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GROUND STATE SOLUTIONS FOR THE
CHERN–SIMONS–SCHRÖDINGER
SYSTEM WITH HARTREE–TYPE

NONLINEARITY IN R2

Liting Jiang1, Guofeng Che1,† and Haibo Chen2

Abstract In this paper, we consider the following Chern–Simons–Schrödinger
system with Hartree–type nonlinearity in R2


−∆u+ (1 + µV (x))u+A0u+A2

1u+A2
2u =

(
|x|−α ∗ |u|p

)
|u|p−2u,

∂1A0 = A2u
2, ∂2A0 = −A1u

2,

∂1A2 − ∂2A1 = − 1
2
|u|2, ∂1A1 + ∂2A2 = 0,

where p > 3, α ∈ (0, 2), µ > 0 is a parameter, V (x) is a nonnegative continuous
potential well satisfying some conditions and ∗ is a notation for the convolution
of two functions in R2. By using the Nehari manifold technique and the
concentration compactness principle, we obtain the existence of ground state
solutions for the above problem when the parameter µ is sufficiently large.
Furthermore, the concentration behaviors of these solutions are also explored.

Keywords Chern–Simons–Schrödinger system, Hartree–type nonlinearity,
ground state solutions, concentration.
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1. Introduction and main result

Since the early 1980s, the Chern–Simons theory has become increasingly significant
in various areas of quantum physics, for instance, high–temperature superconduc-
tor, fractional quantum Hall effect and Aharovnov–Bohm scattering. The Chern–
Simons theory is a new type of gauge theory that is very different from Maxwell
theory in Minkowski spacetime R2+1. The relativistic Chern–Simons model was
proposed by Hong et al. [15] and Jackiw and Weinberg [19] to study vortex so-
lutions of the Maxwell–Higgs model carrying magnetic charges and electric. The
initial value problem of the model has been studied in [5, 16]. One of the basic
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models attached to Chern–Simons dynamics is the following planar gauged nonlin-
ear Schrödinger equation, which appears when the nonrelativistic N–body anyon
problem is second–quantized

iD0ϕ+ (D1D1 +D2D2)ϕ+ λ|ϕ|p−2ϕ = 0, (1.1)

where i denotes the imaginary unit, ∂0 = ∂
∂t , ∂1 = ∂

∂x1
, ∂2 = ∂

∂x2
for (t, x) ∈

R1+2, x = (x1, x2), ϕ : R1+2 → C is the complex scalar filed, Aη : R1+2 → R
is the gauge field, Dη = ∂η + iAη is the covariant derivative for η = 0, 1, 2 and
λ > 0 is a constant representing the strength of interaction potential. The classical
equation for the gauge field Aη is the Maxwell equation, and the tensor F ην =
∂ηAν − ∂νAη denotes a field strength combining nonrelativistic electromagnetic
with Chern–Simons components governed by the following gauge field equation

∂ηF
ην +

1

2
κϵναβFαβ = jν , (1.2)

where κ is a parameter that measures the strength of the Chern–Simons modifica-
tion, ϵναβ is the Levi–Civita tensor, this is to say, ϵναβ equals 1 or −1 according to
whether (ναβ) is an even or odd permutation of (012) and equals 0 otherwise, and
where jν is the conserved matter current

jν = (j0, ji) with j0 = |ϕ|2, ji = 2Im(ϕ̄Diϕ).

At low energies, the Maxwell term becomes negligible and can be removed, resulting
in

1

2
κϵναβFαβ = jν .

One can see [18,36] for the discussion above. For simplicity, we fix κ = 2. Then by
Eq. (1.1) and Eq. (1.2), we obtain the following nonlinear Schrödinger system

iD0ϕ+ (D1D1 +D2D2)ϕ = −|ϕ|p−2
ϕ,

∂0A1 − ∂1A0 = − Im(ϕ̄D2ϕ),

∂0A2 − ∂2A0 = Im(ϕ̄D1ϕ),

∂1A2 − ∂2A1 = −1

2
|ϕ|2.

(1.3)

System (1.3) describes the nonrelativistic thermodynamic behavior of a large num-
ber of particles in an electromagnetic field. For more physical background about
system (1.3), see [12,25,29] and the references therein.

Assume that the Coulomb gauge condition ∂0A0+∂1A1+∂2A2 = 0 holds. If we
consider the standing wave solution of the form ψ(t, x) = e−iλtu(x) for system (1.3),
where the frequency λ ∈ R, then the function u satisfies the following stationary
system 

−∆u+ λu+A0u+A2
1u+A2

2u = f(u),

∂1A0 = A2u
2, ∂2A0 = −A1u

2,

∂1A2 − ∂2A1 = −1

2
|u|2, ∂1A1 + ∂2A2 = 0.

