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Abstract This paper proposes a Haar wavelet collocation approach to solve
neutral delay differential equations on a metric star graph (NDDE-MSG) with
κ edges. The application of Haar wavelet, together with its integration on
NDDE-MSG, yields a system of equations, which on solving gives unknown
wavelet coefficients and subsequently the solution. The upper bound of the
global error norm is established to demonstrate that the proposed method
converges exponentially. We conduct some numerical experiments to test the
computational convergence of our approach. In this study, the authors explore
the numerical solution for NDDE on metric star graphs for the first time.
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1. Introduction

A particular class of delay differential equations (DDEs), neutral delay differential
equations (NDDEs), are frequently used to model biological, physiological, chem-
ical, and electronic processes, as well as transportation systems (controlling ships
and aircraft), neural networks, and economic growth. There is great interest in
neutral delay differential equation systems among researchers; refer [26] and refer-
ences therein. In particular, epidemiology [8] experienced a delay due to the time
interval between infection and the formation of new viruses; immunology [3] expe-
rienced a delay because of the duration of infectious and immunological periods;
population dynamics [9] experienced the delay due to the life cycle phases. In [17],
the authors used modified Euler sequences to prove the existence and uniqueness
of the solution of NDDEs triggered by state-dependent delays. In [15], the authors
used the concept of fixed point theory in 𭟋-metric space to demonstrate the exis-
tence and uniqueness of NDDEs with unbounded delay. The literature discusses the
asymptotic behavior, existence, and uniqueness of higher-order differential equation
solutions; see [4, 10]. A rich literature exists for the numerical solution of NDDEs

†The corresponding author.
1Department of Mathematics, School of Advanced Sciences, VIT-AP Univer-
sity, Andhra Pradesh-522237, India

2Department of Mathematics, Jamia Millia Islamia, New Delhi-110025, India
3Department of Mathematical Sciences, College of Science, United Arab Emi-
rates University, Al-Ain 17551, UAE
Email: mofaheem1110@gmail.com(M. Faheem), akhan2@jmi.ac.in(A. Khan),
fathalla rihan@hotmail.com(F. A. Rihan)

http://www.jaac-online.com
http://dx.doi.org/10.11948/20240402


Wavelet method for NDDE 2125

since analytical solutions are difficult to obtain due to delays. Some authors used
Taylor series expansion to remove the delayed component from NDDEs and re-
duced them to ordinary differential equations; see [16, 25]. While this technique
maintains the stability criteria of DDEs, it also adds the error term associated with
the Taylor series truncation to the overall error, resulting in an overall reduction in
consistency. As a result, researchers developed numerical methods for addressing
the delay term directly. The works of authors in [6, 7] and references therein are
particularly noteworthy.

The abovementioned applications motivated us to study neutral delay differen-
tial equations on the metric star graph. Indeed, investigating differential equations
on the metric star graph is crucial to studying various natural phenomena. Partial
differential equations (PDEs) on a graph can explain several other essential pro-
cesses, such as the flow on gas pipeline networks [31] and the propagation of water
waves in open channels [33]. The investigation of wind-induced vibrations in spider
webs, the blackout of electricity distributions via connected wires, and the propaga-
tion of electrons can be easily studied by PDE-MSG, which can only travel along the
atomic bonds of a connected structure because of excessive potential restrictions.
A network-like system was used for the first time in the 1940s to study differential
operators. Differential equations on network-like domains have their roots in the
studies of Kron [18], as well as Ruedenberg and Scherr [27]. Numerous studies have
been published on solving ODEs and PDEs on graphs; see [19,20].

On the other hand, wavelets have proven to be an effective tool for computation.
The critical properties of wavelets, including compact support and well localization,
make them straightforward. The use of wavelets is often associated with high-speed
computations. As a key tool for investigating differential equations, wavelets are
extensively used [1, 2, 11, 13, 14, 23, 24, 28, 29, 32]. For example, Chebyshev cardinal
wavelets have been utilized by Heydari and Razzaghi to solve time-fractional cou-
pled Klein–Gordon–Schrödinger equations and fractional integro-differential equa-
tions involving the ψ−Caputo fractional derivative [12,13]. In the literature, several
studies have addressed the solution of differential equations on graph using wavelets.
For instance, a Haar wavelet method was developed by Faheem and Khan [5] in con-
junction with the convergence analysis for fractional diffusion equations on graphs.
We also refer to [21, 30] and references therein for more information about wavelet
collocation methods for differential equations on metric graphs. This paper approx-
imates the solution to neutral delay differential equations on a metric star graph
(NDDE-MSG) using Haar wavelet.

Consider the graph G(V ,E) with a finite number of vertices (nodes) V = {vr}κr=0

and edges E . This study examines a metric star graph [22] with continuous edges E .
Thus, every edge E = {er}κr=1 has an open interval (0, lr) with lr > 0. An example
of a metric star graph is shown in Figure 1. This paper analyzes the following
NDDE-MSG:

∂tur(x,t) = Fr

(
x,t, ur, ur

(
x,t− τr

)
, ∂xur(x,t), ∂xur(x,t− τ1,r), ∂xxur(x, t),

∂xxur(x,t− τ2,r)
)
, x ∈ (0, lr) , t ∈ (t0, tf ) , (1.1)

ur(x,t) = φr(x,t), t ≤ t0, (1.2)

ur(0, t) = us(0, t), r ̸= s, r = 1(1)κ, s = 1, 2, . . . , κ, (1.3)
κ∑

r=1

∂xur(0, t) = 0, (1.4)
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ur (lr, t) = 0, 1 ≤ r ≤ κ, (1.5)

where Fr ∈ C
(
[0, lr]× [t0, tf ]× R6;R

)
is a Lipschitz function in last six argu-

ments, φ(x,t)
(
= {φr(x,t)}κr=1

)
∈ C

(
G(V ,E)× [t0 − τr (x,t, ur(x,t)) , tf ] ;R

)
, and

τr, τ1,r, τ2,r are continuous functions on [t0, tf ] × [0, lr] × R such that t − τr ≤
tf , t − τi,r < tf , i = 1, 2. Equation (1.3) is known as the continuity condition,
while equation (1.4) is known as the Kirchhoff condition. Our work focuses on
solving equations (1.1) to (1.5) numerically using Haar wavelet. To the best of
the authors’ knowledge, this is the first attempt to solve NDDEs numerically on
a metric star graph. Due to its accuracy and ease of implementation, we chose
the Haar wavelet method over other numerical methods, such as finite difference
schemes, collocation methods based on spline polynomials, and Galerkin methods.
Generally, the aforementioned numerical methods have a constant order of conver-
gence and require a large number of iterations or grid points to achieve desirable
accuracy. In contrast, the Haar wavelet method exhibits exponential convergence
and requires only a few grid points to produce accurate results. Since Haar wavelets
uses piecewise functions as bases and have compact support, wavelets yield sparse
matrices in the approximation, and hence significantly reducing the computational
cost of the algorithm. Moreover, we use an integral operator approach, wherein the
highest order mixed derivative is approximated in terms of Haar wavelets, and its
integration is used to approximate the lower derivatives and the unknown variables.
This approach effectively handles the continuity and Kirchhoff conditions of NDDEs
on metric star graphs. This paper makes the following contributions:

• A metric star graph is used to study neutral delay differential equations for
the first time.

• A Haar wavelet method has been developed to approximate the solution of
NDDE-MSG. Both spatial and temporal derivatives are approximated using
Haar wavelets and their integrations.

• Wavelet bases and their integration have been directly used to approximate
the delayed terms presented in NDDE-MSG.

• The proposed method converges exponentially based on the error bound es-
tablished for its theoretical applicability.

The paper is organized as follows. Section 2 provides a few basic definitions
and preliminaries related to wavelets and metric star graphs. The Haar wavelet
and function approximation are briefly discussed in Section 3. A general order
integration of the Haar wavelet is given in Section 4. Section 5 discusses in detail
about the numerical method for solving NDDE-MSG. In Section 6, we establish
the convergence analysis and error bounds for the approach. Section 7 presents
five numerical examples based on NDDE-MSG using the method developed. The
conclusion is provided in Section 8.

2. Preliminaries

The rest of the manuscript relies on some basic definitions and symbols which are
provided in this section.
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Figure 1. Simplified schematic representation of a metric star graph consisting κ edges.

