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BIFURCATION ANALYSIS IN A MODIFIED
LESLIE-GOWER WITH NONLOCAL

COMPETITION AND
BEDDINGTON-DEANGELIS FUNCTIONAL

RESPONSE

Yuxin Ma1 and Ruizhi Yang1,†

Abstract In this paper, a diffusive predator-prey system with nonlocal com-
petition and Beddington-DeAngelis functional response is considered. After
analyzing the influence of the selected parameters on the existence, multiplic-
ity and stability of the nonhomogeneous steady-state solution, it is obtained
that there is an unstable positive nonconstant steady-state in the neighbor-
hood of the positive constant steady-state. Compared with the system with-
out nonlocal competition, the system with nonlocal competition can generate
Hopf-Hopf bifurcation under certain conditions. Through the qualitative anal-
ysis, the normal form at the Hopf-Hopf bifurcation singularity is calculated to
analyze the different dynamic properties exhibited by the system in different
parameter regions. In order to illustrate the feasibility of the obtained results
and the dependence of the dynamic behavior on the nonlocal competition,
numerical simulations are carried out. Through the numerical simulations, it
is further shown that under certain conditions, the nonlocal competition will
lead to the generation of stable spatially inhomogeneous periodic solutions and
stable spatially inhomogeneous quasi-periodic solutions.

Keywords Predator-prey, nonlocal competition, steady-state bifurcation,
Hopf-Hopf bifurcation.
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1. Introduction

In the real world, the predator-prey relationship is seen as a common population
interaction in nature. For many scholars, the study of predator-prey relationship
is also an important bifurcation of biological mathematics [18, 34, 37, 43]. Many
scholars have studied the dynamic properties of some systems from different perspec-
tives [16,25,35,36], among them, the dynamic properties of the Leslie-Gower system
and the various modifications of it has received extensive attention [22, 24, 27]. In
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this paper, we are considering the modified Leslie-Gower system

du

dt
= r1u

(
1− u

K

)
− φ(u)v,

dv

dt
= r2v

(
1− βv

u+ b

)
,

u(0) > 0, v(0) > 0,

(1.1)

where u denotes prey population densities; v denotes predator population densities;
φ(u) is functional response. The carrying capacity of the predator is proportional to
the prey and other food. Many scholars have studied the system (1.1) with Holling
type functional response [1,28,39]. In [33], the authors study a spatial predator-prey
system with Leslie-Gower and Holling II functional response. In [7], the authors
considered a Leslie-Gower system with Holling II functional response and time delay.
In these studies, since the Holling type functional response is dependent on prey,
it is impossible to simulate the interference between predators. Therefore, some
biologists believe that in many cases, when predators have to compete or cooperate
to obtain food, the functional response in the predator-prey system often depends
on the predator. In the study of many scholars, it is shown that the functional
response in the predator-prey system depends on the predator quite frequently
[4, 5, 9, 20]. After a lot of experiments further observations, many scholars have
shown that predators do interfere with each other’s activities, so that prey changes
its behavior, thereby increasing the threat to predators and generating competitive
effects. In [32], the author studied the Beddington-DeAngelis, Crowley-Martin,
Hassell-Varley functional response functions, which are predator-dependent. It is
verified that Beddington-DeAngelis and Hassell-Varley systems are more suitable
for predicting the asymptotic feeding rates at high prey abundance independent
of predator abundance and Crowley-Mart systen is more suitable for predicting
the asymptote dependent on predator abundance. Since this paper considers the
asymptotic feeding rate at high prey abundance independent of predator abundance,
we choose Beddington-DeAngelis functional response. In [42], a modified Leslie-
Gower with diffusion and Beddington-DeAngelis functional response is studied by
Yang, is in the following form

∂u

∂t
= D1∆u+ r1u

(
1− u

K

)
− αuv

p+ u+ hv
, x ∈ (0, lπ), t > 0,

∂v

∂t
= D2∆v + r2v

(
1− βv

u+ b

)
, x ∈ (0, lπ), t > 0,

ux(t, 0) = vx(t, 0) = 0, ux(t, lπ) = vx(t, lπ) = 0, t > 0,

u(0, x) = u0(x) ≥ 0, v(0, x) = v0(x) ≥ 0, x ∈ [0, lπ] .

(1.2)

Here, u denotes prey population densities; v denotes predator population densities.
In the prey-predator system, for the interaction between different types of pop-

ulations, there will be complex patterns. In some spatio-temporal models of prey-
predator systems, there may be some important mechanisms such as diffusion, ad-
vection and gliding. In order to facilitate the study, we assume that the prey and
the predator are in an isolated patch. Additionally in this paper only consider the
diffusion of the spatial domain and ignore the impact of immigration. Generally
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speaking, for the competition between biological populations, when they compete
for common resources, their competitive effect may depend on the population den-
sity of such resources near them. Therefore, considering that the interaction among
species is nonlocal, it is reasonable to introduce nonlocal competition in the popula-
tion system. When the reaction-diffusion system with nonlocal competition term is
extended in space, complex dynamic behaviors including spatially inhomogeneous
quasi-periodic solutions will be generated. The nonlocal competition term describes
the mobility of a species in its spatial position. By introducing an integral term
with an appropriate kernel function into the model, the nonlocal competition term
is incorporated into the predator-prey system studied. In [3, 10], by modifying
the parameters u

K as 1
K

∫
Ω
G(x, y)u(y, t)dy, the authors introduced the nonlocal

competition effect in prey, where the average kernel function G(x, y) = 1
|Ω| with

Ω = (0, lπ). In [30], Y. H. Peng and G. Y. Zhang consider a predator-prey system
with herding behavior and nonlocal prey competition. The influence of nonlocal
competition term on system dynamics in bounded domain is studied. Then, they
obtain the conditions of Hopf bifurcation and Turing bifurcation in the system with
nonlocal competition. Finally, it is concluded that nonlocal competition can destroy
the stability of predator-prey system. At present, many scholars have considered
the predator-prey models with nonlocal competition [6, 26, 38, 46]. Their results
show that nonlocal competition will involve more complex spatiotemporal dynam-
ical properties and nonlocal competition plays an important role in the generation
of Hopf-Hopf bifurcation.

Therefore, in order to better describe the predator’s feeding situation, the in-
teraction between species are nonlocal, we consider a modified Leslie-Gower with
diffusion and Beddington-DeAngelis functional response in system (1.2) including
a nonlocal competition as the following system

∂u

∂t
= D1∆u+ r1u

(
1− 1

K

∫ lπ

0

1

lπ
u(y, t)dy)

)
− αuv

p+ u+ hv
, x ∈ (0, lπ), t > 0,

∂v

∂t
= D2∆v + r2v

(
1− βv

u+ b

)
, x ∈ (0, lπ), t > 0,

ux(t, 0) = vx(t, 0) = 0, ux(t, lπ) = vx(t, lπ) = 0, t > 0,

u(0, x) = u0(x) ≥ 0, v(0, x) = v0(x) ≥ 0, x ∈ [0, lπ] .

(1.3)

Taking wolves and rabbits as an example, we assume that rabbits are the main
food source of wolves, wolves are the main predators of rabbits and the forest
capacity will limit their growth. In order to facilitate the study, we assume that
the wolves and rabbits are in an isolated patch. Further in this paper, we only
consider the diffusion of the spatial domain and ignore the impact of immigration.
In Table 1, we give the meaning of parameters. All parameters involved with the
model are positive. The carrying capacity of the predator is proportional to the
prey and other food.

By transforming the parameters as follows

u = ũ, βv = ṽ, r1t = t̃,
h

β
= s,

α

r1β
= a,

r2
r1

= c,
D1

r1
= d1,

D2

r1
= d2,
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Table 1. The meaning of the parameters of the system (1.3).

Parameters The meanings of parameters Unit

u The rabbits population densities ind/km2 × year−1

v The wolves population densities ind/km2 × year−1

D1 Rabbits corresponding diffusive rates year−1

D2 Wolves corresponding diffusive rates year−1

K The carrying capacity of the rabbits ind/km2 × year−1

r1 The growth rate of rabbits ind/km2 × year−1

r2 The growth rate of wolves ind/km2 × year−1

β The number of rabbits required to support
one wolves at equilibrium when v equals
u+b
β

ind× year−1

α The wolves consume the maximum amount
of rabbits per unit time

ind× year−1

p Half-saturation constant

h Measure the degree to which rabbits inter-
feres with each other

b Measures the extent to which environment
provides protection to rabbits

the system (1.3) (drop the “ ˜ ”) can be written as

∂u

∂t
= d1∆u+ u

(
1− 1

K

∫ lπ

0

1

lπ
u(y, t)dy

)
− auv

p+ u+ sv
, x ∈ (0, lπ), t > 0,

∂v

∂t
= d2∆v + cv

(
1− v

u+ b

)
, x ∈ (0, lπ), t > 0,

ux(t, 0) = vx(t, 0) = 0, ux(t, lπ) = vx(t, lπ) = 0, t > 0,

u(0, x) = u0(x) ≥ 0, v(0, x) = v0(x) ≥ 0, x ∈ [0, lπ] .

(1.4)

For more convenient calculation, many scholars consider the normal form of the
Hopf-Hopf bifurcation of the system in the case of resonance, weak resonance or
non-resonance [21,29,31,40,45]. In [12], the author mainly studies the infinite-level
normal form of supernormal singularities of vector fields with non-resonance double
Hopf bifurcation. In [8], the author establishes the normal form of double-Hopf
bifurcation in the case of non-resonance or weak resonance, where the ratio of the
two amplitudes ω1 : ω2 is not 1, 2, 3, 4. In addition, according to the spatial pattern,
the derivation process of the normal form is divided into three cases. In this paper,
in order to facilitate the calculation, we consider the case of non-resonance.

The structure of this paper is as follows. In the second part, we analyze the
steady-state bifurcation. In the third part, we study the stability of the positive
equilibrium. In the fourth part, we study the existence of Hopf-Hopf bifurcation and
the normal form of Hopf-Hopf bifurcation. In the fifth part, we carry out numerical
simulation and then analyze the properties of the equilibrium points in the seven
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bifurcation regions to verify the correctness of the theoretical results. In the sixth
part, a brief conclusion of this paper is given.

2. Steady-state bifurcation analysis

In this section, we mainly study the Steady-State bifurcation. First, we study the
constant steady states of (1.4) which satisfy

d1∆u+ u(1− 1

K

M ∗ u
lπ

)− auv

p+ u+ sv
= 0, x ∈ (0, lπ),

d2∆v + cv(1− v

u+ b
) = 0, x ∈ (0, lπ),

ux(0) = vx(0) = 0, ux(lπ) = vx(lπ) = 0, x ∈ [0, lπ],

(2.1)

where

M ∗ u =

∫ lπ

0

u(y, t)dy.