(1.4)
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Here, the components A0, A1 and A2 in system (1.4) can be obtained by solving
the following elliptic system

∆A1 =
1

2
∂2(|u|2),

∆A2 = −1

2
∂1(|u|2),

∆A0 = ∂1(A2|u|2)− ∂2(A1|u|2),

the expressions of A0, A1 and A2 are given as follows
A1 := A1(u) =

x2
4π|x|2

∗ |u|2, A2 := A2(u) = − x1
4π|x|2

∗ |u|2,

A0 := A0(u) =
x1

2π|x|2
∗ (A2|u|2)−

x2
2π|x|2

∗ (A1|u|2),

where the symbol ∗ represents the convolution.
In recent years, the existence and nonexistence of nontrivial solutions for system

(1.4) have been widely investigated by many researchers. Huh [17] got the existence
of infinitely many radially symmetric standing–wave solutions for system (1.4) with
f(u) = |u|p−2u(p > 6) by applying Mountain pass Theorem. When λ is replaced by
V (x), by dint of Morse theory, Jiang and Liu [21] studied nontrivial solutions for
system (1.4) with the case where the potential V is indefinite so that the Schrödinger
operator −∆ + V has a finite–dimensional negative space. Furthermore, when λ
is replaced by V (x) and f(u) = |u|p−2u(p > 6), Kang and Tang [22] obtained the
existence of ground state solutions for system (1.4) by using a splitting Lemma,
where V (x) = V1(x) for x1 > 0 and V (x) = V2(x) for x1 < 0, and V1, V2 are
periodic in each coordinate direction. For more results about the Chern–Simons–
Schrödinger system, we refer the interested reader to [7–10,20,28,34,35,40] and the
references therein.

For the elliptic problems with Hartree–type nonlinearity, the Choquard equation
is a peculiar case relevant to physical applications

−∆u+ u =

(
1

|x|
∗ |u|2

)
u, u ∈ H1(R3), (1.5)

which arises in various branches of mathematical physics, such as physics of multiple–
particle systems, the quantum theory of large systems for nonrelativistic bosonic
atoms and molecules. Indeed, Eq. (1.5) was proposed by Choquard in 1976 as a
certain approximation to Hartree–Fock theory for one component plasma [23]. It
was also proposed by Penrose [33] in 1996 as a model for the self–gravitational col-
lapse of a quantum mechanical wave–function. Lieb [23] and Lions [26] obtained the
existence of solutions for Eq. (1.5) via variational methods. Clapp and Salazar [11]
proved the existence of positive and sign–changing solutions for Eq. (1.5) with
−∆u + u being replaced by −∆u +W (x)u, where u ∈ H1

0 (Ω) and Ω is an exte-
rior domain in RN (N ≥ 3). Moreover, Ma and Zhao [30] studied the following
generalized Choquard equation

−∆u+ u =
(
|x|−α ∗ |u|p

)
up−2u, u ∈ H1(RN ), (1.6)

where p ≥ 2. Under some conditions on N , α and p, they obtained every positive
solution is radially symmetric and monotone decreasing about some point. More
related results may be found in [6, 31,41] and the references therein.
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To the best of our knowledge, there are few results for the Chern–Simons–
Schrödinger system with Hartree–type nonlinearity. Motivated by the works above,
in this paper, we consider the existence and concentration of ground state solu-
tions for the following Chern–Simons–Schrödinger system involving the Hartree–
type nonlinearity

−∆u+ Vµ(x)u+A0u+A2
1u+A2

2u = (|x|−α ∗ |u|p) |u|p−2u,

∂1A0 = A2u
2, ∂2A0 = −A1u

2,

∂1A2 − ∂2A1 = − 1
2 |u|

2, ∂1A1 + ∂2A2 = 0,

(Sµ)

where p > 3, α ∈ (0, 2), Vµ(x) = 1 + µV (x), µ > 0 is a parameter, V (x) is a con-
tinuous potential function and ∗ is a notation for the convolution of two functions
in R2. Such a problem is often referred to as being nonlocal because of the appear-
ance of the Chern–Simons term and Hartree–type nonlinearity term, which implies
that problem (Sµ) is no longer a pointwise identity. This phenomenon provokes
some mathematical difficulties, which make the study of such a problem particu-
larly interesting. The main difficulties we face lie in the presence of the nonlocal
terms and the lack of compactness due to the unboundedness of the domain R2. In
order to overcome these considerable difficulties, by exploiting the Nehari manifold
technique and the concentration–compactness principle, we obtain the existence of
ground state solutions for problem (Sµ) and the concentration behavior of these
solutions. Before stating our main result, we need to suppose that the potential
function V (x) satisfies the following conditions

(v1) V ∈ C(R2,R) and V (x) ≥ 0 for each x ∈ R2;

(v2) Ω = intV −1(0) is nonempty with smooth boundary and Ω̄ = V −1(0);

(v3) there exists M > 0 such that L({x ∈ R2|V (x) ≤ M}) < ∞, where L denotes
the Lebesgue measure in R2.

