 0
10~ 10712 10713 1071 10719
GI IT 1980 2191 2402 2615 Fail

pw=243e—-3 CPU 3.9936 4.7360 4.9651 5.1907 -
RES 9.9423e-12 9.8927e-13 9.8948e-14 9.9586e-15
JGI IT 494 540 588 633 701
nw=38le—3 CPU 1.1895 1.2923 1.3002 1.4048 1.5182
RES 9.9490e-12 9.5835e-13 9.6901e-14 9.9507e-15 9.9620e-16
MJGI IT 442 482 525 566 620
w=4.22¢e—-3 CPU 1.0044 1.1603 1.1428 1.2306 1.3378
RES 9.5747e-12 9.9003e-13 9.7730e-14 9.7858e-15 9.9989%¢-16

observed that all tested algorithms are convergent for all cases except that the GI
algorithm fails to converge for § = 107*°. And when the calculation error decreases,
the IT and CPU time of the tested algorithms increase. In addition, the proposed
MJGI algorithm has better numerical performance than the other ones due to the
fact that the IT and CPU time of the former one are always less than those of
the GI and JGI ones. And the advantage of the MJGI algorithm becomes more
pronounced as the value of § becomes smaller, because the numerical performance
gap between the MJGI algorithm and GI, JGI algorithms is increasingly larger with
the decreases of §. Also, the IT and CPU time of the MJGI algorithm are nearly
one fourth of those of the GI one. Last but not least, the changing scope of the
IT for the proposed MJGI algorithm is smaller than those of the GI and JGI ones,
which indicates that the stability of the MJGI algorithm is the highest among all
tested algorithms. All in all, the technique utilized in the MJGI algorithm can
improve the convergence speeds of the GI and JGI ones, and the MJGI algorithm
outperforms the other ones from the point of view of computing efficiency.

To better validate the advantage of the MJGI algorithm, we present the graphs
of RES(log10) against IT of the three tested algorithms in Figure 4 for § = 101!
and § = 107'2. As shown in Figure 4, all algorithms are convergent while the
MJGI algorithm has faster convergence rate than the GI and JGI ones as the IT
of the MJGI algorithm is the least among the tested algorithms. This is consistent
with the results in Table 3. To further verify the superiority of the proposed MJGI
algorithm to the JGI one, we plot the IT curves of the MJGI and JGI algorithms
with respect to four different values of ¢ in Figure 5. From Figure 5, we observe
that the MJGI algorithm performs better than the JGI one in view of IT, and the
advantage of the MJGI algorithm is more obvious when the value of § becomes
smaller.

7. Conclusions

In this work, we first correct some errors in the convergence proofs of the JGI and
the AJGI algorithms in [31], and establish new and correct convergence conditions
of these two algorithms. Then by applying a new update technique to the JGI
algorithm, we develop a new algorithm called the EJGI algorithm for the DTPS
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matrix equations, which is different from the AJGI one and has advantage over the
AJGI one. In addition, we combine the idea of the Jacobi method with the up-
date strategy, and construct the MJGI algorithm for the GDTPS matrix equations,
which requires less computations than the GI one. Besides, compared with the
JGI algorithm, the MJGI algorithm can use the latest results to compute the next
results, which leads to a faster convergence rate. In addition, by making use of the
properties of the vector stretching operator, matrix norm and Kronecker product of
two matrices, we establish the convergence theorems of the the EJGI and the MJGI
algorithms. Finally, numerical experiments are performed to show the effectiveness
and the superiorities of the new algorithms.

However, the convergent intervals of the parameters p,w in the EJGI and the
MJGI algorithms and their optimal values have not been derived at present. We will
investigate these problems in our future work, which are meaningful to implement
the EJGI and the MJGI algorithms effectively in practical applications.
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