Obviously, system (1.4) has three boundary constant steady states: E0 = (0, 0),
E1 = (K, 0), E2 = (0, b). By computing, we can obtain that

(1 + s)u2 + (−K + aK + p+ bs−Ks)u+ abK − pK − bsK = 0,

then we can get the following assumption

Assumption 2.1. One of the following conditions holds:

(i) p > max{K − aK − bs+Ks, ab− bs};

(ii) p = K − aK − bs+Ks;

(iii)
−2K − 2aK − 2bs− 2Ks+ 4

√
aK(K + b)(1 + s)

2
< p < K − aK − bs+Ks.

In this paper, we mainly discuss the coexistence of wolves and rabbits den-
sity, i.e. there exists positive equilibrium point E∗ = (u∗, v∗). Then we dis-

cuss the stability of E∗. Define H2(Ω) = {u(x) : ∂ku
∂xk ∈ L2(Ω), k = 0, 1, 2}, X ={

u ∈ H2(Ω) : ∂u
∂n = 0, x ∈ ∂Ω

}
, Y = L2(Ω). Let

F(h1, h2)

=


d1∆+

(
1− 1

lπK

∫ lπ

0

h1dy

)
− h1

1

lπK
M − ah2(p+ sh2)

(p+ h1 + sh2)2
− ah1(p+ h1)

(p+ h1 + sh2)2

ch2
2

(b+ h1)2
d2∆+ c+

2ch2
h1 + b

,
where (h1, h2) ∈ X2, then we can get

F(u∗, v∗) =

d1∆− u∗
1

lπK
M +

au∗(u∗ + b)

(p+ u∗ + su∗ + bs)
2 − au∗(p+ u∗)

(p+ u∗ + su∗ + bs)2

c d2∆− c

 .
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Define the normalized eigenfunction αmk corresponding to λm, where m ≥ 0,
1 ≤ k ≤ nm. Then a complete orthonormal basis of L2(Ω) is formed by the set
{αm : m ≥ 0, 1 ≤ k ≤ nm}. When n0 = 1, we can get α01(x) ≡ 1√

|Ω|
> 0,

where x ∈ Ω. Define Am = (αm1, αm2, · · · , αmnm
)T, −∆Am = FmAm, where

Fm = (fmks) is an nm × nm matrix and λm is the only eigenvalue of Fm. Define

u =
∞∑

m=0
umAm, where um = (um1, um2, · · · , umnm

) and umk = (u1mk, u
2
mk)

T∈ C2

for k ∈ {1, 2, · · · , nm}. For F(u∗, v∗)u = hu, we can get

(
1− u∗

K

)
u1mkαmk − u∗

u1mk

Klπ
M ∗ αmk − a(u∗ + b)(p+ su∗ + bs)

(p+ u∗ + su∗ + bs)2
u1mkαmk

−hu1mkαmk − d1

nm∑
s=1

u1msfmskαmk − au∗(p+ u∗)

(p+ u∗ + su∗ + bs)2
u2mkαmk = 0,

cu1mkαmk − cu2mkαmk − hu2mkαmk − d2

nm∑
s=1

u2msfmskαmk = 0,

where m ∈ N0 and k ∈ {1, 2, · · · , nm},

(
1− u∗

K

)
u1mkαmk − a(u∗ + b)(p+ su∗ + bs)

(p+ u∗ + su∗ + bs)2
u1mkαmk − hu1mkαmk

−d1
nm∑
s=1

u1msfmskαmk − au∗(p+ u∗)

(p+ u∗ + su∗ + bs)2
u2mkαmk = 0,

cu1mkαmk − cu2mkαmk − hu2mkαmk − d2

nm∑
s=1

u2msfmskαmk = 0,

where m ∈ N and k ∈ {1, 2, · · · , nm}.
Then we can get Bm(h)um = 0, where um = (u1m1, u

1
m2, · · · , u1mnm, u

2
m1, u

2
m2,

· · · , u2mnm) ∈ C2nm and

Bm(h) =

 [l1 − h]Idnm×nm − d1F
T
m − l2

c
Idnm×nm

cIdnm×nm (−c− h)Idnm×nm − d2F
T
m

 ,
with l1 = 1− u∗

K − a(u∗+b)(p+su∗+bs)
(p+u∗+su∗+bs)2 , l2 = cau∗(p+u∗)

(p+u∗+su∗+bs)2 > 0, because of 1− u∗

K −
a(u∗+b)

p+u∗+su∗+bs = 0, then we can get l1 = a(u∗+b)u∗

(p+u∗+su∗+bs)2 > 0. Define Γ : C×R+×R×

R → C and Γ(h, λ, l1, l2)
∆
= h2 +(d1λ+ d2λ+ c− l1)h+(d1λ− l1)(d2λ+ c)+ l2 = 0.

Similarly, for m = 0 we can also obtain

B0(h) =

 l1 − h− u∗

K
− l2
c

c −c− h

 ,
Γ0(h, l1, l2)

∆
= h2 + (−l1 + u∗

K + c)h+ cu
∗

K − l1c+ l2 = 0.

Therefore, the eigenvalues of F(u∗, v∗) are all the roots of Γ(h, λm, l1, l2) = 0
for m ∈ N and Γ0(h, l1, l2) = 0.
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Remark 2.1. The system of (1.4) without nonlocal competition is

∂u

∂t
= d1∆u+ u− u2

K
− auv

p+ u+ sv
, x ∈ (0, lπ), t > 0,

∂v

∂t
= d2∆v + cv(1− v

u+ b
), x ∈ (0, lπ), t > 0,

ux(t, 0) = vx(t, 0) = 0, ux(t, lπ) = vx(t, lπ) = 0, t > 0,

u(0, x) = u0(x) ≥ 0, v(0, x) = v0(x) ≥ 0, x ∈ [0, lπ].

(2.2)

Similarly, for a positive constant steady state solution E∗′ of the system (2.2),
we can get the eigenvalues of F ′(u∗, v∗) are all the roots of Γ′(h, λm, l1, l2) = 0,
m ∈ N0, where

Γ′(h, λ, l1, l2) = h2 + (d1λ+ d2λ− l1 + c+
u∗

K
)h+ (d1λ− l1 +

u∗

K
)(d2λ+ c) + l2.

Then, we study the effects of parameters (l1, l2) on the existence and stability
of nonhomogeneous steady-state solutions. Define λ∗ > 0 is a simple eigenvalue of
the linear operator −∆ with the homogeneous Neumann boundary conditions and
α∗ is the corresponding eigenfunction satisfying ∥α∗∥L2(Ω) = 1. Firstly, we give the
following assumption

Assumption 2.2. (d1λ∗ − l1
∗)(d2λ∗ + c) + l2

∗ = 0, l1
∗ ̸= (d1 + d2)λ∗ + c, l2

∗ +
cu

∗

K − l1
∗c ̸= 0, for any m ∈ N\{∗}, (d1λm − l1

∗)(d2λm + c) + l2
∗ ̸= 0.

According to Assumption 2.2, we can get d1λ∗ − l1
∗ ̸= 0.

Remark 2.2. For the system (2.2), we give the following assumption.

Assumption 2.3. (d1λ∗ − l1
∗ + u∗

K )(d2λ∗ + c) + l2
∗ = 0, l1

∗ ̸= (d1 + d2)λ∗ + c+
u∗

K , for any m ∈ N\{∗}, (d1λm − l1
∗ + u∗

K )(d2λm + c) + l2
∗ ̸= 0.

Define

B∗(h, l1, l2) =

−d1λ∗ + l1 − h − l2
c

c −h− c− d2λ∗

 ,
then we can get B∗(0, l1

∗, l2
∗)b̄ = (0, 0)

T
, B∗T(0, l1

∗, l2
∗)ā = (0, 0)

T
, where

b̄ =

 1

c

l2
∗ (l1

∗ − d1λ∗)

 , ā =


l2

∗

d1λ∗ − l1
∗

l2
∗

c

 .
Then we have āT · b̄ = l1

∗ − c− (d1 + d2)λ∗, ā
T · B∗(0, l1, l2)b̄ = l2 − (c+ d2λ∗)(l1 −

d1λ∗)
∆
= G(l1, l2).

Although l1 and l2 are variables, changing some parameters in the system (1.4)
can still fix E∗. Next, in the neighborhood of positive constant steady state E∗,
we will investigate the existence of positive nonconstant steady state in the system
(1.4). i.e. solve a nonlinear functional equation F (u, l1, l2) = 0, where u is near E∗
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in X2 and (l1, l2) is near (l1
∗, l2

∗) in R2, where

F (u, l1, l2) =

d1∆u+ u

(
1− 1

Klπ
M ∗ u

)
− auv

p+ u+ sv

d2∆v + cv

(
1− v

u+ b

)
 .

Define

Sl1,l2 ū = F(u∗, v∗)ū =

d1∆u1 − u∗
1

Klπ
M ∗ u1 + l1u1 −

l2
c
u2

cu1 + d2∆u2 − cu2

 ,
Tl1,l2(ū, v̄)

=


− 1

Klπ
(u1M ∗ v1 + v1M ∗ u1) +

2av∗(p+ sv∗)

(p+ u∗ + sv∗)3
u1v1 +

2asu∗(p+ u∗)

(p+ u∗ + sv∗)3
u2v2

−ap
2 + apu∗ + av∗ps+ 2asu∗v∗

(p+ u∗ + sv∗)3
(u1v2 + u2v1)

− 2cv∗2

(u∗ + b)3
u1v1 −

2c

u∗ + b
u2v2 +

2cv∗

(u∗ + b)2
(u1v2 + u2v1)


,

Bl1,l2(ū, v̄, w̄)

=



2ap2 + 4au∗v∗s+ 2au∗p− 3as2v∗2

(p+ u∗ + sv∗)4
(w2u1v1 + w1u1v2 + w1u2v1)

+
−2asu∗2 + 4as2u∗v∗ + 2asp2 + 2as2pv∗

(p+ u∗ + sv∗)4
(w1u2v2 + w2u1v2 + w2u2v1)

− 6as2u∗(p+ u∗)

(p+ u∗ + sv∗)4
w2u2v2 −

6av∗(p+ sv∗)

(p+ u∗ + sv∗)4
w1u1v1

6cv∗2

(u∗ + b)4
w1u1v1 −

4cv∗

(u∗ + b)3
(w2u1v1 + w1u1v2 + w1u2v1)

+
2c

(u∗ + b)2
(w1u2v2 + w2u1v2 + w2u2v1)


,

for ū = (u1, u2)
T, v̄ = (v1, v2)

T, w̄ = (w1, w2)
T.