We define the following space on metric star graph G(V ,E):

L2(G(V ,E)) = Πκ
r=1L

2 (0, lr) , (2.1)

with the following inner product

⟨ur, vr⟩L2(G(V ,E)) =

κ∑
r=1

⟨ur, vr⟩L2(0,lr)
, (2.2)

where L2 (0, lr) be the Hilbert space. Let C(G) denotes the space of all continuous
functions on G(V ,E) endowed with the norm

∥u∥C(G) = sup
1≤r≤κ

∥u∥∞, (2.3)

where ∥.∥∞ is the standard Chebyshev norm.

Definition 2.1. Multiresolution analysis (MRA) is defined as the sequence of sub-
spaces {V j} of functions f ∈ L2(R) which meets the following axioms:

(i) V j ⊂ V j+1, ∀ j ∈ Z,
(ii) ∪

j∈Z
V j = L2(R),

(iii) The set {ϕ(· − k), k ∈ Z} forms an orthonormal basis for V 0,

(iv) If f(·) ∈ V 0 ⇒ f(2j ·) ∈ V j .

Let W j = {ψk
j , k, j ∈ Z} be defined as the subspace satisfying

V j ⊥W j and V j+1 = V j ⊕W j . (2.4)
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Applying equation (2.4) recursively yields

V J = V J0 ⊕
J−1⊕
j=J0

W j , J > J0. (2.5)

Now if we denote PV J f as the projection of f ∈ L2(R) onto V J then considering
equation (2.5) yields

PV J f(x) =
∑
k

hkjφ
k
j (x),

PV J f(x) =
∑
k

hkJ0
φk
J0
(x) +

∑
k∈Z

J0−1∑
j=1

gkj ψ
k
j (x), (2.6)

where hkJ0
’s and gkj ’s can be determined by utilizing the scaling and wavelet functions

as follows:

hkJ0
=

∫ ∞

−∞
f(x)φk

J0
(x)dx, gkj =

∫ ∞

−∞
f(x)ψk

j (x)dx. (2.7)

Definition 2.2. Multiresolution analysis (MRA) in two dimensions, is defined as
the sequence of subspaces {V jx,jt

2 } of functions f ∈ L2(R × R) which meets the
following axioms:

(i) V jx,jt
2 ⊂ V jx+1,jt+1

2 , ∀jx, jt ∈ Z,

(ii) ∪
jx,jt∈Z

V jx,jt
2 = L2(R×R),

(iii) The set {ϕ(· − kx, · − kt), kx, kt ∈ Z} forms an orthonormal basis for V 0,0
2 ,

(iv) If f(·, ·) ∈ V 0 ⇒ f(2jx ·, 2jt ·) ∈ V jx,jt
2 , where V jx,jt

2 = V jx ⊗ V jt and ⊗ denotes
the kronecker product.

Let W jx,jt
2 = {ψkx,kt

jx,jt
, jx, jt, kx, kt ∈ Z} be defined as the subspace satisfying

V jx,jt
2 ⊥W jx,jt

2 and V jx+1,jt+1
2 = V jx,jt

2 ⊕W jx,jt
2 . (2.8)

Applying equation (2.8) recursively yields

V Jx,Jt

2 = V
Jx,0,Jt,0

2 ⊕

jx=Jx−1
jt=Jt−1⊕
jx=Jx,0

jt=Jt,0

W jx,jt
2 , Jx > Jx,0, Jt > Jt,0. (2.9)

Now if denote P
V

Jx,Jt
2

f as the projection of f ∈ L2(R×R) onto V Jx,Jt

2 then consid-

ering equation (2.9) gives

P
V

Jx,Jt
2

f(x,t) ≈
∑
kx,kt

hkx,kt

jx,jt
φkx,kt

jx,jt
(x,t),

P
V

Jx,Jt
2

f(x,t) ≈
∑
kx,kt

hkx,kt

Jx,0,Jt,0
φkx,kt

Jx,0,Jt,0
(x,t) +

∑
kx,kt

Jx−1
Jt−1∑

jx=Jx,0

jt=Jt,0

gkx,kt

jx,jt
ψkx,kt

jx,jt
(x,t), (2.10)



Wavelet method for NDDE 2129

where hkx,kt

Jx,0,Jt,0
’s and gkx,kt

jx,jt
’s can be determined by utilizing the orthogonality of

scaling and wavelet functions as:

hkx,kt

Jx,0,Jt,0
=

∫ ∞

−∞

∫ ∞

−∞
f(x,t)φkx,kt

Jx,0,Jt,0
(x,t)dxdt, (2.11)

gkx,kt

jx,jt
=

∫ ∞

−∞

∫ ∞

−∞
f(x,t)ψkx,kt

jx,jt
(x,t)dxdt. (2.12)

3. Haar wavelet

A function ψ(x) is said to be a mother wavelet, if the following condition is satisfied:

2π

∫ ∞

−∞

|ψ̃(ξ)|2

|ξ|
dξ <∞, (3.1)

where ψ̃(ξ) stands for the Fourier transform of ψ(x). In general, we may reduced
the condition (3.1) to the following weaker requirement:∫ ∞

−∞
ψ(x)dx = 0. (3.2)

That is, a function ψ(x) is termed as mother wavelet if the total integral of the
function is zero.

Wavelet is a set of functions constructed by the dilation and translation of
mother wavelet ψ(x) and defined as:

ψd,T (x) = |d| 12ψ
(
xd−1 − Td−1

)
, T, d(̸= 0) ∈ R. (3.3)

The simplest example of wavelet is Haar wavelet which is constructed with help of
the scaling function φ(x) = 1, if x ∈ [0, 1) and zero otherwise. The scaling function
φ(x) satisfies the following dilation equation:

φ(x) =
√
2
∑
k

hkφ(2x− k), (3.4)

where h0 = h1 = 1√
2
and hk = 0, ∀ k > 1.

The Haar mother wavelet can be define with the assistance of the scaling function
φ(x) as follows:

ψ(x) =
∑
k

√
2gkφ(2x− k), with gk = (−1)kh1−k, (3.5)

where hk and gk are respectively the low pass and high pass filter coefficients cal-
culated for Haar wavelet as: g0 = 1√

2
, g1 = − 1√

2
and gk = 0, ∀ k ̸= {0, 1}.

Hence the Haar mother wavelet defined on [0, 1) as:

ψ(x) =


1, x ∈

[
0,

1

2

)
,

−1, x ∈
[
1

2
, 1

)
,

0, otherwise.

(3.6)
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Finally, we can obtained the Haar wavelet simply by dilating and translating the
Haar mother wavelet function ψ(x) as follows:

ψkx
jx
(x) =


1, x ∈

[
kx
2jx

,
kx + 0.5

2jx

)
,

−1, x ∈
[
kx + 0.5

2jx
,
kx + 1

2jx

)
,

0, otherwise,

(3.7)

where kx = 0, 1, 2, . . . , 2jx−1, jx = 0, 1, . . . , Jx − 1, where Jx denotes the level of
resolution.

Equivalently, we can define Haar wavelet for ix > 1 as:

ψix(x) =


1, x ∈

[
kx
2jx

,
kx + 0.5

2jx

)
,

−1, x ∈
[
kx + 0.5

2jx
,
kx + 1

2jx

)
, where ix = 2jx + kx + 1,

0, otherwise

(3.8)

and ψ1(x) =

{
1, x ∈ [0, 1),

0, otherwise.
(3.9)

Similarly, we can define Haar wavelet in temporal dimension for it > 1 as:

ψit(t) =


1, t ∈

[
kt
2jt
,
kt + 0.5

2jt

)
,

−1, t ∈
[
kt + 0.5

2jt
,
kt + 1

2jt

)
, where it = 2jt + kt + 1,

0, otherwise

(3.10)

and ψ1(t) =

{
1, t ∈ [0, 1),

0, otherwise.
(3.11)

The analytic expression of a function u ∈ L2[0, 1) in terms of Haar wavelet can be
obtained with the help of equation (2.6) as:

u(x) = h00φ
0
0(x) +

∑
kx

∑
jx

gkx
jx
ψkx
jx
(x). (3.12)