We can get āT ·Sl1,l2(b̄φ∗) = G(l1, l2)φ∗. In [11], define the adjoint operator S∗
l1,l2

of Sl1∗,l2∗ is FT(u∗, v∗), then we can get Ker Sl1∗,l2∗ = span{b̄φ∗}, Ker S∗
l1∗,l2∗ =

span{āφ∗}. By assumption Assumption 2.2, we have X2 = Ker Sl1∗,l2∗ ⊕ X0, Y2 =
Ker S∗

l1∗,l2∗ ⊕ Y0, where X0 = {w ∈ X2 : ⟨φ∗, b̄
T · w⟩ = 0}, Y0 = {w ∈ Y2 :

⟨φ∗, ā
T · w⟩ = 0}. Define P : Y2 → Y0, I − P : Y2 → KerS∗

l1∗,l2∗ . Then we
can get the bifurcation equation corresponding to the equation F (u, l1, l2) = 0 by
performing the Lyapunov-Schmidt reduction isPF (E∗ + zb̄φ∗ + ς, l1, l2) = 0,

(I − P )F (E∗ + zb̄φ∗ + ς, l1, l2) = 0,
(2.3)

where z ∈ R, ς ∈ X0, for any u ∈ X2, Pu = u− ⟨φ∗,ā
T·u⟩

āT·b̄ b̄φ∗. Define a real number
field R, an open neighborhood N of 0 in R, an open neighborhood Π of (l1

∗, l2
∗) in
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R2. Then define a continuously differentiable map W = (W1,W2)
T : N ×Π → X0,

then we can get W(0, l1, l2) = 0, for z ∈ R. Let ς = W(z, l1, l2), we can get

PF (E∗ + zb̄φ∗ +W(z, l1, l2), l1, l2) = 0, ⟨φ∗, b̄
T · W(z, l1, l2)⟩ = 0 (2.4)

and
J (z, l1, l2)

∆
= (I − P )F (E∗ + zb̄φ∗ +W(z, l1, l2), l1, l2) = 0, (2.5)

where (z, l1, l2) ∈ N × Π. We can know the equation (2.5) is the bifurcation map
of F (u, l1, l2) = 0 and satisfies J (0, l1, l2) = 0, Jz(0, l1, l2) = 0. Define a reduced
mapping g from R3 to R, where g(z, l1, l2) = ⟨φ∗,J (z, l1, l2)⟩ = ⟨φ∗, ā

T · F (E∗ +
zb̄φ∗ +W(z, l1, l2), l1, l2)⟩. Then we have

g(0, l1, l2) = 0, g(z, l1, l2) = Gl1,l2z +
1

2
σ1z

2 +
1

6
σ2z

3 + ◦(|l1 − l1
∗|, |l2 − l2

∗|, |z|3),

where σ1 = ⟨φ∗, ā
T·Tl1∗,l2∗(b̄φ∗, b̄φ∗)⟩, σ2 = 3⟨φ∗, ā

T·Tl1∗,l2∗(b̄φ∗,Wzz(0, l1
∗, l2

∗))⟩+
⟨φ∗, ā

T · Fl1∗,l2∗(b̄φ∗, b̄φ∗, b̄φ∗)⟩. Then we give the following two cases.

Case I. σ1 ̸= 0, from the implicit function theorem, we can get there exists a positive
constant δ1 and a continuously differentiable function j1 : (l1

∗−δ1, l1∗+δ1)× (l2
∗−

δ1, l2
∗ + δ1) → R, such that g(j1(l1, l2), l1, l2) = 0 for (l1, l2) ∈ (l1

∗ − δ1, l1
∗ + δ1)×

(l2
∗−δ1, l2∗+δ1). Then, we have j1(l1, l2) = − 2Gl1,l2

σ1
+o(|l1− l1∗|, |l2− l2∗|). Then,

we have the following theorem.

Theorem 2.1. Assume the assumptions Assumption 2.1 and Assumption 2.2 hold,
if σ1 ̸= 0, then the system (2.1) admits a nonconstant positive steady state El1,l2 ∈
X2, where

El1,l2 = E∗ + j1(l1, l2)b̄φ∗ +W(j1(l1, l2), l1, l2), (2.6)

for (l1, l2) ∈ (l1
∗ − δ1, l1

∗ + δ1) × (l2
∗ − δ1, l2

∗ + δ1), satisfying G(l1, l2) ̸= 0 and
El1,l2 → E∗ as (l1, l2) → (l1

∗, l2
∗).

Case II. σ1 = 0, σ2 ̸= 0, we can compute Wzz(0, l1
∗, l2

∗) to obtain σ2. Define

Iδ
′,1

l1,l2
= {(l1, l2) ∈ (l1

∗ − δ′, l1
∗ + δ′) × (l2

∗ − δ′, l2
∗ + δ′) : G(l1, l2) > 0}, Iδ

′,2
l1,l2

=

{(l1, l2) ∈ (l1
∗−δ′, l1∗+δ′)× (l2

∗−δ′, l2∗+δ′) : G(l1, l2) < 0}, for any δ′ > 0. Then,
we have the following theorem.

Theorem 2.2. Assume the assumptions Assumption 2.1 and Assumption 2.2 hold,
if σ1 = 0 and σ2 < 0(σ2 > 0), we can get there exist a constant δ′

∗
> 0 and from

Iδ
′∗,1

l1,l2
(Iδ

′∗,2
l1,l2

) to R, there exist two continuously differentiable mappings j±1 , then we

can get the system (2.1) admits two nonconstant positive steady states E±
l1,l2

∈ X2,
where

E±
l1,l2

= E∗ + j±1 (l1, l2)b̄φ∗ +W(j±1 (l1, l2), l1, l2) (2.7)

and E±
l1,l2

→ E∗ as (l1, l2) → (l1
∗, l2

∗).

From equation (2.6) and equation (2.7), we can get∫ lπ

0

(El1,l2 − E∗)φ∗(x)dx = j1(l1, l2)b̄,

lim
(l1,l2)→(l1∗,l2∗)

El1,l2 − E∗

j1(l1, l2)
= φ∗b̄,
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where z = j1(l1, l2) is the root of g(z, l1, l2) and satisfies j1(l1
∗, l2

∗) = 0.
In [11], from Lemma 3 we can get there exists a E ′ ⊆ E , then we can get for

each (l1, l2) ∈ E ′, the sign of the real part of an eigenvalue hl1,l2 of F(El1,l2) can be
determined by the sign of Re h∗, where h∗ ∈ C is such that Γm(h∗, λm, l1

∗, l2
∗) = 0

for some m ∈ N0. Then, we have the following theorem.

Theorem 2.3. One of the following conditions holds:
(i) l1

∗ > min{c+ u∗

K , u
∗

K + l2
c };

(ii) l1
∗ > (d1 + d2)λm + c for some m ∈ N;

(iii) (d1λm − l1
∗)(c+ d2λm) + l2

∗ < 0 for some m ∈ N, for m = 0, Γm(h∗, λm, l1
∗,

l2
∗) = 0 has at least one root with a positive real part, then we can get the noncon-

stant steady states El1,l2 given in Theorem 2.1 and Theorem 2.2 are unstable.

3. Stability analysis

In this paper, we assume that the region Ω = (0, lπ) and the kernel function
G(x, y) = 1

lπ . Denotes N as positive integer set and N0 as nonnegative integer
set. Obviously, we can get the positive equilibrium exists under the assumption
Assumption 2.1. We mainly consider the dynamic properties near the positive equi-
librium point.

By translation, let u = u− u∗, v = v− v∗, the linearized equation of the system
(1.4) at (u∗, v∗) is given by

ut = d1∆u− u∗
1

K

∫ lπ

0

u(t, y)dy + (1− u∗

K
)

u∗

p+ u∗ + sv∗
u

−
u∗(1− u∗

K )(u∗ + p)

v∗(p+ u∗ + sv∗)
v,

vt = d2∆v + cu− cv,

ux(0, t) = vx(0, t) = 0, ux(lπ, t) = vx(lπ, t) = 0,

(3.1)

for x ∈ (0, lπ), t > 0. Under zero Neumann boundary conditions, we can get the

eigenvalues of −∆ is k2

l2 , k ∈ N0. By simple calculation, we can get the characteristic
equation of the system (3.1) is

Pk(λ) := λ2 − Tk(c)λ+Dk(c) = 0, (3.2)

where

T0(c) =
u∗(1− u∗

K )

p+ u∗ + sv∗
− u∗

K
− c,

D0(c) =
cu∗(1− u∗

K )(u∗ + p)

v∗(p+ u∗ + sv∗)
−
cu∗(1− u∗

K )

p+ u∗ + sv∗
+
cu∗

K
,

Tk(c) = −(d1 + d2)
k2

l2
+

u∗(1− u∗

K )

p+ u∗ + sv∗
− c,

Dk(c) =
cu∗(1− u∗

K )(u∗ + p)

v∗(p+ u∗ + sv∗)
−
cu∗(1− u∗

K )

p+ u∗ + sv∗

+ (cd1 −
u∗(1− u∗

K )d2

p+ u∗ + sv∗
)
k2

l2
+
d1d2k

4

l4
, k ∈ N.
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Therefore, the roots of the above equation are

λ1,2 =
Tk (c)±

√
Tk

2 (c)− 4Dk (c)

2
, k ∈ N0.

If the characteristic roots satisfy Re (λ1,2) < 0, then (u∗, v∗) is locally asymptotically

stable. Define r =
u∗(1−u∗

K )

p+u∗+sv∗ . Rewrite Dk(c) as a quadratic function f(m)(m = k2

l2 ),

where f(m) = cr(u∗+p)
v∗ − cr + (cd1 − rd2)m + d1d2m

2. Then we can get f(0) =
cr(u∗+p)

v∗ − cr > 0. Define ∆f = (cd1 + rd2)
2 − 4d1d2cr(u

∗+p)
v∗ , fmin =

−∆f

4d1d2
, m1 =

−(cd1−d2r)−
√

(cd1+rd2)2− 4d1d2cr(u∗+p)

v∗

2d1d2
andm2 =

−(cd1−d2r)+

√
(cd1+rd2)2− 4d1d2cr(u∗+p)

v∗

2d1d2
.

Then we can get the following theorem

Theorem 3.1. For the system (1.4), assume Assumption 2.1 and r(u∗+p)
v∗ −r+ u∗

K >
0 hold, we can get the following results

(i) When c ≥ max{d2r
d1
, r}, the equilibrium E∗(u∗, v∗) is locally asymptotically

stable.

(ii) When r < c < d2r
d1

and ∆f < 0, the equilibrium E∗(u∗, v∗) is locally asymp-
totically stable.

(iii) When r < c < d2r
d1

, ∆f > 0 and there exists no m such that f(m) < 0, the
equilibrium E∗(u∗, v∗) is locally asymptotically stable.

Proof. Under the conditions (i), (ii) and (iii), we can obtain that when Assump-

tion 2.1 and r(u∗+p)
v∗ − r + u∗

K > 0 hold, Tk < 0 and Dk > 0 for all k ∈ N0, which
means that the equilibrium E∗(u∗, v∗) is locally asymptotically stable.