The finest projection of u can be obtained by the terminated sum as follows:

u(x) ≃ PV Jxu(x) = h00φ
0
0(x) +

∑
kx

Jx−1∑
jx=jx,0

gkx
jx
ψkx
jx
(x) =

Nx∑
ix=1

gixψix(x), (3.13)

where the coefficients gix ’s can be found by

gix =

∫ ∞

−∞
u(x)ψix(x)dx. (3.14)
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Similarly, the analytic expression of a function u ∈ L2([0, 1) × [0, 1)) in terms of
Haar wavelet can be found with the help of equation (2.10) as:

u(x,t) = h0,00,0φ
0,0
0,0(x,t) +

∑
kx,kt

∑
jx,jt

gkx,kt

jx,jt
ψkx
jx
(x)ψkt

jt
(t). (3.15)

The finest projection of u(x,t) can be obtained by the terminated sum as follows:

u(x,t) ≃ P
V

Jx,Jt
2

u(x,t)

= h0,00,0φ
0,0
0,0(x,t) +

∑
kx,kt

Jx−1
Jt−1∑

jx=jx,0
jt=jt,0

gkx,kt

jx,jt
ψkx
jx
(x)ψkt

jt
(t)

=

Nx∑
ix=1

Nt∑
it=1

gix,itψix(x)ψit(t), (3.16)

where the coefficients gix,it ’s can be found by

gix,it =

∫ ∞

−∞

∫ ∞

−∞
u(x,t)ψix(x)ψit(t)dxdt. (3.17)

4. Integration of Haar wavelet

Let J (m)
x ψix(x) and J (m)

t ψit(t) denote the mth order integrations of Haar wavelet
against x and t respectively. Then using expression (3.8), we have

J (m)
x ψix(x)

=



1

m!
(x− kx

2jx
)m, x ∈ [

kx
2jx

,
kx + 0.5

2jx
),

1

m!

((
x− kx

2jx

)m

− 2

(
x− kx + 0.5

2jx

)m)
, x ∈

[
kx + 0.5

2jx
,
kx + 1

2jx

)
,

1

m!

((
x− kx

2jx

)m

− 2

(
x− kx + 0.5

2jx

)m

+

(
x− kx + 1

2jx

)m)
, x ≥ kx + 1

2jx
.

(4.1)

In the same fashion, the integration of Haar wavelet in other direction is given by

J (m)
t ψit(t)

=



1

m!

(
t− kt

2jt

)m

, t ∈
[
kt
2jt
,
kt + 0.5

2jt

)
,

1

m!

(
t− kt

2jt

)m

− 2
1

m!

(
t− kt + 0.5

2jt

)m

, t ∈
[
kt + 0.5

2jt
,
kt + 1

2jt

)
,

1

m!

(
t− kt

2jt

)m

− 2
1

m!

(
t− kt + 0.5

2jt

)m

+
1

m!

(
t− kt + 1

2jt

)m

, t ≥ kt + 1

2jt
.

(4.2)
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5. Numerical method

Herein, we approximate the highest order mixed derivative of ur(x,t) in terms of
Haar wavelet. Next, we approximate the lower order derivatives and unknown
functions ur(x,t) in terms of the Haar wavelet and its integrations. Plugging the
values of ur(x,t) along the derivatives in equation (1.1), the system of algebraic
equations is obtained, which on solving yields undetermined wavelet coefficients
and subsequently approximate solutions. Here, we develop the method for lr =
1, r = 1, 2, . . . κ as described below.

We can approximate the mixed derivative ∂t∂xxur(x,t) in terms of Haar wavelet
as:

∂t∂xxur(x,t) =

Nx∑
ix=1

Nt∑
it=1

grix,itψix(x)ψit(t). (5.1)

Integrating equation (5.1) against t, yields

∂xxur(x,t) =

Nx∑
ix=1

Nt∑
it=1

grix,itψix(x)J
(1)
t ψit(t) + ∂xxur(x, 0). (5.2)

In a similar way, subsequent integrations of equation (5.2) with respect to x, provides

∂xur(x,t) =

Nx∑
ix=1

Nt∑
it=1

grix,itJ
(1)
x ψix(x)J

(1)
t ψit(t) + ∂xur(x, 0)− ∂xur(0, 0) + ∂xur(0, t),

(5.3)

ur(x,t) =

Nx∑
ix=1

Nt∑
it=1

grix,itJ
(2)
x ψix(x)J

(1)
t ψit(t) + ur(x, 0)− ur(0, 0)− x∂xur(0, 0)

+ x∂xur(0, t) + ur(0, t). (5.4)

If we plug x = 1 into equation (5.4) and add up all the values, we obtain

κ∑
r=1

ur(1, t) =

κ∑
r=1

Nx∑
ix=1

Nt∑
it=1

grix,itJ
(2)
x ψix(1)J

(1)
t ψit(t) +

κ∑
r=1

(ur(1, 0)− ur(0, 0)

− ∂xur(0, 0)) +

κ∑
r=1

∂xur(0, t) +

κ∑
r=1

ur(0, t),

⇒ur(0, t) = − 1

κ

κ∑
r=1

Nx∑
ix=1

Nt∑
it=1

grix,itJ
(2)
x ψix(1)J

(1)
t ψit(t)−

1

κ

κ∑
r=1

(ur(1, 0)− ur(0, 0)

− ∂xur(0, 0)), 1 ≤ r ≤ κ. (5.5)

Again, for the equation (5.4), set x equal to 1, and then after simplifying, we obtain

∂xur(0, t)− ∂xur(0, 0) =−
Nx∑
ix=1

Nt∑
it=1

grix,itJ
(2)
x ψix(1)J

(1)
t ψit(t)− ur(1, 0)

+ ur(0, 0) + ur(0, t). (5.6)
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Now, from equations (5.4), (5.5) and (5.6), we get

ur(x,t) =

Nx∑
ix=1

Nt∑
it=1

grix,itJ
(2)
x ψix(x)J

(1)
t ψit(t)−

Nx∑
ix=1

Nt∑
it=1

grix,itxJ (2)
x ψix(1)J

(1)
t ψit(t)

− 1

κ

κ∑
r=1

Nx∑
ix=1

Nt∑
it=1

grix,it(1− x)J (2)
x ψix(1)J

(1)
t ψit(t)−

1

κ

κ∑
r=1

(1− x)(ur(1, 0)

− ur(0, 0)− ∂xur(0, 0)) + ur(x, 0) + (x− 1)ur(0, 0)− xur(1, 0). (5.7)

Again differentiation of equation (5.7) yields

∂tur(x,t) =

Nx∑
ix=1

Nt∑
it=1

grix,itJ
(2)
x ψix(x)ψit(t)−

Nx∑
ix=1

Nt∑
it=1

grix,itxJ (2)
x ψix(1)ψit(t)

− 1

κ

κ∑
r=1

Nx∑
ix=1

Nt∑
it=1

grix,it(1− x)J (2)
x ψix(1)ψit(t). (5.8)

Also, using equation (5.5) in (5.3) gives

∂xur(x,t) =

Nx∑
ix=1

Nt∑
it=1

grix,it

(
J (1)
x ψix(x)− J (2)

x ψix(1)
)

J (1)
t ψit(t)

− 1

κ

κ∑
r=1

Nx∑
ix=1

Nt∑
it=1

grix,itJ
(2)
x ψix(1)J

(1)
t ψit(t) + ∂xur(x, 0)− ur(1, 0)

+ ur(0, 0) +
1

κ

κ∑
r=1

(ur(1, 0)− ur(0, 0)). (5.9)

Now, replace t by t − τ2,r, t − τr, and t − τ1,r in equations (5.2), (5.7) and (5.9),
respectively yields

∂xxur(x, t− τ2,r) =

Nx∑
ix=1

Nt∑
it=1

grix,itψix(x)J
(1)
t ψit(t− τ2,r) + ∂xxur(x, 0), (5.10)

ur(x, t− τr) =

Nx∑
ix=1

Nt∑
it=1

grix,itJ
(2)
x ψix(x)J

(1)
t ψit(t− τr)−

Nx∑
ix=1

Nt∑
it=1

grix,itxJ (2)
x ψix(1)

× J (1)
t ψit(t− τr)−

1

κ

κ∑
r=1

Nx∑
ix=1

Nt∑
it=1

grix,it(1− x)J (2)
x ψix(1)J

(1)
t ψit(t− τr)

− 1

κ

κ∑
r=1

(1− x)(ur(1, 0)− ur(0, 0)

− ∂xur(0, 0)) + ur(x, 0) + (x− 1)ur(0, 0)− xur(1, 0), (5.11)

∂xur(x, t− τ1,r) =

Nx∑
ix=1

Nt∑
it=1

grix,it(J
(1)
x ψix(x)− J (2)

x ψix(1))J
(1)
t ψit(t− τ1,r)

− 1

κ

κ∑
r=1

Nx∑
ix=1

Nt∑
it=1

grix,itJ
(2)
x ψix(1)J

(1)
t ψit(t− τ1,r) + ∂xur(x, 0)
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− ur(1, 0) + ur(0, 0) +
1

κ

κ∑
r=1

(ur(1, 0)− ur(0, 0)). (5.12)

Substituting equations (5.2), (5.7)-(5.12) in equation (1.1) and collocating at xθ1 =
θ1−0.5

Nx
, tθ2 = θ2−0.5

Nt
, where θ1 = 1, 2, . . . , Nx, θ2 = 1, 2, . . . , Nt, forms the system

of κ
(
(Nx)

2 × (Nt)
2
)

nonlinear algebraic equations. Solving the resulting system

provides undetermined wavelet coefficients grix,it . These coefficient values when sub-
stituted in equation (5.7) yield the required approximation.