Remark 3.1. Using the same method, we can obtain that the characteristic equa-
tion of the system (3.1) without nonlocal competition is

Ok(λ) := λ2 −Mk(c)λ+Bk(c) = 0, (3.3)

where

Mk(c) = 1− 2u∗

K
−

(p+ sv∗)(1− u∗

K )

p+ u∗ + sv∗
− c− (d1 + d2)

k2

l2
,

Bk(c) =
cu∗(1− u∗

K )(u∗ + p)

v∗(p+ u∗ + sv∗)
− c(1− 2u∗

K
−

(p+ sv∗)(1− u∗

K )

p+ u∗ + sv∗
) +

cd1k
2

l2

+
d1d2k

4

l4
− (1− 2u∗

K
−

(p+ sv∗)(1− u∗

K )

p+ u∗ + sv∗
)
d2k

2

l2
, k ∈ N0.

Then, the two roots of the above equation are

λ1,2 =
Mk (c)±

√
Mk

2 (c)− 4Bk (c)

2
, k ∈ N0.

To generate Hopf-Hopf bifurcation, there are k1 and k2 to makeMk = 0, which is
monotonically contradiction with Mk about k, so it is impossible to generate Hopf-
Hopf bifurcation. Therefore, Hopf-Hopf bifurcation may occur when the nonlocal
competition is added to the system.
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4. Hopf-Hopf bifurcation analysis

4.1. Existence of Hopf-Hopf bifurcation

In the following article, we will compute the canonical form of the Hopf-Hopf bi-
furcation for k1 = 0, k2 ̸= 0, i.e. (0, k2)-mode Hopf-Hopf bifurcation. We study the
Hopf-Hopf bifurcation, but Tk is monotonic with respect to k, so there can only be

T0 = 0 and Tk = 0, k ∈ N. Define r =
u∗(1−u∗

K )

p+u∗+sv∗ > 0, by simple calculation, we can
get

c = c0 = r − u∗

K
, (4.1)

d2 = d2
∗ =

u∗

K
· l

2

k2
− d1.

If we take (d2, c) as a parameter and let λ1,2(d2, c) = α(d2, c)± iω(d2, c) be the
pair of roots of the equation (3.2) near (d2, c) = (d2

∗, c0) satisfying α(d2, c) = 0
and ω(d2, c) = ωn, for n = 1, 2. In the following, we give the lemma to verify the
transversality condition

Lemma 4.1. Assume Assumption 2.1 holds, then we can get
Re[∂λ∂c |(d2, c)=(d2

∗, c0)] < 0, Re[ ∂λ
∂d2

|(d2, c)=(d2
∗, c0)] < 0.

Proof. By equation (3.2), we have

(
∂λ

∂c
)−1 =

2λ− T0(c)

−λ− (
u∗(1−u∗

K )(u∗+p)

v∗(p+u∗+sv∗) − u∗(1−u∗
K )

p+u∗+sv∗ + u∗

K )
,

(
∂λ

∂d2
)−1 =

2λ− Tk(c)

−k2

l2 λ− (− u∗(1−u∗
K )k2

(p+u∗+sv∗)l2 + d1k4

l4 )
.

Then

[Re(
∂λ

∂c
)−1](d2, c)=(d2

∗, c0)

= Re[
2λ− T0(c)

−λ− (
u∗(1−u∗

K )(u∗+p)

v∗(p+u∗+sv∗) − u∗(1−u∗
K )

p+u∗+sv∗ + u∗

K )
](d2, c)=(d2

∗, c0)

= Re[
2λ(λ− (

u∗(1−u∗
K )(u∗+p)

v∗(p+u∗+sv∗) − u∗(1−u∗
K )

p+u∗+sv∗ + u∗

K ))

−λ2 + (
u∗(1−u∗

K )(u∗+p)

v∗(p+u∗+sv∗) − u∗(1−u∗
K )

p+u∗+sv∗ + u∗

K )2
](d2, c)=(d2

∗, c0)

= [
−2ωn

2

ωn
2 + (

u∗(1−u∗
K )(u∗+p)

v∗(p+u∗+sv∗) − u∗(1−u∗
K )

p+u∗+sv∗ + u∗

K )2
](d2, c)=(d2

∗, c0)

< 0,

[Re(
∂λ

∂d2
)−1](d2, c)=(d2

∗, c0)

= Re[
2λ− Tk(c)

−k2

l2 λ− (− u∗(1−u∗
K )k2

(p+u∗+sv∗)l2 + d1k4

l4 )
](d2, c)=(d2

∗, c0)

= Re[
2λ(k

2

l2 λ− (− u∗(1−u∗
K )k2

(p+u∗+sv∗)l2 + d1k
4

l4 ))

−k4

l4 λ
2 + (− u∗(1−u∗

K )k2

(p+u∗+sv∗)l2 + d1k4

l4 )2
](d2, c)=(d2

∗, c0)
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= [
− 2ωn

2k2

l2

k4

l4 ωn
2 + (− u∗(1−u∗

K )k2

(p+u∗+sv∗)l2 + d1k4

l4 )2
](d2, c)=(d2

∗, c0)

< 0.

In [13], we can know that when (d2, c) = (d2
∗, c0) at the positive equilibrium

E∗ the system (1.4) undergoes (k1, k2)-mode Hopf-Hopf bifurcation, where k1 = 0,
k2 ̸= 0.

Define

Λ2 :={k ∈ N|max{0, (r −
√
rc(u∗ + p)

v∗
)
l2

d1
} < k2

< min{u
∗l2

Kd1
, (r +

√
rc(u∗ + p)

v∗
)
l2

d1
}}.

After that, we have the following theorem

Theorem 4.1. For the system (1.4), assume Assumption 2.1 and r(u∗+p)
v∗ −r+ u∗

K >
0 hold, we can get the following results

(i) If Λ2 = ∅, the system (1.4) does not undergo Hopf-Hopf bifurcation.
(ii) If Λ2 ̸= ∅, the system (1.4) undergoes Hopf-Hopf bifurcation at the point

(d2, c) = (d2
∗, c0).

Proof. By equation (3.2), when (d2, c) = (d2
∗, c0), we can get T0(c) = 0 and

Tk(c) = 0. Obviously, when r(u∗+p)
v∗ − r + u∗

K > 0, we can get D0(c) > 0. When
Λ2 ̸= ∅, we assume that there is a unique k∗ ∈ Λ2 makes Dk∗(c) > 0. Then we
prove Dk∗(c) > 0.

Let

f(
k∗2

l2
) =

cu∗(1− u∗

K )(u∗ + p)

v∗(p+ u∗ + sv∗)
−
cu∗(1− u∗

K )

p+ u∗ + sv∗
+
cd1k

∗2

l2

−
u∗(1− u∗

K )

p+ u∗ + sv∗
d2k

∗2

l2
+
d1d2k

∗4

l4
,

because of (d2, c) = (d2
∗, c0) and r =

u∗(1−u∗
K )

p+u∗+sv∗ , we can get f(k
∗2

l2 ) =
r(r−u∗

K )(u∗+p)

v∗

− r2 + 2r d1k
∗2

l2 − d1
2k∗4

l4 .

After that we can know f( r
d1
) =

r(r−u∗
K )(u∗+p)

v∗ > 0, then we can get there have
a k∗ ∈ Λ2 makes Dk∗(c) > 0. i.e. When Λ2 ̸= ∅, the system (1.4) undergoes Hopf-
Hopf bifurcation at the point (d2, c) = (d2

∗, c0). When Λ2 = ∅, the system (1.4)
does not undergo Hopf-Hopf bifurcation.

4.2. Property of Hopf-Hopf bifurcation

Define the Banach space of continuous maps C = C([−r, 0];Xm) with m ∈ N
with the sup norm. We consider the nonlocal term as an independent variable
and separate it. Then, in the phase space C, we consider the abstract PFDE with
nonlocal effect

u̇(t) = L(ξ)∆u(t) +M(ξ)u(t) + M̂(ξ)û(t) +B(u(t), û(t), ξ), (4.2)



Bifurcation analysis in a modified Leslie-Gower 2165

where u(t) ∈ C, û(x, t) :=
∫
Ω
G(x, η)u(η, t)dη represents the nonlocal effect, where

G(x, y) is the kernel function, ξ = (ξ1, ξ2) is the varying parameter belonging to a
neighborhood of (0, 0) ∈ R2, L (ξ) = diag (d1 (ξ) , d2 (ξ) , . . . , dm (ξ)), where di(0) >
0, 1 ≤ i ≤ m, M,M̂ : V → M (C, Xm) is C1 smooth, B : C × C × V → Xm is
Ck smooth for k > 3, where B(0, 0, 0) = 0, DB(0, 0, 0) = 0. Then we can get the
linearized equation of equation (4.2) at the zero equilibrium is

u̇(t) = L0∆u(t) +M(0)u(t) + M̂(0)û(t). (4.3)

Define the Banach space

BC =

{
ϕ : [−r, 0] → Xm

∣∣∣∣ϕ is continuous on [−r, 0) , lim
θ→0−

ϕ (θ) exists

}
and the operation

⟨v, γk⟩ = (⟨v1, γk⟩ , ⟨v2, γk⟩ . . . , ⟨vm, γk⟩)T, k ∈ NB ,

where v = (v1, v2, . . . vm)
T ∈ C,

NB =

N0 for homogeneous Neumann boundary conditions,

N for homogeneous Dirichlet boundary conditions.

Then we consider equation (4.2) with Neumann boundary conditions on the spatial
domain Ω = (0, lπ) for some l > 0. Define

M̃k (ψ) γk =M (0) (ψγk) + M̂ (0) (ψγ̂k) ,

where M̃k : C → Cm, γ̂k =
∫
Ω
G(x, η)γk(η)dη, ψ ∈ C, k ∈ NB .

Define a m × m matrix-valued function of bounded variation ρk ∈
BV ([−r, 0] ,Cm×m), such that −µkL0ϕ (0) + M̃kϕ =

∫ 0

−r
dρk (θ)ϕ (θ) , for ϕ ∈ C.

Then we can get the linear equation (4.3) is equivalent to a sequence of functional
differential equations on Cm,

ġ(t) = −µkL0g(t) + M̃kgt, (4.4)

where gt (·) = ⟨ut (·) , γk⟩ ∈ C, with the characteristic equation is det∆ki
(λ) =

0, where ∆k (λ) = λI + µkL0 −Mk

(
eλI
)
− M̂k

(
eλI
)
, k ∈ NB .

Define the adjoint bilinear form on C∗ × C is

(ϕ, ψ)k = ϕ(0)ψ(0)−
∫ 0

−r

∫ θ

0

ϕ(η − θ)dρk(θ)ψ(η)dη, (4.5)

for ϕ ∈ C∗, ψ ∈ C, where C∗ ∆
= C ([0, r] ;Cm∗).