6. Convergence

In this section, we examine upper estimate of the error norm for the described
method. We now write equation (5.7) in analytic form in order to demonstrate that
the proposed method converges:

ur(x,t) =

∞∑
ix=1

∞∑
it=1

grix,itJ
(2)
x ψix(x)J

(1)
t ψit(t)−

∞∑
ix=1

∞∑
it=1

grix,itJ
(2)
x ψix(1)J

(1)
t ψit(t)

− 1

κ

κ∑
r=1

∞∑
ix=1

∞∑
it=1

grix,it(1− x)J (2)
x ψix(1)J

(1)
t ψit(t) + B(x,t), (6.1)

where B(x,t) represents the function containing boundary terms.

Lemma 6.1. Let ur(x,t) ∈ L2((0, lr)×(0, 1)) with lr = 1 such that |∂tt∂xxxur(x,t)| ≤
ℜr,∀(x,t) ∈ (0, 1)×(0, 1) and ℜr > 0, r = 1(1)κ. If ∂t∂xxur(x,t)=

∑∞
ix=1

∑∞
it=1 g

r
ix,it

× ψix(x)ψit(t), then the following inequality holds:

κ∑
r=1

∣∣grix,it ∣∣ ≤ 2−2(jx+jt+1)κℜ, (6.2)

where ℜ = max
1≤r≤κ

ℜr.

Proof. We have

∂t∂xxur(x,t) =

∞∑
ix=1

∞∑
it=1

grix,itψix(x)ψit(t),

grix,it =

∫ 1

0

∫ 1

0

∂t∂xxur(x,t)ψix(x)ψit(t)dxdt = ⟨ψix(x), ⟨∂t∂xxur(x,t), ψit(t)⟩⟩ .

Now

⟨∂t∂xxur(x,t), ψit(t)⟩ =
∫ 1

0

∂t∂xxur(x,t)ψit(t)dt

=

∫ kt+0.5

2jt

kt
2jt

∂t∂xxur(x,t)dt−
∫ kt+1

2jt

kt+0.5

2jt

∂t∂xxur(x,t)dt

=
1

2jt+1
∂t∂xxur (x, χ1)−

1

2jt+1
∂t∂xxur (x, χ2) .
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Here the mean value theorem for integral is employed for χ1 ∈
(
kt2

−jt , (kt + 0.5)

×2−jt
)
and χ2 ∈ ((kt +0.5)2−jt , (kt +1)2−jt). Again applying mean value theorem

for χ ∈ (χ1, χ2), we have

⟨∂t∂xxur(x,t), ψit(t)⟩ =
1

2jt+1
(χ1 − χ2) ∂tt∂xxur(x, χ).

Now

⟨ψix(x), ⟨∂t∂xxur(x, χ), ψit(t)⟩⟩ =
1

2jt+1
(χ1 − χ2)

∫ 1

0

∂tt∂xxur(x, χ)ψix(x)dx

=
1

2jt+1
(χ1 − χ2)

(∫ kx+0.5

2jx

kx
2jx

∂tt∂xxur(x, χ)dx

−
∫ kx+1

2jx

kx+0.5

2jx

∂tt∂xxur(x, χ)dx

)
=
(χ1 − χ2)

2jx+jt+2

(
∂tt∂xxur(ω1, χ)− ∂tt∂xxur(ω2, χ)

)
.

(6.3)

The abovementioned relation is attained by utilizing mean value theorem, provided
ω1 ∈

(
kx2

−jx , (kx + 0.5) 2−jx
)
and ω2 ∈

(
(kx + 0.5) 2−jx , (kx + 1) 2−jx

)
. Again ap-

plying mean value theorem for ω ∈ (ω1, ω2), we obtain

⟨ψix(x), ⟨∂t∂xxur(x,t), ψit(t)⟩⟩ =
1

2jx+jt+2
(χ1 − χ2) (ω1 − ω2) ∂tt∂xxxur(ω, χ).

Therefore, we have∣∣grix,it ∣∣ = 1

2jx+jt+2
|χ2 − χ1| |ω2 − ω1| |∂tt∂xxxur(ω, χ)| ,∣∣grix,it ∣∣ ≤ 2−2(jx+jt+1)ℜr,

κ∑
r=1

∣∣grix,it ∣∣ ≤ 2−2(jx+jt+1)κℜ,

where ℜ = max
1≤r≤κ

ℜr.

Lemma 6.2. Let ur(x,t) be the accurate solution of NDDE-MSG (1.1) and
P
V

Jx,Jt
2

ur(x,t) be the projection of analytic solution such that |∂tt∂xxxur(x,t)| ≤
ℜr, ∀ (x,t) ∈ (0, 1)× (0, 1) and ℜr > 0, r = 1(1)κ and

∂t∂xxur(x,t) =

∞∑
ix=1

∞∑
it=1

grix,itψix(x)ψit(t),

then the following inequality holds:

κ∑
r=1

∥ur(x,t)− P
V

Jx,Jt
2

ur(x,t)∥L2(0,lr) ≤ Θ12
−4Jx−3Jt , (6.4)

where Θ1 is a constant given in the proof below.
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Proof. Denote
∑∞

jx=Jx+1

∑2jx+1−1
ix=2jx

∑∞
jt=Jt+1

∑2jt+1−1
it=2jt := Ω

jx,ix,jt,it
. Then, we have

κ∑
r=1

∥∥∥∥(ur(x,t)− P
V

Jx,Jt
2

ur(x,t)
)∥∥∥∥

L2(0,lr)

=

κ∑
r=1

∥∥∥∥ Ω
jx,ix,jt,it

grix,it
(

J (2)
x ψix(x)J

(1)
t ψit(t)

− xJ (2)
x ψix(1)J

(1)
t ψit(t)

)
− 1

κ
Ω

jx,ix,jt,it

κ∑
r=1

grix,it(1− x)J (2)
x ψix(1)J

(1)
t ψit(t)

∥∥∥∥
L2(0,lr)

.

(6.5)

Using Minkowski and Hölder inequalities, we have

κ∑
r=1

∥ur(x,t)− P
V

Jx,Jt
2

ur(x,t)∥L2(0,lr)

≤
κ∑

r=1

Ω
jx,ix,jt,it

|grix,it |
((∫ 1

0

|J (2)
x ψix(x)|2dx

) 1
2

×
(∫ 1

0

|J (1)
t ψit(t)|2dt

) 1
2

+

(∫ 1

0

|xJ (2)
x ψix(1)|2dx

) 1
2
(∫ 1

0

|J (1)
t ψit(t)|2dt

) 1
2

+

(∫ 1

0

|(1− x)J (2)
x ψix(1)|2dx

) 1
2
(∫ 1

0

|J (1)
t ψit(t)|2dt

) 1
2
)
. (6.6)

Now consider

J (m)
x ψix(x)

=
1

Γ(m)

∫ x

0

(x− s)mψis(s)ds

=
1

Γ(m)

(∫ kx+0.5

2jx

kx
2jx

(x− s)mds−
∫ kx+1

2jx

kx+0.5

2jx

(x− s)mds

)
=

1

(m+ 1)Γ(m)

((
x− kx

2jx

)m+1 − 2
(
x− kx + 0.5

2jx

)m+1
+
(
x− kx + 1

2jx

)m+1
)
,

|J (m)
x ψix(x)| ≤ A2−jx(m+1), (6.7)

where A = max
y∈(0,1)

∣∣∣ym+1−2(y−0.5)m+1+(y−1)m+1

(m+1)Γ(m)

∣∣∣ , y = 2jxx− kx. Therefore, we have

|J (1)
x ψix(x)| ≤ A2−2jx , |J (2)

x ψix(x)| ≤ A2−3jx , and |J (1)
t ψit(t)| ≤ A2−2jt . (6.8)

Now from equations (6.6) and (6.8), we obtain

κ∑
r=1

∥ur(x,t)− P
V

Jx,Jt
2

ur(x,t)∥L2(0,lr)

≤ Ω
jx,ix,jt,it

3κA2ℜ
4

2−5jx−4jt
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=
3κℜA2

4

∞∑
jx=Jx+1

2jx+1−1∑
ix=2jx

2−5jx

∞∑
jt=Jt+1

2−3jt

=
3κℜA22−3Jt

28

∞∑
jx=Jx+1

2−4jx ,

κ∑
r=1

∥ur(x,t)− P
V

Jx,Jt
2

ur(x,t)∥L2(0,lr) ≤ Θ12
−4Jx−3Jt , (6.9)

where Θ1 is a constant given by Θ1 = 3κℜA2

420 .

Lemma 6.3. Let ur(x,t) be the accurate solution of NDDE-MSG (1.1) and
P
V

Jx,Jt
2

ur(x,t) be the projection of analytic solution such that |∂tt∂xxxur(x,t)| ≤
ℜr, ∀ (x,t) ∈ (0, 1)× (0, 1) and ℜr > 0, r = 1(1)κ and

∂t∂xxur(x,t) =

∞∑
ix=1

∞∑
it=1

grix,itψix(x)ψit(t),

then the following inequality holds:

κ∑
r=1

∥ur(x,t− τr)− P
V

Jx,Jt
2

ur(x,t− τr)∥L2(0,lr) ≤ Θ12
−4Jx−3Jt . (6.10)

Proof. Similar techniques to those used in proving Lemma 6.2 can be employed
in establishing the proof of this lemma.

Lemma 6.4. Let ur(x,t) be the accurate solution of NDDE-MSG (1.1) and
P
V

Jx,Jt
2

ur(x,t) be the projection of analytic solution such that |∂tt∂xxxur(x,t)| ≤
ℜr, ∀ (x,t) ∈ (0, 1)× (0, 1) and ℜr > 0, r = 1(1)κ and

∂t∂xxur(x,t) =

∞∑
ix=1

∞∑
it=1

grix,itψix(x)ψit(t),

then the following inequality holds:

κ∑
r=1

∥∂xur(x,t)− P
V

Jx,Jt
2

∂xur(x,t)∥L2(0,lr) ≤ 2−3Jt
(
Θ22

−3Jx +Θ32
−4Jx

)
, (6.11)

where Θ2 and Θ3 are constants given in the proof below.

Proof. From equation (6.5), we have

κ∑
r=1

∥∂xur(x,t)− P
V

Jx,Jt
2

∂xur(x,t)∥L2(0,lr)

=

κ∑
r=1

∥∥ Ω
jx,ix,jt,it

grix,it(J
(1)
x ψix(x)J

(1)
t ψit(t)

− J (2)
x ψix(1)J

(1)
t ψit(t)) +

1

κ
Ω

jx,ix,jt,it

κ∑
r=1

grix,itJ
(2)
x ψix(1)J

(1)
t ψit(t)

∥∥
L2(0,lr)

. (6.12)
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Using Minkowski and Hölder inequalities, we have

κ∑
r=1

∥∂xur(x,t)− P
V

Jx,Jt
2

∂xur(x,t)∥L2(0,lr)

≤
κ∑

r=1

Ω
jx,ix,jt,it

|grix,it |
((∫ 1

0

|J (1)
x ψix(x)|2dx

) 1
2

×
(∫ 1

0

|J (1)
t ψit(t)|2dt

) 1
2

+

(∫ 1

0

|J (2)
x ψix(1)|2dx

) 1
2
(∫ 1

0

|J (1)
t ψit(t)|2dt

) 1
2

+

(∫ 1

0

|J (2)
x ψix(1)|2dx

) 1
2 ( ∫ 1

0

|J (1)
t ψit(t)|2dt

) 1
2

)
. (6.13)

Now from equations (6.7), (6.8) and (6.13), we obtain

κ∑
r=1

∥∂xur(x,t)− P
V

Jx,Jt
2

∂xur(x,t)∥L2(0,lr)

≤ Ω
jx,ix,jt,it

ℜκA2

4

(
2−4jx + 2−5jx+1

)
2−4jt

=
ℜκA2

4

∞∑
jx=Jx+1

2jx+1−1∑
ix=2jx

(
2−4jx + 2−5jx+1

) ∞∑
jt=Jt+1

2−3jt

=
2−3JtℜκA2

28

∞∑
jx=Jx+1

(
2−3jx + 2−4jx+1

)
,

κ∑
r=1

∥∂xur(x,t)− P
V

Jx,Jt
2

∂xur(x,t)∥L2(0,lr) ≤ 2−3Jt
(
Θ22

−3Jx +Θ32
−4Jx

)
, (6.14)

where Θ2 and Θ3 are constants given by Θ2 = ℜκA2

196 , Θ3 = ℜκA2

210 .

Lemma 6.5. Let ur(x,t) be the accurate solution of NDDE-MSG (1.1) and
P
V

Jx,Jt
2

ur(x,t) be the projection of analytic solution such that |∂tt∂xxxur(x,t)| ≤
ℜr, ∀(x,t) ∈ (0, 1)× (0, 1) and ℜr > 0, r = 1(1)κ and

∂t∂xxur(x,t) =

∞∑
ix=1

∞∑
it=1

grix,itψix(x)ψit(t),

then the following inequality holds:

κ∑
r=1

∥∂xur(x,t− τ1,r)− P
V

Jx,Jt
2

∂xur(x,t− τ1,r)∥L2(0,lr) ≤2−3Jt
(
Θ22

−3Jx +Θ32
−4Jx

)
.

(6.15)

Proof. Similar techniques to those used in proving Lemma 6.4 can be employed
in establishing the proof of this lemma.

Lemma 6.6. Let ur(x,t) be the accurate solution of NDDE-MSG (1.1) and
P
V

Jx,Jt
2

ur(x,t) be the projection of analytic solution such that |∂tt∂xxxur(x,t)| ≤
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ℜr, ∀(x,t) ∈ (0, 1)× (0, 1) and ℜr > 0, r = 1(1)κ and

∂t∂xxur(x,t) =

∞∑
ix=1

∞∑
it=1

grix,itψix(x)ψit(t),

then the following inequality holds:

κ∑
r=1

∥∂xxur(x,t)− P
V

Jx,Jt
2

∂xxur(x,t)∥L2(0,lr) ≤ Θ42
−Jx−3Jt , (6.16)

where Θ4 is a constant given in the proof below.

Proof. From equation (6.5), we have

κ∑
r=1

∥∥∥∂xxur(x,t)− P
V

Jx,Jt
2

∂xxur(x,t)
∥∥∥
L2(0,lr)

=

κ∑
r=1

∥∥∥∥ Ω
jx,ix,jt,it

grix,itψix(x)J
(1)
t ψit(t)

∥∥∥∥
L2(0,lr)

. (6.17)

Using Hölder inequality, we have

κ∑
r=1

∥∥∥∂xxur(x,t)− P
V

Jx,Jt
2

∂xxur(x,t)
∥∥∥
L2(0,lr)

≤
κ∑

r=1

Ω
jx,ix,jt,it

|grix,it |
(∫ 1

0

|ψix(x)|2dx
) 1

2
(∫ 1

0

|J (1)
t ψit(t)|2dt

) 1
2

. (6.18)

Using equations (6.8), we have

κ∑
r=1

∥∂xxur(x,t)− P
V

Jx,Jt
2

∂xxur(x,t)∥L2(0,lr)

≤ Ω
jx,ix,jt,it

ℜκA
4

2−2jx−4jt

=
ℜκA
4

∞∑
jx=Jx+1

2jx+1−1∑
ix=2jx

2−2jx

∞∑
jt=Jt+1

2−3jt

=
2−3JtℜκA

28

∞∑
jx=Jx+1

2−jx ,

κ∑
r=1

∥∂xxur(x,t)− P
V

Jx,Jt
2

∂xxur(x,t)∥L2(0,lr) ≤ Θ42
−Jx−3Jt , (6.19)

where Θ4 = ℜκA
28 .