Define the characteristic equation

det∆ (λ) = 0, where ∆ (λ) = λI − L0∆−M (0)
(
eλI
)
− M̂ (0)

(
eλI
)

(4.6)

and a sequence of characteristic equations

det∆ki
(λ) = 0, (4.7)
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where ∆ki
(λ) = λI + µki

L0 −Mki

(
eλI
)
− M̂ki

(
eλI
)
, ki ∈ NB , i = 1, 2.

Let Λ = Λ1 ∪Λ2, where Λ1 = {±iω1), Λ2 = {±iω2). Using Λi to decompose the
phase space C, we can get C = Pi⊕Qi, where Pi denotes the eigenspace generalized
by the eigenfunction corresponding to Λi, Qi = {ψ ∈ C : (ϕ, ψ) = 0} for all ϕ ∈
Pi

∗, i = 1, 2, where Pi
∗ representing the generalized eigenspace corresponding to

the formal adjoint differential equation of equation (4.4) with k = ki, i = 1, 2. In
Pi, Pi

∗, i=1,2, we choose the basis

Ψki =
(
ψi, ψ̄i

)
, Φki =

ϕi

ϕ̄i

 , (4.8)

satisfy (Φki
, Ψki

)ki
= I, where I is the identity matrix,

Ψ̇ki
= Ψki

Bi and − Φ̇ki
= BiΦki

, (4.9)

where Bi = diag(iωi,−iωi), i = 1, 2. Simplify the normal form expression, we can
get

Ψi =

ψiγki

ψiγ̂ki

 , i = 1, 2. (4.10)

From [19,23], we can know that

ψi(θ) = ψi(0)e
iωiθ, θ ∈ [−r, 0],

ϕi(s) = ϕi(0)e
−iωis, s ∈ [0, r], i = 1, 2.

(4.11)

The phase space C can be decomposed by Λ as below

C = P ⊕Q, P = Im π, Q = Ker π,

where dimP = 4, π : C → P is the projection defined by

πψ =
∑
i=1,2

Ψki
(Φki

, ⟨ψ(·), γki
⟩)ki

γki
. (4.12)

In [23], the projection operator in equation (4.12) is extended to the phase space
BC, expressed by π. Decomposition of phase space BC, we can get

BC = P ⊕Kerπ.

In the space BC, rewrite equation (4.2) as an abstract ODE

dv

dt
= Av +X0F (v, v̂, ξ) , (4.13)

where

F (v, v̂, ξ) = (M(ξ)−M(0))v + (M̂(ξ)− M̂(0))v̂ + (L(ξ)− L(0))∆v(0) +B(v, v̂, ξ),
(4.14)

for v, v̂ ∈ C, ξ ∈ V.
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In [14], define C1
0

∆
= {ψ ∈ C : ψ̇ ∈ C, ψ(0) ∈ dom(∆)}, A : C1

0 ⊂ BC → BC,
Aψ = ψ̇ +X0[M(0)ψ + M̂(0)ψ̂ + L0∆ψ(0)− ψ̇(0)], where ψ̂ =

∫
Ω
G(x, η)ψ(η, t)dη.

Define Q1 ∆
= C1

0 ∩Q. Let g = (g1, ḡ1, g2, ḡ2)
T ∈ C4, when π commutes with A in C1

0 ,
we can get the abstract ODE in BC is equivalent to

ġ1 = iω1g1 + ϕ1(0)⟨F ((Ψk1γk1 , Ψk2γk2)g + y, (Ψk1 γ̂k1 , Ψk2 γ̂k2)g + ŷ, ξ), γk1⟩,
˙̄g1 = −iω1ḡ1 + ϕ̄1(0)⟨F ((Ψk1γk1 , Ψk2γk2)g + y, (Ψk1 γ̂k1 , Ψk2 γ̂k2)g + ŷ, ξ), γk1⟩,
ġ2 = iω2g2 + ϕ2(0)⟨F ((Ψk1γk1 , Ψk2γk2)g + y, (Ψk1 γ̂k1 , Ψk2 γ̂k2)g + ŷ, ξ), γk2⟩,
˙̄g2 = −iω2ḡ2 + ϕ̄2(0)⟨F ((Ψk1γk1 , Ψk2γk2)g + y, (Ψk1 γ̂k1 , Ψk2 γ̂k2)ḡ + ŷ, ξ), γk2⟩,
dy

dt
= A1y + (I − π)X0F ((Ψk1γk1 , Ψk2γk2)g + y, (Ψk1 γ̂k1 , Ψk2 γ̂k2)g + ŷ, ξ), (4.15)

where γ̂ki =
∫
Ω
G(x, η)γki(η, t)dη, ŷ =

∫
Ω
G(x, η)y(η, t)dη for y ∈ Q1, A1 is the

restriction of A on Q1.
Define M̃(ξ)(ψ) = M(ξ)ψ + M̂(ψ̂), where ψ ∈ C, M̃ ∈ M (C,Xm). Then taylor

expansion for M̃(ξ) and L(ξ) at ξ = 0, we can get

M̃(ξ)ψ = M̃(0)ψ +
1

2
M̃1(ξ)ψ + · · · , for ψ ∈ C,

L(ξ) = L(0) + 1
2L1(ξ) + · · · ,

(4.16)

where M̃(0)ψ = M(0)ψ + M̂(0)(ψ̂), M̃1ψ = M1ψ + M̂1(ψ̂) and M1 : V →
M(C,Rm), L1 : V → Rm×m are linear operators, where V is a neighborhood
of (0, 0). Define B in equation (4.14) can be rewritten as

B(v, v̂, 0) =
1

2!
Q(V, V ) +

1

3!
C(V, V, V ) +O(||V ||4), (4.17)

where V =

 v

v̂

, v̂ =
∫
Ω
G(x, η)v(η, t)dη, v ∈ C, Q (·, ·) and C (·, ·, ·) are symmetric

multilinear forms. In order to facilitate the calculation, write Q(V, V ) as QV V and
C(V, V, V ) as CV V V .

Based on the above content, ignoring the influence of the higher-order terms
(≥ 2) of the smaller parameters ξ1, ξ2 and the influence of ξ1, ξ2 on the third-order
terms of the normal form. In the following theorem, we give the formula of the
third-order normal form of equation (4.2).

Theorem 4.2. Assume Assumption 2.1 holds, we can get the normal forms of
equation (4.2) restricted on the center manifold up to the third order term are

ġ = Bg +
1

2
q12(g, 0, 0, ξ) +

1

3!
q13(g, 0, 0, 0) + h.o.t., (4.18)

is equivalent to

ġ1 = iω1g1 + n1(ξ)g1 + n2100g
2
1 ḡ1 + n1011g1g2ḡ2 + h.o.t.,

˙̄g1 = −iω1ḡ1 + n1(ξ)ḡ1 + n2100g1ḡ
2
1 + n1011ḡ1g2ḡ2 + h.o.t.,

ġ2 = iω2g2 +m2(ξ)g2 +m0021g
2
2 ḡ2 +m1110g1ḡ1g2 + h.o.t.,

˙̄g2 = −iω2ḡ2 +m2(ξ)ḡ2 +m0021g2ḡ
2
2 +m1110g1ḡ1ḡ2 + h.o.t..

(4.19)
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In the appendix, we give the final formula for calculating the coefficients n1(ξ),
m2(ξ), n2100, n1011, m0021, m1110.

Let
g1 = β1 cos(θ) + iβ1 sin(θ), g2 = β2 cos(θ) + iβ2 sin(θ)

and transforming
√
|Re(n2100)|β1 sign(Re(n2100)) → β1,

√
|Re(m0021)|β2 → β2, we

can get the normal form equation (4.19) can be written as

β̇1 = β1(ϵ1(ξ) + β2
1 + bβ2

2),

β̇2 = β2(ϵ2(ξ) + cβ2
1 + dβ2

2),
(4.20)

where

ϵ1(ξ) = Re(n1(ξ)) sign (Re(n2100)), ϵ2(ξ) = Re(m2(ξ)),

b =
Re(n1011)

|Re(m0021)|
sign (Re(n2100)), c =

Re(m1110)

|Re(n2100)|
, d = ±1.

Table 2. The twelve unfoldings [15] of the system (4.20).

Ia Ib II III IVa IVb V VIa VIb VIIa VIIb VIII

d +1 +1 +1 +1 +1 +1 -1 -1 -1 -1 -1 -1

c + + - + - - + - - + + -

b + + + - - - + + + - - -

d-cb + - + + + - - + - + - -

Table 3. The correspondence between Original system and Planar system.

Planar system Original system

E0 Positive constant steady state

E1 Spatially homogeneous periodic solution

E2 Spatially nonhomogeneous periodic solution

E3 Spatially nonhomogeneous quasi-periodic solution

In [15], in Table 2 give the system (4.20) has twelve cases according to different
signs of d, c, b and d − bc. In Table 3, after analyzing the phase portrait and
bifurcation diagram of the system (4.20) corresponding to each case, we can get the
dynamic behavior of equation (4.2) near the Hopf-Hopf bifurcation singularity.

5. Numerical simulations

Because the difference can reduce the irregular fluctuations between the data and
make the fluctuations curve more stable, we use the forward difference method in
MATLAB for numerical simulation. We choose c and d2 as the variable parameters.

In order to study the influence of nonlocal competition on the system (1.4), we
select some of the same parameters as in [41]. After assuming other parameters, we
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fix the following parameters of the system (1.4), then we can obtain the following
paremeters in our system

K = 50, a = 1, s = 0.1, p = 5, b = 0.01, k = 1, l = 5, d1 = 7.

Because p > max{K − ab − bs + Ks, ab − bs}, we can know Assumption 2.1(i)
holds. Then we can get the the positive constant steady state E∗ ≈ (15.0615386,
15.0715386), K − ab − bs + Ks = 4.9990000 , ab − bs = 0.0090000 and d2r

d1
=

0.0369987. There exist critical values c0 ≈ 0.1867237, d2
∗ ≈ 0.5307693, ω1 ≈

0.2939612, ω2 ≈ 0.2793454. When d2 = d2
∗, c = c0, all eigenvalues of Pk(λ) have

negative real parts other than two pairs of purely imaginary roots ±iω1, ±iω2, by
Theorem 4.1, Λ2 ̸= ∅, then we can get near (u∗, v∗) the system (1.4) undergoes
(0, k2)-mode Hopf-Hopf bifurcation.

As shown in Figure 1, it can be known that in the system without nonlocal
competition there are no two intersecting bifurcation curves when d2 > 0 and c > 0,
which will not produce Hopf-Hopf bifurcation. When d2 > 0, c > 0 and k = 1 the
system with nonlocal competition has two intersecting bifurcation curves, which
will produce Hopf-Hopf bifurcation, verify the Remark 3.1.