Lemma 6.7. Let ur(x,t) be the accurate solution of NDDE-MSG (1.1) and
P
V

Jx,Jt
2

ur(x,t) be the projection of analytic solution such that |∂tt∂xxxur(x,t)| ≤
ℜr, ∀(x,t) ∈ (0, 1)× (0, 1) and ℜr > 0, r = 1(1)κ and

∂t∂xxur(x,t) =

∞∑
ix=1

∞∑
it=1

grix,itψix(x)ψit(t),
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then the following inequality holds:

κ∑
r=1

∥∥∥∂xxur (x,t− τ2,r)− P
V

Jx,Jt
2

∂xxur (x,t− τ2,r)
∥∥∥
L2(0,lr)

≤ Θ42
−Jx−3Jt . (6.20)

Proof. Similar techniques to those used in proving Lemma 6.6 can be employed
in establishing the proof of this lemma.

Lemma 6.8. Let ur(x,t) be the accurate solution of NDDE-MSG (1.1) and
P
V

Jx,Jt
2

ur(x,t) be the projection of analytic solution such that |∂tt∂xxxur(x,t)| ≤
ℜr, ∀(x,t) ∈ (0, 1)× (0, 1) and ℜr > 0, r = 1(1)κ and

∂t∂xxur(x,t) =

∞∑
ix=1

∞∑
it=1

grix,itψix(x)ψit(t),

then the following inequality holds:

κ∑
r=1

∥∥∥(∂tur(x,t)− P
V

Jx,Jt
2

∂tur(x,t)
)∥∥∥

L2(0,lr)
≤ Θ52

−4Jx−Jt , (6.21)

where θ5 is a constant given in the proof below.

Proof. From equation (6.5), we have

κ∑
r=1

∥∥(∂tur(x,t)− P
V

Jx,Jt
2

∂tur(x,t)
)∥∥

L2(0,lr)

=

κ∑
r=1

∥∥ Ω
jx,ix,jt,it

grix,it(J
(2)
x ψix(x)ψit(t)

− xJ (2)
x ψix(1))ψit(t)−

1

κ
Ω

jx,ix,jt,it

κ∑
r=1

grix,it(1− x)J (2)
x ψix(1)ψit(t)

∥∥
L2(0,lr)

. (6.22)

Using Minkowski and Hölder inequalities, we have

κ∑
r=1

∥∂tur(x,t)− P
V

Jx,Jt
2

∂tur(x,t)∥L2(0,lr)

≤
κ∑

r=1

Ω
jx,ix,jt,it

|grix,it |
((∫ 1

0

|J (2)
x ψix(x)|2dx

) 1
2

×
(∫ 1

0

|ψit(t)|2dt
) 1

2

+

(∫ 1

0

|xJ (2)
x ψix(1)|2dx

) 1
2
(∫ 1

0

|ψit(t)|2dt
) 1

2

+

(∫ 1

0

|(1− x)J (2)
x ψix(1)|2dx

) 1
2
(∫ 1

0

|ψit(t)|2dt
) 1

2
)
. (6.23)

Using equation (6.8), we obtain

κ∑
r=1

∥∂tur(x,t)− P
V

Jx,Jt
2

∂tur(x,t)∥L2(0,lr)
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≤ Ω
jx,ix,jt,it

3κℜA
4

2−5jx−2jt

=
3κℜA
4

∞∑
jx=Jx+1

2jx+1−1∑
ix=2jx

2−5jx

∞∑
jt=Jt+1

2−jt

=
2−Jt3κℜA

4

∞∑
jx=Jx+1

2−4jx ,

κ∑
r=1

∥∂tur(x,t)− P
V

Jx,Jt
2

∂tur(x,t)∥L2(0,lr) ≤ Θ52
−4Jx−Jt , (6.24)

where Θ5 = κℜA
20 .

Theorem 6.1. Let ur(x,t)(= {ur(x,t)}κr=1) ∈ C
(

G(V ,E) × [t0 − τr (x,t, ur(x,t)) ,

tf ] ;R
)
be the exact solution of NDDE-MSG (1.1) and P

V
Jx,Jt
2

ur(x,t) be the ap-

proximate solution such that |∂tt∂xxxur(x,t)| ≤ ℜr,∀(x,t) ∈ (0, 1) × (0, 1) and
ℜr > 0, r = 1(1)κ and ∂t∂xxur(x,t) =

∑∞
ix=1

∑∞
it=1 g

r
ix,it

ψix(x)ψit(t). Let Fr in equa-
tion (1.1) be the Lipschitz function with Lipschitz coefficients Li,r, i = 1, 2, ..., 6. If
we denote ϵrJx,Jt

as the obtained error associated with the rth edge, then the global

error associated with the graph is denoted by ϵ
G(V ,E)
JxJt

=
∑κ

r=1 ∥ϵrJx,Jt
∥L2(0,lr) and

estimated by the following inequality:

ϵ
G(V ,E)
JxJt

=

κ∑
r=1

∥ϵrJx,Jt
∥L2(0,lr)

≤ C12
−4Jx−Jt + (C22

−4Jx + C32
−3Jx + C42

−2Jx)2−3Jt , (6.25)

where C1, C2, C3 and C4 are constants given in the proof below.

Proof. We have

κ∑
r=1

∥∥ϵrJx,Jt

∥∥
L2(0,lr)

=

κ∑
r=1

∥∥∥∥∂tur(x,t)− Fr(x,t, ur, ur(x,t− τr), ∂xur(x,t),

∂xur (x,t− τ1,r) , ∂xxur(x,t), ∂xxur (x,t− τ2,r))− P
V

Jx,Jt
2

∂tur(x,t)

+ Fr

(
x,t, P

V
Jx,Jt
2

ur, PV
Jx,Jt
2

ur (x,t− τr) , PV
Jx,Jt
2

∂xur(x,t),

P
V

Jx,Jt
2

∂xur (x,t− τ1,r) , PV
Jx,Jt
2

∂xxur(x,t),

P
V

Jx,Jt
2

∂xxur (x,t− τ2,r)
)∥∥∥∥

L2(0,lr)

≤
κ∑

r=1

(
∥∂tur(x,t)− P

V
Jx,Jt
2

∂tur(x,t)∥L2(0,lr) + L1,r∥ur(x,t)

− P
V

Jx,Jt
2

ur(x,t)∥L2(0,lr) + L2,r∥ur(x,t− τr)

− P
V

Jx,Jt
2

ur(x,t− τr)∥L2(0,lr) + L3,r∥∂xur(x,t)

− P
V

Jx,Jt
2

∂xur(x,t)∥L2(0,lr) + L4,r∥∂xur(x,t− τ1,r)
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− P
V

Jx,Jt
2

∂xur(x,t− τ1,r)∥L2(0,lr) + L5,r∥∂xxur(x,t)

− P
V

Jx,Jt
2

∂xxur(x,t)∥L2(0,lr) + L6,r∥∂xxur(x,t− τ2,r)

− P
V

Jx,Jt
2

∂xxur(x,t− τ2,r)∥L2(0,lr)

)
. (6.26)

Using Lemmas 6.1-6.8 in equation (6.26) provides

κ∑
r=1

∥ϵrJx,Jt
∥L2(0,lr) ≤ C12

−4Jx−Jt + (C22
−4Jx + C32

−3Jx + C42
−2Jx)2−3Jt , (6.27)

where C1 = κΘ5, C2 = (L1 + L2)Θ1 + (L3 + L4)Θ3, C3 = (L3 + L4)Θ2 and
C4 = (L5 + L6)Θ4, Li = max

1≤r≤κ
Li,r, i = 1, 2, ..., 6. From equation (6.27), it is

obvious that the error is inversely proportional to the resolution levels Jx and Jt.
Hence, if Jx and Jt tend to ∞, the global error goes to zero. This completes the
proof.

7. Numerical examples

This section presents five examples of NDDE-MSG using the Haar wavelet approach.
Calculations were performed using MATLAB R2021a, an AMD Ryzen 5 PRO 5650U
processor, and Windows 11. The following error norms are computed for numerical
results:

ϵr,∞Jx,Jt
= max

ix,it

∣∣∣ur(x,t)− P
V

Jx,Jt
2

ur(x,t)
∣∣∣ , r = 1(1)κ, (7.1)

ϵr,2Jx,Jt
=

∥∥∥ur(x,t)− P
V

Jx,Jt
2

ur(x,t)
∥∥∥
L2(0,lr)

, r = 1(1)κ. (7.2)

Example 7.1. Consider the following linear NDDE-MSG (1.1) with three edges:

∂tur(x,t) = ∂xxur(x, t−
√
t) + ur(x, t− sin(t)) + fr(x,t), x ∈ (0, 1) , t ∈ (0, 1) ,

ur(x,t) = 0, t ≤ 0,

ur(0, t) = us(0, t), r ̸= s, r = 1, 2, 3, s = 1, 2, 3,

3∑
r=1

∂xur(0, t) = 0,

ur (1, t) = 0, 1 ≤ r ≤ 3. (7.3)

The analytical solutions of this example are u1(x,t) = u2(x,t) = t2 sin(πx),
u3(x,t) = −2t2 sin(πx) and the source functions fr(x,t), r = 1, 2, 3 can be cal-
culated with the assistance of the exact solutions. The obtained maximum ab-
solute errors (MAEs) (ϵr,∞Jx,Jt

, r = 1, 2, 3) and root mean square errors (RMSEs)

(ϵr,2Jx,Jt
, r = 1, 2, 3) are tabulated in Table 1. The table shows that as the values of

the resolution parameters Jx, Jt are increased, the absolute errors (AEs) decrease
significantly, which is a good support of Theorem 6.1. The graphs of approximate
solutions P

V
Jx,Jt
2

ur(x,tNt
), r = 1, 2, 3 are given in Figure 2(a). The accurate and ap-

proximate solutions of u1(x,tNt
) are compared in Figure 2(b), which demonstrates

that the approximate and exact solutions are similar. In addition, the influence of
the resolution parameters Jx, Jt on the behaviour of AEs are illustrated in Figure 3.
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Table 1. Effect of Jx, Jt on the obtained MAEs and RMSEs of Example 7.1.

Jx = Jt ϵ1,∞Jx,Jt
= ϵ2,∞Jx,Jt

ϵ3,∞Jx,Jt
CPU ϵ1,2Jx,Jt

= ϵ2,2Jx,Jt
ϵ3,2Jx,Jt

CPU

1 3.9580e− 02 7.9161e− 02 0.04 8.0851e− 02 1.6170e− 01 0.03

2 1.2404e− 02 2.4808e− 02 0.04 4.6820e− 02 9.3641e− 02 0.04

3 3.4796e− 03 6.9592e− 03 0.40 2.5690e− 02 5.1381e− 02 0.05

4 8.9695e− 04 1.7939e− 03 1.06 1.3131e− 02 2.6262e− 02 0.41

5 2.2871e− 04 4.5742e− 04 6.48 6.6772e− 03 1.3354e− 02 6.47

According to the figures, the AEs for Jx = Jt = 4 are O(e−03), but for Jx = Jt = 5,
they are O(e− 04), which is in good accordance with the theoretical results.

(a) (b)

Figure 2. (2(a)) Graph of P
V

Jx,Jt
2

ur(x,t), r = 1, 2, 3 of Example 7.1 at t = tNt for Jx = Jt = 5. (2(b))

Graphical comparison of analytic and approximate solutions of u1(x,t) at t = tNt for Jx = Jt = 5.

(a) (b)

Figure 3. Impact of resolution parameters Jx, Jt on AEs obtained for u(x,t) of Example 7.1 at t = tNt :
(3(a)) for Jx = Jt = 4, (3(b)) for Jx = Jt = 5.



2144 M. Faheem, A. Khan & F. A. Rihan

Example 7.2. Consider the following linear NDDE-MSG (1.1) with three edges:

∂tur(x,t) = ∂xxur(x,t) + ∂xur(x, sin(
√
t)) + fr(x,t), x ∈ (0, 1) , t ∈ (0, 1) ,

u1(x,t) = u2(x,t) = sin(2πx), u3(x,t) = −2 sin(2πx), t ≤ 0,

ur(0, t) = us(0, t), r ̸= s, r = 1, 2, 3, s = 1, 2, 3,

3∑
r=1

∂xur(0, t) = 0,

ur (1, t) = 0, 1 ≤ r ≤ 3. (7.4)

The analytical solutions of this example are u1(x,t) = u2(x,t) = t3 sin(2πx) +
sin(2πx), u3(x,t) = −2t3 sin(2πx)−2 sin(2πx) and the source functions fr(x,t), r =
1, 2, 3 can be calculated with the assistance of the exact solutions. The obtained
MAEs (ϵr,∞Jx,Jt

, r = 1, 2, 3) and RMSEs (ϵr,2Jx,Jt
, r = 1, 2, 3) are tabulated in Table 2.

The table shows that as the values of the resolution parameters Jx, Jt are increased,
the AEs decrease significantly, which is a good support of the Theorem 6.1. The
graphs of approximate solutions P

V
Jx,Jt
2

ur(x,tNt
), r = 1, 2, 3 are given in Figure

4(a). Figure 4(b) compares the accurate and approximate solutions of u2(x,tNt
),

demonstrating that the approximate solution is similar to the exact solution. In
addition, Figure 5 illustrates the influence of the resolution parameters Jx, Jt on
the behaviour of AEs. According to the figures, the AEs for Jx = Jt = 3 are
O(e− 02), but the AEs for Jx = Jt = 4 are O(e− 03), which is in good accordance
with the theoretical results.

Table 2. Effect of Jx, Jt on the obtained MAEs and RMSEs of Example 7.2

Jx = Jt ϵ1,∞Jx,Jt
= ϵ2,∞Jx,Jt

ϵ3,∞Jx,Jt
CPU ϵ1,2Jx,Jt

= ϵ2,2Jx,Jt
ϵ3,2Jx,Jt

CPU

1 5.6551e− 02 1.1310e− 01 0.06 7.8003e− 02 1.5600e− 01 0.04

2 2.1736e− 02 4.3472e− 02 0.05 4.9131e− 02 9.8262e− 02 0.05

3 6.3922e− 03 1.2784e− 02 0.09 2.6085e− 02 5.2170e− 02 0.08

4 1.6580e− 03 3.3160e− 03 1.20 1.3131e− 02 2.6262e− 02 1.29

5 4.2724e− 04 8.5449e− 04 52.97 6.5944e− 03 1.3188e− 02 53.30

Example 7.3. Consider the following linear NDDE-MSG (1.1) with four edges:

∂tur(x,t) = ∂xxur(x,t)− ur(x,
√

sin(t)) + fr(x,t), x ∈ (0, 1) , t ∈ (0, 1) , 1 ≤ r ≤ 4,

ur(x,t) = 0, t ≤ 0,

ur(0, t) = us(0, t), r ̸= s, r = 1, 2, 3, 4, s = 1, 2, 3, 4,

4∑
r=1

∂xur(0, t) = 0,

ur (1, t) = 0, 1 ≤ r ≤ 4. (7.5)

The analytical solutions of this example are u1(x,t) = u2(x,t) = t2x(1 − x),
u3(x,t) = u4(x,t) = −t2x(1 − x) and the source functions fr(x,t), r = 1, 2, 3, 4
can be calculated with the assistance of the exact solutions. The obtained MAEs
(ϵr,∞Jx,Jt

, r = 1, 2, 3, 4) and RMSEs (ϵr,2Jx,Jt
, r = 1, 2, 3, 4) are tabulated in Table 3. The
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(a) (b)

Figure 4. (4(a)) Graph of P
V

Jx,Jt
2

ur(x,t), r = 1, 2, 3 of Example 7.2 at t = tNt for Jx = Jt = 5. (4(b))

Comparison of exact and approximate solution of u2(x,t) at t = tNt for Jx = Jt = 5.