0.15 0.16 0.17 0.18 0.19 0.20
-8

-6

-4

-2

0

2

c

k=1 with 
nonlocal 
competition

d
2

Hopf-Hopf bifurcation point

k=1 without nonlocal 
competition

k=0

Figure 1. Hopf bifurcation curves of models with and without nonlocal competition.

Further the equation (7.5) become

ψ1(0) =

 1

0.2874839− 0.4525891i

 , ψ2(0) =

 1

0.3201712− 0.4300863i

 ,

ϕ1(0) =

 0.5000000− 0.3175992

1.1047548i

T

, ϕ2(0) =

 0.5000000− 0.3722174i

1.1625573i

T

.

By equation (7.3) and equation (7.4), we can get the coefficients of normal form
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up to the third-order

n1(ξ) = (−0.5000000 + 0.7871556i)ξ2,

m2(ξ) = − (0.0200000 + 0.0148887i) ξ1 − (0.5000000− 0.7903399i) ξ2,

n2100 = −0.0007925− 0.0001348i, n1011 = −0.0017482 + 0.0004029i,

m0021 = −0.0014502 + 0.0007949i, m1110 = −0.0008523− 0.0000779i.

By the system (4.20), the corresponding planar system is

β̇1 = β1(β1
2 + 1.2054893β2

2 + 0.5000000ξ2),

β̇2 = −β2
(
1.0754108β1

2 + β2
2 + 0.0200000ξ1 + 0.5000000ξ2

)
.

(5.1)

The equilibria of the system (5.1) are

E0 = (0, 0), E1 = (
√
−0.5000000ξ2, 0), for ξ2 < 0,

E2 = (0,
√
−0.0200000ξ1 − 0.5000000ξ2), for ξ2 < −0.04000000ξ1,

E3 = (
√
−0.0813431ξ1 − 0.3466463ξ2,

√
0.0674772ξ1 − 0.1272129ξ2),

for − 0.0813431ξ1 − 0.3466463ξ2 > 0, 0.0674772ξ1 − 0.1272129ξ2 > 0.

Because b = 1.2054893, c = −1.0754108, d = −1, d−bc > 0, then the Case V Ia
of the unfoldings in [15] occurs. In [2], by computing, we can get the critical
bifurcation lines in (d2, c)-plane

L+
0 : c = c0, for d2 > d2

∗,

L−
0 : c = c0, for 0 < d2 < d2

∗,

L+
1 : c = c0 − 0.04000000(d2 − d2

∗), for d2 > d2
∗,

L−
1 : c = c0 − 0.04000000(d2 − d2

∗), for 0 < d2 < d2
∗,

H1 : c = c0 − 0.2346574(d2 − d2
∗), for d2 > d2

∗,

H2 : c = c0 + 0.5304279(d2 − d2
∗), for 0 < d2 < d2

∗,

R : c = c0 − 0.6782028(d2 − d2
∗), for d2 > d2

∗(Hopf bifurcation curve).

(5.2)

As in Figure 2-Left, the (d2, c)-plane is divided into seven regions around (d2
∗, c0)

and in Figure 2-Right, we give the corresponding phase portraits in seven re-
gions. The equilibria of the planar system (5.1) correspond to the positive constant
steady state, periodic and quasi-periodic solutions of the system (1.4), we can see
in Table 3.

In the following Table 4, when (d2, c) close to (d2
∗, c0) ≈ (0.5307693, 0.1867237)

at E∗ = (15.0615386, 15.0715386), with ω1 ≈ 0.2939612, ω2 ≈ 0.2793454, we shall
analyze the dynamical behaviors of the system (1.4) with nonlocal competition and
the system without nonlocal competition, when the parameters (d2, c) fall in these
seven regions.
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Figure 2. Left: the bifurcation regions of the system (5.1) near (d2
∗, c0) in(d2, c)-plane; Right: the

corresponding phase portraits in O1-O7 and the corresponding phase portraits on Hopf bifurcation curve
R.

By numerical simulation, we verified that there has an unstable positive constant
steady state E0 in O1. There have an unstable positive constant steady state E0

and an unstable spatially nonhomogeneous periodic solution E2 in O2. There have
an unstable positive constant steady state E0, an unstable spatially homogeneous
periodic solution E1 and an unstable spatially nonhomogeneous periodic solution
E2 in O3. There have an unstable positive constant steady state E0, an unstable
spatially homogeneous periodic solution E1, an unstable spatially nonhomogeneous
periodic solution E2 and an unstable spatially nonhomogeneous quasi-periodic solu-
tion E3 in O4. There have an unstable positive constant steady state E0, an unstable
spatially homogeneous periodic solution E1, an unstable spatially nonhomogeneous
periodic solution E2 and a stable spatially nonhomogeneous quasi-periodic solution
E3 in O5. Then we can know that the spatially nonhomogeneous quasi-periodic
solution with multiple time-frequencies, which are peak alternating with a single
period, this shown that the wolves and rabbits will first concentrate at one side
of the habitat and then shift to the other side. There have an unstable positive
constant steady state E0 and an unstable spatially homogeneous periodic solution
E1, a stable spatially nonhomogeneous periodic solution E2 in O6. This shows that
the density of wolves and rabbits is unevenly distributed in space and changes in
a certain period. There have an unstable spatially homogeneous periodic solution
E1, a stable positive constant steady state E0 in O7. This shows that the density of
wolves and rabbits is evenly distributed in space and gradually tends to a positive
equilibrium point.

6. Conclusion

In this paper, we consider a diffusive predator-prey system with nonlocal competi-
tion. By selecting appropriate parameters (l1, l2), we study the effects of parameters
(l1, l2) on the existence, multiplicity and stability of nonhomogeneous steady states.
Then we study the existence and stability of positive nonconstant steady states in
the neighborhood of the positive constant steady state E∗ in (1.4). By solving the
nonlinear functional equation F (u, l1, l2) = 0, we obtain that there have unsta-
ble positive nonconstant steady states in the neighborhood of the positive constant
steady state E∗. The linear coefficients c and d2 are selected as the parameters.
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Table 4. The comparison between the system with nonlocal competition and the system without
nonlocal competition in O1, O2, O3, O4, O5, O6, O7.

with nonlocal competition without nonlocal competition

O1 Unstable positive constant steady state
E0.

O2 Unstable positive constant steady state
E0; Unstable spatially nonhomoge-
neous periodic solution E2.

O3 Unstable positive constant steady state
E0; Unstable spatially homogeneous
periodic solution E1; Unstable spatially
nonhomogeneous periodic solution E2.

O4 Unstable positive constant steady state
E0; Unstable spatially homogeneous
periodic solution E1; Unstable spa-
tially nonhomogeneous periodic solu-
tion E2; Unstable spatially nonhomo-
geneous quasi-periodic solution E3.

O5 Unstable positive constant steady state
E0; Unstable spatially homogeneous
periodic solution E1; Unstable spa-
tially nonhomogeneous periodic solu-
tion E2; Stable spatially nonhomoge-
neous quasi-periodic solution E3. (see
Figure 3)

Stable spatially homogeneous
periodic solution. (see Figure 4)

O6 Unstable positive constant steady state
E0; Unstable spatially homogeneous
periodic solution E1; Stable spatially
nonhomogeneous periodic solution E2.
(see Figure 5)

Stable positive constant steady
state E0. (see Figure 7)

O7 Unstable spatially homogeneous peri-
odic solution E1; Stable positive con-
stant steady state E0. (see Figure 6)

By analyzing the two pairs of pure imaginary roots of the characteristic equation
and the third-order normal form of the diffusion predator-prey system with nonlocal
competition, the normal form at the Hopf-Hopf bifurcation singularity is calculated.
Marching polar coordinate transformation for the normal form. According to the
critical bifurcation value, the plane region is divided into seven regions. The local
stability of the equilibrium point of each part and the existence of Hopf-Hopf bifur-
cation are studied. Finally, the numerical simulation is carried out by MATLAB to
verify the correctness of the theoretical analysis.

Our research shows that after adding nonlocal competition to a modified Leslie-
Gower with diffusion and Beddington-DeAngelis functional response system can
produce two intersecting Hopf bifurcation curves, i.e. produce Hopf-Hopf bifurca-
tion. In the system without nonlocal competition, there will be no two intersecting
Hopf bifurcation curves. And after adding the nonlocal competition to the model,
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(a) Numerical simulations of u and v.(Left:(u, x, t)-plane, Right:(v, x, t)-plane.)

(b) The projection of Figure 3(a).(Left:(u, t)-plane, Right:(v, t)-plane.)

Figure 3. Numerical simulations of (1.4) for parameters (d2, c) = (0.7707693, 0.00267237) ∈ O5,
with initial values u(x, 0) = u∗ + 0.0045000cos( 3

5x), v(x, 0) = v∗ + 0.0005000cos( 3
5x). In the Figure

3(a) and Figure 3(b), we can see that the spatially nonhomogeneous quasi-periodic solution is locally
asymptotically stable in O5.

when the parameters c and d2 change, we can obtain the dynamic characteristics of
the spatial distribution of the predator and prey in different regions. For example,
when the parameters c and d2 are in the O5, the spatially nonhomogeneous quasi-
periodic solution with multiple time-frequencies, which are peak alternating with a
single period, this shown that the wolves and rabbits will first concentrate at one
side of the habitat and then shift to the other side. When the parameters c and
d2 are in the O6, the density of wolves and rabbits is unevenly distributed in space
and oscillates within a certain period. When the parameters c and d2 are in the O7,
the density of wolves and rabbits is evenly distributed in space and gradually tends
to a positive equilibrium point. And we can know that the limit cycle appearing
through the Hopf bifurcation curve R must be generated after the parameter en-
ters the region O5. This indicates that nonlocal competition can induce some new
dynamic phenomena in model (1.4), produce locally asymptotically stable spatially
nonhomogeneous periodic solution, locally asymptotically stable spatially nonhomo-
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Figure 4. Numerical simulations of the system without nonlocal competition for parameters (d2, c) =
(0.7707693, 0.00267237) ∈ O5, with initial values u(x, 0) = u∗ + 0.0045000cos( 3

5x), v(x, 0) = v∗ +

0.0005000cos( 3
5x). (Left:(u, x, t)-plane, Right: (v, x, t)-plane). In the image, we can see that the spa-

tially homogeneous periodic solution is locally asymptotically stable in O5.

geneous quasi-periodic solutions and the limit cycles in the Hopf bifurcation curve
R.

Nonlocal competition between organisms is affected by the mobility of species
populations in their spatial locations. With the permission of this nonlocal interac-
tion, prey populations obtain limited food resources at their locations and nearby
locations. In order to better study the influence of nonlocal competition on the dy-
namics with spatial heterogeneity, in this paper, we consider adding nonlocal com-
petition to the modified Leslie-Gower with diffusion and Beddington-Diangelis func-
tional response system. Through our research, it is shown that the addition of non-
local competition to the model will induce some new dynamic phenomena, resulting
in locally asymptotically stable spatial non-homogeneous periodic solutions, locally
asymptotically stable spatial non-homogeneous quasi-periodic solutions, limit cycles
in the Hopf bifurcation curve R, which will help us to better study the relationship
between biological populations. However, in this paper, we introduce the non-
local competition effect including the average kernel function G(x, y) = 1

|Ω| with

Ω = (0, lπ) in the prey. Although it will induce some new dynamic phenomena, in
the real world, the competition between populations may be non-average. There-
fore, it will be better to consider the non-average kernel function, which will also
become the content of our further research. In addition, spatial pattern formation
is also an important research direction in reaction-diffusion systems [17, 44], which
we will consider in future studies.

7. Appendix

7.1. Detailed calculations the coefficients in equation (4.19)

m1(ξ) =
1

2
ϕ1(0)(⟨M̃1(ξ)(ψ1γk1

), γk1
⟩ − µk1

L1(ξ)ψ1(0)),

n2(ξ) =
1

2
ϕ2(0)(⟨M̃1(ξ)(ψ2γk2), γk2⟩ − µk2L1(ξ)ψ2(0)),

(7.1)
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(a) Numerical simulations of u and v.(Left:(u, x, t)-plane, Right:(v, x, t)-plane.)

(b) The projection of Figure 5(a) .(Left:(x, t)-plane, Right:(x, t)-plane.)

Figure 5. Numerical simulations of (1.4) for parameters (d2, c) = (0.5807693, 0.1857237) ∈ O6, with
initial values u(x, 0) = u∗ +0.0004000cos( 2

5x), v(x, 0) = v∗ +0.0002000cos( 2
5x). In the Figure 5(a) and

Figure 5(b), we can see that the spatially nonhomogeneous periodic solution is locally asymptotically
stable in O6.

Figure 6. Numerical simulations of (1.4) for parameters (d2, c) = (0.5450693, 0.1862237) ∈ O7, with
initial values u(x, 0) = u∗ + 0.0004500cos( 1

5x), v(x, 0) = v∗ + 0.0005000cos( 1
5x). (Left:(u, x, t)-plane,

Right:(v, x, t)-plane.). In the image, we can see that the constant value solution is locally asymptotically
stable in O7.
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(a) Numerical simulations of the system without nonlocal competition for parameters (d2, c) =
(0.5807693, 0.1857237) ∈ O6, with initial values u(x, 0) = u∗ + 0.0004000cos( 2

5x), v(x, 0) = v∗ +

0.0002000cos( 2
5x).(Left:(u, x, t)-plane, Right:(v, x, t)-plane.)

(b) Numerical simulations of the system without nonlocal competition for parameters (d2, c) =
(0.5450693, 0.1862237) ∈ O7, with initial values u(x, 0) = u∗ + 0.0004500cos( 1

5x), v(x, 0) = v∗ +

0.0005000cos( 1
5x).(Left:(u, x, t)-plane, Right:(v, x, t)-plane.)

Figure 7. Numerical simulations of the system without nonlocal competition for parameters in O6, O7.
In the image, we can see that the constant value solution is locally asymptotically stable in O6, O7.

n2100 =
1

2
ϕ1(0)[⟨CΨ1Ψ1Ψ1 , γk1⟩+

2

iω1
(−⟨QΨ1Ψ1 , γk1⟩ϕ1(0) + ⟨QΨ1Ψ1 , γk1⟩ϕ̄1(0))

×⟨QΨ1Ψ̄1
, γk1

⟩+ 1

iω1
(⟨QΨ1Ψ̄1

, γk1
⟩ϕ1(0) +

1

3
⟨QΨ̄1Ψ̄1

, γk1
⟩ϕ̄1(0))

×⟨QΨ1Ψ1 , γk1⟩+
2

iω2
(−⟨QΨ1Ψ2 , γk1⟩ϕ2(0)+⟨QΨ1Ψ̄2

, γk1
⟩ϕ̄2(0))⟨QΨ1Ψ̄1

, γk2
⟩

+ (
1

i(2ω1 − ω2)
⟨QΨ̄1Ψ2

, γk1
⟩ϕ2(0)

+
1

i(2ω1 + ω2)
⟨QΨ̄1Ψ̄2

, γk1
⟩ϕ̄2(0))⟨QΨ1Ψ1

, γk2
⟩

+ 2⟨QΨ1R1100
, γk1

⟩+ 2⟨QΨ̄1R2000
, γk1

⟩],
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n1011 =
1

2
ϕ1(0)[2⟨CΨ1Ψ2Ψ̄2

, γk1
⟩+ 2

iω1
(−⟨QΨ1Ψ1

, γk1
⟩ϕ1(0) + ⟨QΨ1Ψ̄1

, γk1
⟩ϕ̄1(0))

×⟨QΨ2Ψ̄2
, γk1

⟩+(− 2

iω2
⟨QΨ1Ψ2

, γk1
⟩ϕ1(0)+

2

i(2ω1 − ω2)
⟨QΨ̄1Ψ2

, γk1
⟩ϕ̄1(0))

×⟨QΨ1Ψ̄2
, γk1⟩+ (

2

iω2
⟨QΨ1Ψ̄2

, γk1⟩ϕ1(0) +
2

i(2ω1 + ω2)
⟨QΨ̄1Ψ̄2

, γk1⟩ϕ̄1(0))

×⟨QΨ1Ψ2
, γk1

⟩+(
2

iω2
(−⟨QΨ1Ψ2

, γk1
⟩ϕ2(0)+⟨QΨ1Ψ̄2

, γk1
⟩ϕ̄2(0))⟨QΨ2Ψ̄2

, γk2
⟩

+(
2

i(ω1 − 2ω2)
⟨QΨ2Ψ2 , γk1⟩ϕ2(0) +

2

iω1
⟨QΨ2Ψ̄2

, γk1⟩ϕ̄2(0))⟨QΨ1Ψ̄2
, γk2⟩

+(
2

iω1
⟨QΨ2Ψ̄2

, γk1
⟩ϕ2(0) +

2

i(ω1 + 2ω2)
⟨QΨ̄2Ψ̄2

, γk1
⟩ϕ̄2(0))⟨QΨ1Ψ2

, γk2
⟩

+2⟨QΨ1R0011
, γk1

⟩+ 2⟨QΨ2R1001
, γk1

⟩+ 2⟨QΨ̄2R1010
, γk1

⟩],

m0021 =
1

2
ϕ2(0)[⟨CΨ2Ψ2Ψ̄2

, γk2⟩+
2

iω2
(−⟨QΨ2Ψ2 , γk2⟩ϕ2(0) + ⟨QΨ2Ψ̄2

, γk2⟩ϕ̄2(0))

×⟨QΨ2Ψ̄2
, γk2

⟩+ 1

iω2
(⟨QΨ2Ψ̄2

, γk2
⟩ϕ2(0)+

1

3
⟨QΨ̄2Ψ̄2

, γk2
⟩ϕ̄2(0))⟨QΨ2Ψ2

, γk2
⟩

+
2

iω1
(−⟨QΨ1Ψ2

, γk2
⟩ϕ1(0) + ⟨QΨ̄1Ψ2

, γk2
⟩ϕ̄1(0))⟨QΨ2Ψ̄2

, γk1
⟩

+(
1

i(2ω2 − ω1)
⟨QΨ1Ψ̄2

, γk2
⟩ϕ1(0)

+
1

i(2ω2 + ω1)
⟨QΨ̄1Ψ̄2

, γk2
⟩ϕ̄1(0))⟨QΨ2Ψ2

, γk1
⟩

+2⟨QΨ2R0011 , γk2⟩+ 2⟨QΨ̄2R0020
, γk2⟩],

m1110 =
1

2
ϕ2(0)[2⟨CΨ1Ψ̄1Ψ2

, γk2
⟩+ 2

iω2
(−⟨QΨ2Ψ2

, γk2
⟩ϕ2(0) + ⟨QΨ2Ψ̄2

, γk2
⟩ϕ̄2(0))

×⟨QΨ1Ψ̄1
, γk2

⟩+(− 2

iω1
⟨QΨ1Ψ2

, γk2
⟩ϕ2(0)+

2

i(2ω2 − ω1)
⟨QΨ1Ψ̄2

, γk2
⟩ϕ̄2(0))

×⟨QΨ̄1Ψ2
, γk2⟩+ (

2

iω1
⟨QΨ̄1Ψ2

, γk2
⟩ϕ2(0) +

2

i(2ω2 + ω1)
⟨QΨ̄1Ψ̄2

, γk2
⟩ϕ̄2(0))

×⟨QΨ1Ψ2
, γk2

⟩+ (
2

iω1
(−⟨QΨ1Ψ2

, γk2
⟩ϕ1(0)

+⟨QΨ̄1Ψ2
, γk2⟩ϕ̄1(0))⟨QΨ1Ψ̄1

, γk1⟩

+(
2

i(ω2 − 2ω1)
⟨QΨ1Ψ1

, γk2
⟩ϕ1(0) +

2

iω2
⟨QΨ1Ψ̄1

, γk2
⟩ϕ̄1(0))⟨QΨ̄1Ψ2

, γk1
⟩

+ (
2

iω2
⟨QΨ1Ψ̄1

, γk2
⟩ϕ1(0) +

2

i(ω2 + 2ω1)
⟨QΨ̄1Ψ̄1

, γk2
⟩ϕ̄1(0))⟨QΨ1Ψ2

, γk1
⟩

+ 2⟨QΨ2R1100 , γk2⟩+ 2⟨QΨ1R0110 , γk2⟩+ 2⟨QΨ̄1R1010
, γk2⟩],

where

Rz1z2z3z4 =

 rz1z2z3z4

r̂z1z2z3z4

 , (7.2)
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with r̂z1z2z3z4 =
∫
Ω
G(x, η)rz1z2z3z4(η)dη and rz1z2z3z4 , z1 + z2 + z3 + z4 = 2,

z1, z2, z3, z4 ∈ N0.
Define M̃k

1 (ψ)γk = M̃k
1 (ψγk), φi := ⟨Ψi, γki⟩, γ0(x) = 1, γk(x) =

√
2 cos k

l x, k ∈

N, ⟨γn(x), γm(x)⟩ = 1
lπ

∫ lπ

0
γn(x)γm(x)dx = δnm :=

0, n ̸= m

1, n = m
, rkz := ⟨rz, γk⟩,

z ∈ N4
0, |z| = 2, k ∈ N0, Rk

z := ⟨Rz, γk⟩, z ∈ N4
0, |z| = 2, k ∈ N0.