(a) (b)

Figure 5. Impact of resolution parameters Jx, Jt on AEs obtained for u(x,t) of Example 7.2 at t = tNt :
(5(a)) for Jx = Jt = 3, (5(b)) for Jx = Jt = 4.

table shows that when the values of the resolution parameters Jx, Jt are increased,
the MAEs and RMSEs decrease gradually, which is a good support of Theorem 6.1.

Example 7.4. Consider the following nonlinear NDDE-MSG (1.1) with three edges:

∂tur(x,t) = ∂xxur(x, sin (t)) + u2r + fr(x,t), x ∈ (0, 1) , t ∈ (0, 1) , 1 ≤ r ≤ 3,

ur(x,t) = 0, t ≤ 0,

ur(0, t) = us(0, t), r ̸= s, r = 1, 2, 3, s = 1, 2, 3,

3∑
r=1

∂xur(0, t) = 0,

ur (1, t) = 0, 1 ≤ r ≤ 3. (7.6)

The analytical solutions of this example are u1(x,t) = u2(x,t) = t2 sin(2πx),
u3(x,t) = −2t2 sin(2πx) and the source functions fr(x,t), r = 1, 2, 3 can be calcu-
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Table 3. Effect of Jx, Jt on the obtained MAEs and RMSEs of Example 7.3.

Jx = Jt ϵ1,∞Jx,Jt
= ϵ2,∞Jx,Jt

ϵ3,∞Jx,Jt
= ϵ4,∞Jx,Jt

CPU ϵ1,2Jx,Jt
= ϵ2,2Jx,Jt

ϵ3,2Jx,Jt
= ϵ4,2Jx,Jt

CPU

1 1.6603e− 03 1.6603e− 03 0.04 2.5831e− 03 2.5831e− 03 0.03

2 6.4079e− 04 6.4079e− 04 0.04 1.3779e− 03 1.3779e− 03 0.04

3 1.9078e− 04 1.9078e− 04 0.06 6.6389e− 04 6.6389e− 04 0.07

4 5.4193e− 05 5.4193e− 05 0.60 3.3886e− 04 3.3886e− 04 0.58

5 1.4269e− 05 1.4269e− 05 14.89 1.6473e− 04 1.6473e− 04 15.22

lated with the assistance of the exact solutions. The obtained MAEs (ϵr,∞Jx,Jt
, r =

1, 2, 3) and RMSEs (ϵr,2Jx,Jt
, r = 1, 2, 3) are tabulated in Table 4. The table shows

that as the values of the resolution parameters Jx, Jt are increased, the MAEs
and RMSEs decrease significantly, which is a good support of Theorem 6.1. The
graphs of approximate solutions P

V
Jx,Jt
2

ur(x,tNt
), r = 1, 2, 3 are given in Figure

6(a). Figure 6(b) compares the accurate and approximate solutions of u2(x,tNt
),

demonstrating that the approximate solution is similar to the exact solution. In
addition, Figure 7 illustrates the effect of the resolution parameters Jx, Jt on the
behaviour of AEs. According to the Figures, the AEs for Jx = Jt = 4 are O(e−02),
but the AEs for Jx = Jt = 5 are O(e − 03), which is in good accordance with the
theoretical results.

Table 4. Effect of Jx, Jt on the obtained MAEs and RMSEs of Example 7.4.

Jx = Jt ϵ1,∞Jx,Jt
= ϵ2,∞Jx,Jt

ϵ3,∞Jx,Jt
CPU ϵ1,2Jx,Jt

= ϵ2,2Jx,Jt
ϵ3,2Jx,Jt

CPU

1 1.5039e− 01 7.9161e− 01 0.07 2.7422e− 01 5.9493e− 01 0.07

2 7.7248e− 02 2.1235e− 01 0.09 1.8332e− 01 4.2204e− 01 0.13

3 2.5588e− 02 7.7248e− 02 0.37 1.0573e− 01 2.4800e− 01 0.49

4 7.3959e− 03 2.3482e− 02 10.64 5.8825e− 02 1.3936e− 01 11.41

(a) (b)

Figure 6. (6(a)) Graph of P
V

Jx,Jt
2

ur(x,t), r = 1, 2, 3 of Example 7.4 at t = tNt for Jx = Jt = 5. (6(b))

Comparison of exact and approximate solution of u2(x,t) at t = tNt for Jx = Jt = 5.
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(a) (b)

Figure 7. Impact of resolution parameters Jx, Jt on AEs obtained for u(x,t) of Example 7.4 at t = tNt :
(7(a)) for Jx = Jt = 4, (7(b)) for Jx = Jt = 5.

Example 7.5. Consider the following linear NDDE-MSG (1.1) with three edges:

∂tur(x,t) = ∂xxur(x, t) + ur(x,
√
sin(t)) + fr(x,t), x ∈ (0, 2) , t ∈ (0, 2) ,

ur(x,t) = 0, t ≤ 0,

ur(0, t) = us(0, t), r ̸= s, r = 1, 2, 3, s = 1, 2, 3,

3∑
r=1

∂xur(0, t) = 0,

ur (2, t) = 0, 1 ≤ r ≤ 3. (7.7)

The analytical solutions of Example 7.5 are given by

u1(x, t) = u2(x, t) = t sinπx, u3(x, t) = −2t sinπx.

The source functions fr(x,t), r = 1, 2, 3 can be calculated with the assistance
of the exact solutions. The MAE and RMSE are presented in Table 5. As evident
from the table, the computational results align well with the theoretical findings.
Specifically, increasing the resolution levels (Jx, Jt) leads to convergence of the
approximate solution toward the analytical solution. A linear transformation w =
ax+ b is applied to approximate the solution over a larger domain. For example, in
equations (3.8) and (3.10), x is replaced with x

2 , and the same procedure was used
to determine the integration of Haar wavelet and implement the numerical method
for the approximate solution. Figures 8(a) and 8(b) illustrate the approximate and
exact solutions for J = 5 in the larger domain (x, t) ∈ (0, 2) × (0, 2). The close
similarity between the graphs of the exact and approximate solutions demonstrates
the accuracy of the proposed method in larger domains.

8. Conclusion

In this paper, we have examined the neutral delay differential equations on the met-
ric star graph. As the authors know, NDDEs on a metric star graph have never been
numerically studied. NDDE-MSG is approximated with Haar wavelet collocation
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Table 5. Effect of Jx, Jt on the obtained MAEs and RMSEs of Example 7.5.

Jx = Jt ϵ1,∞Jx,Jt
= ϵ2,∞Jx,Jt

ϵ3,∞Jx,Jt
CPU ϵ1,2Jx,Jt

= ϵ2,2Jx,Jt
ϵ3,2Jx,Jt

CPU

1 9.2363e− 02 1.8472e− 01 0.02 2.4043e− 01 4.8086e− 01 0.03

2 4.1649e− 02 8.3299e− 02 0.03 1.5574e− 01 3.1148e− 01 0.03

3 1.1999e− 02 2.3998e− 02 0.04 8.1946e− 02 1.6389e− 01 0.04

4 3.1288e− 03 6.2576e− 03 0.21 4.1471e− 02 8.2943e− 02 0.20

5 7.9348e− 04 1.5869e− 03 2.98 2.0797e− 02 4.1595e− 02 3.06

(a) (b)

Figure 8. (8(a)) Graph of P
V

Jx,Jt
2

ur(x,t), r = 1, 2, 3 of Example 7.5 at t = tNt for Jx = Jt = 5. (8(b))

Graphical comparison of analytic and approximate solutions of u1(x,t) at t = tNt for Jx = Jt = 5.

method. This method converts NDDE-MSG into a set of algebraic equations that
can easily be solved for the wavelet coefficients. One can obtain the approximate
solution by plugging in these coefficients. A convergence analysis determines that
the proposed method converges exponentially, thus justifying its theoretical appli-
cation. We have solved some numerical examples using the proposed method, and
the results are presented in Tables 1-5. When the resolution parameters Jx, Jt are
increased, the MAEs and RMSEs drop significantly. Figures 2(a), 4(a), and 6(a)
illustrate numerical solutions, whereas Figures 2(b), 4(b), 6(b) and 8(b) compare
accurate and approximate solutions. When comparing the graphs of accurate and
approximate wavelet solutions, we can see that the proposed method is effective.
As shown in Figures 3, 5, and 7, resolution parameters have an impact on AEs as
well. It can be seen from these graphs that the associated AEs are significantly
reduced as the convergence parameters Jx, Jt are increased.
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