For k1 = 0, k2 ̸= 0, we have that

⟨γ2k1
, γk1

⟩ = ⟨γ2k2
, γk1

⟩ = ⟨γk1
γk2

, γk2
⟩ = 1,

⟨γ2k1
, γk2⟩ = ⟨γ2k2

, γk2⟩ = ⟨γk1γk2 , γk1⟩ = 0,

⟨γ3k1
, γk1

⟩ = 1, ⟨γk1
γ2k2

, γk1
⟩ = ⟨γ2k1

γk2
, γk2

⟩ = 1,

⟨QΨ1R1100γk1 , γk1⟩ = Qφ1R
0
1100, ⟨QΨ1R0011γk1 , γk1⟩ = Qφ1R

0
0011,

⟨QΨ̄1R2000
γk1

, γk1
⟩ = Qφ̄1

R0
2000, ⟨QΨ2R1100

γk2
, γk2

⟩ = Qφ2
R0

1100,

⟨QΨ1R0110
γk1

, γk2
⟩ = Qφ1

Rk2
0110, ⟨QΨ̄1R1010

γk1
, γk2

⟩ = Qφ̄1
Rk2

1010,

⟨QΨ2R1001γk2 , γk1⟩ = Qφ2R
k2
1001, ⟨QΨ̄2R1010

γk2 , γk1⟩ = Qφ̄2R
k2
1010,

⟨QΨ2R0011γk2 , γk2⟩ = Qφ2(R
0
0011 +

1√
2
R2k2

0011),

⟨QΨ̄2R0020
γk2

, γk2
⟩ = Qφ̄2

(R0
0020 +

1√
2
R2k2

0020).

Then the functions r02000, r
0
1100, r

0
0020, r

2k2
0020, r

0
0011, r

2k2
0011, r

k2
1010, r

k2
1001, r

k2
0110 are

r02000(θ) =
1

2
[2iω1I −

∫ 0

−r

e2iω1θdρ0(θ)]
−1Qφ1φ1e

2iω1θ − 1

2iω1
[ψ1(θ)ϕ1(0) +

1

3
ψ̄1(θ)

× ϕ̄1(0)]Qφ1φ1 ,

r01100(θ) =[

∫ 0

−r

dρ0(θ)]
−1[−I + ψ1(0)ϕ1(0) + ψ̄1(0)ϕ̄1(0)]Qφ1φ̄1

,

r00020(θ) =
1

2
[2iω2I −

∫ 0

−r

e2iω2θdρ0(θ)]
−1Qφ2φ2

e2iω2θ +
1

2
[

1

i(ω1 − 2ω2)
ψ1(θ)ϕ1(0)

− 1

i(ω1 + 2ω2)
ψ̄1(θ)ϕ̄1(0)]Qφ2φ2

,

r2k2
0020(θ) =

1

2
√
2
[2iω2I −

∫ 0

−r

e2iω2θdρ2k2
(θ)]−1Qφ2φ2

e2iω2θ,

r00011(θ) =[

∫ 0

−r

dρ0(θ)]
−1[−I + ψ1(0)ϕ1(0) + ψ̄1(0)ϕ̄1(0)]Qφ2φ̄2

,

rk2
1010(θ) =[i(ω1 + ω2)I −

∫ 0

−r

ei(ω1+ω2)θdρk2
(θ)]−1Qφ1φ2

ei(ω1+ω2)θ

− [
1

iω1
ψ2(θ)ϕ2(0) +

1

i(ω1 + 2ω2)
ψ̄2(θ)ϕ̄2(0)]Qφ1φ2

,

rk2
1001(θ) =[i(ω1 − ω2)I −

∫ 0

−r

ei(ω1−ω2)θdρk2
(θ)]−1Qφ1φ̄2

ei(ω1−ω2)θ − [
1

i(ω1 − 2ω2)
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× ψ2(θ)ϕ2(0) +
1

iω1
ψ̄2(θ)ϕ̄2(0)]Qφ1φ̄2 ,

r2k2
0011(θ) =− 1√

2
[

∫ 0

−r

dρ2k2(θ)]
−1Qφ2φ2 , rk2

0110(θ) = rk2
1001(θ). (7.3)

Then we can get the coefficients n2100, n1011, m0021, m1110 of equation (4.19)
are

n2100 =
1

2
ϕ1(0)Cφ1φ1φ̄1

− ϕ1(0)

2iω1
[2(Qφ1φ1

ϕ1(0)−Qφ1φ̄1
ϕ̄1(0))Qφ1φ̄1

−(Qφ1φ̄1ϕ1(0) +
1

3
Qφ̄1φ̄1 ϕ̄1(0))Qφ1φ1 ] + ϕ1(0)(Qφ1R

0
1100 +Qφ̄1R

0
2000),

n1011 = ϕ1(0)Cφ1φ2φ̄2
− ϕ1(0)[

1

iω1
(Qφ1φ1

ϕ1(0)−Qφ1φ̄1
ϕ̄1(0))Qφ2φ̄2

− (
1

iω1
Qφ2φ̄2

×ϕ2(0) +
1

i(ω1 + 2ω2)
Qφ̄2φ̄2 ϕ̄2(0))Qφ1φ2 − (

1

i(ω1 − 2ω2)
Qφ2φ2ϕ2(0)

+
1

iω1
Qφ2φ̄2

ϕ̄2(0))Qφ1φ̄2
] + ϕ1(0)(Qφ1

R0
0011 +Qφ2

Rk2
1001 +Rφ̄2

Rk2
1010),

m0021 =
3

4
ϕ2(0)Cφ2φ2φ̄2

− 1

2
ϕ2(0)[−(

1

i(2ω2 − ω1)
Qφ1φ̄2

ϕ1(0)

+
1

i(2ω2 + ω1)
Qφ̄1φ̄2 ϕ̄1(0))Qφ2φ2

+
2

iω1
(Qφ1φ2

ϕ1(0)−Qφ̄1φ2
ϕ̄1(0))Qφ2φ̄2

] + ϕ2(0)[Qφ2
(R0

0011 +
1√
2

×R2k2
0011) +Qφ̄2(R

0
0020 +

1√
2
R2k2

0020)],

m1110 = ϕ2(0)Cφ1φ̄1φ2
− ϕ2(0)[

1

iω1
(Qφ1φ2

ϕ1(0)−Qφ̄1φ2
ϕ̄1(0))Qφ1φ̄1

+ (
1

iω1
Qφ1φ2

×ϕ2(0)−
1

i(2ω2 − ω1)
Qφ1φ̄2

ϕ̄2(0))Qφ̄1φ2
− (

1

iω1
Qφ̄1φ2

ϕ2(0)

+
1

i(2ω2 + ω1)
Qφ̄1φ̄2 ϕ̄2(0))Qφ1φ2 ]

+ϕ2(0)(Qφ1
Rk2

0110 +Qφ̄1
Rk2

1010 +Qφ2
R0

1100).

(7.4)

7.2. Detailed calculations the variables in n2100, n1011, m0021,
m1110

Let

d2 = d2
∗ + ξ1, c = c0 + ξ2,

V (t) = (u (t) , v (t))
T
, V̂ (t) =

1

lπ

∫ lπ

0

V (y, t) dy,

as equation (4.2), transform the linearized the system (1.4) at (u∗, v∗)

V̇ (t) = L (ξ)∆V (t) +M (ξ)V (t) + M̂ (ξ) V̂ (t) +B
(
V (t) , V̂ (t) , ξ

)
,
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where

L0(ξ) =

d1 0

0 d2
∗ + ξ1

 ,

M(ξ) =

 r
−(u∗ + p)r

v∗

c0 + ξ2 −c0 − ξ2

 , M̂ (ξ) =

−u
∗

K
0

0 0

 ,

B (u, û, ξ)

=


u1 + u∗ − 1

K
(u1 + u∗) (û1 + u0)−

a(u1 + u∗) (u2 + v∗)

p+ u1 + u∗ + s(u2 + v∗)
− ru1+

r(u∗ + p)

v∗
u2 +

u∗

K
û1

(c0 + ξ2)(u2 + v∗)(1− u2 + v∗

u1 + u∗ + b
)− (c0 + ξ2)(u1 − u2)

 ,

and u = (u1, u2)
T
, û = (û1, û2)

T ∆
= 1

lπ

∫ lπ

0
u (η, t) dη, ξ = (ξ1, ξ2). Then

L(0) =

d1 0

0 d2
∗

 , L1(ξ) =

 0 0

0 ξ1

 ,

M (0) =

 r
−r(u∗ + p)

v∗

c0 −c0

 , M1 (ξ) =

 0 0

ξ2 −ξ2

 ,

M̂ (0) =

−u0
K

0

0 0

 , M̂1 (ξ) =

 0 0

0 0

 ,

Q (V, V )

=


− 2av∗(p+ sv∗)

(p+ u∗ + sv∗)3
u1

2 +
2sau∗(u∗ + p)

(p+ u∗ + sv∗)3
u2

2 − 2ap2 + 2apu∗ + 2apsv∗ + 4asu∗v∗

(p+ u∗ + sv∗)3
u1u2

− 2

K
u1û

− 2c

u∗ + b
u2

2 − 2c

u∗ + b
u1

2 +
4c

u∗ + b
u1u2

,

C (V, V, V )

=



−6av∗(p+ sv∗)

(p+ u∗ + sv∗)4
u1

3 − 6au∗s2(p+ u∗)

(p+ u∗ + sv∗)4
u2

3 +
6ap2 + 12asu∗v∗ + 6apu∗ − 6as2v∗2

(p+ u∗ + sv∗)4
u1

2u2

+
−6asu∗2 + 12as2u∗v∗ + 6asp2 + 6as2pv∗

(p+ u∗ + sv∗)4
u1u2

2

6c

(u∗ + b)2
u1

3 − 12c

(u∗ + b)2
u1

2u2 +
6c

(u∗ + b)2
u1u2

2


,

where

V =

u

û

 .

For (0, k2)-mode Hopf-Hopf bifurcation, by equation (4.9) and equation (4.11),
we can get the eigenfunctions ψi, ψ̄i, ϕi, ϕ̄i, which are satisfiable equation ϕiψi = 1,
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ϕiψj = 0, for i, j = 1, 2, i ̸= j, where

ψ1 =

 1

s1

 , ψ2 =

 1

s2

 , ϕ1 =


1

S1

s3
S1


T

, ϕ2 =


1

S2

s4
S2


T

, (7.5)

with

s1 =
c0

iω1 + c0
, s3 = − r(u∗ + p)

v∗(iω1 + c0)
,

s2 =
c0

c0 +
d2

∗k2
2

l2 + iω2

, s4 = − r(u∗ + p)

v∗(iω2 + c0 +
d2

∗k2
2

l2 )
,

S1 = 1− c0r(u
∗ + p)

v∗(iω1 + c0)2
, S2 = 1− c0r(u

∗ + p)

v∗(iω2 + c0 +
d2

∗k2
2

l2 )2
.

For k1 = 0, k2 = 1, we can know that the system (1.4) satisfies Theorem 4.2, then
the normal form of the system (1.4) can be derived (7.3) and (7.4).
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