These above conditions (v1)−(v3) were first introduced by Bartsch and Wang [2]
in the research of a nonlinear Schrödinger equation. These conditions imply that
Vµ(x) represents a potential well whose depth is controlled by µ and Vµ(x) is called
a steep potential well for µ sufficiently large. It is worth mentioning that we do not
impose any other conditions on the behavior of V (x) for |x| → ∞.

Now, we state our main result as follows.

Theorem 1.1. Suppose that conditions (v1) − (v3) hold. Then there exists a con-
stant µ⋆ > 0 such that for each µ ≥ µ⋆, problem (Sµ) admits at least one ground
state solution uµ in H1(R2). Moreover, let uµn

be a sequence of solutions for prob-
lem (Sµn

) and µn → +∞ as n → ∞, then uµn
→ û in H1(R2) as n → ∞, where

û ∈ H1
0 (Ω) is a ground state solution of

−∆u+ u+A0u+A2
1u+A2

2u = (|x|−α ∗ |u|p) |u|p−2u,

∂1A0 = A2u
2, ∂2A0 = −A1u

2,

∂1A2 − ∂2A1 = −1

2
|u|2, ∂1A1 + ∂2A2 = 0,

(S∞)

where Ω is defined by the condition (v2).
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Notation. Throughout this paper, we will use some notations. For any 1 ≤ r ≤
+∞, we denote the Lr–norm by | · |r and denote “→” and “⇀” to represent the
strong and weak convergence, respectively. Let Br be a ball centered at the origin
with radius r > 0 and on(1) be a quantity such that on(1) → 0 as n → ∞. C and
Ci(i = 0, 1, 2, ...) denote various positive constants, which may vary from line to
line. If we take a subsequence of a sequence {un}, we may denote it again by {un}.

The remainder of this paper is as follows. In Section 2, we present some pre-
liminary results. In Section 3, we mainly show that the functional Jµ satisfies the
(PS)c condition, then we prove the existence of ground state solutions. In Section
4, we prove the main result.

2. Preliminaries

In this section, we present some preliminary results, which will be used throughout
the paper. The Sobolev space H1(R2) is defined by

H1(R2) =
{
u ∈ L2(R2) : ∇u ∈ L2(R2)

}
with the inner product and the norm

⟨u, v⟩ =
∫
R2

(∇u∇v + uv) dx, ∥u∥ =

(∫
R2

(|∇u|2 + u2)dx

) 1
2

.

Let

H := {u ∈ H1(R2) :

∫
R2

V (x)|u|2dx < +∞}

be the Hilbert space equipped with the inner product and the norm

⟨u, v⟩µ =

∫
R2

(∇u∇v + Vµ(x)uv) dx, ∥u∥µ =

(∫
R2

(|∇u|2 + Vµ(x)u
2)dx

) 1
2

.

H1
0 (Ω) is the closure of C∞

0 (Ω) in H1(Ω), where C∞
0 (Ω) is the subspace of C∞(Ω)

consisting of functions with compact support in Ω, and Ω is defined by the condition
(v2). The norm in H1

0 (Ω) will always be denoted by ∥u∥.
By the condition (v1), we can see that ∥u∥ ≤ ∥u∥µ for all u ∈ H, which implies

that the embedding H ↪→ H1(R2) is continuous. Let S be the best Sobolev constant
for the embedding of H into Lr(R2), then for any 2 ≤ r < +∞, there holds

|u|r ≤ S−1∥u∥µ ∀ u ∈ H. (2.1)

Set

D(u) =

∫
R2

(
|x|−α ∗ |u|p

)
|u|pdx =

∫
R2

∫
R2

|u(x)|p|u(y)|p

|x− y|α
dxdy. (2.2)

It follows from the Hardy–Littlewood–Sobolev inequality [24, Theorem 4.3] that∣∣∣∣∫
R2

∫
R2

ϕ(x)ψ(y)

|x− y|κ
dxdy

∣∣∣∣ ≤ C(κ)|ϕ|r|ψ|s ∀ ϕ ∈ Lr(R2), ψ ∈ Ls(R2),

where 0 < κ < 2, 1 < r, s <∞, and 1
r + 1

s + κ
2 = 2. For each u ∈ H1(R2), we have

the estimate of D(u) as follows

|D(u)| ≤ C0

(∫
R2

|u|
4p

4−α dx

) 4−α
2

= C0|u|2ppr, (2.3)
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where C0 = C(α) is a positive constant and r = 4
4−α . In view of the Sobolev

embedding, we let 4p
4−α ∈ (2,∞), that is, p ∈ ( 4−α

2 ,∞). By (2.3), we know that D
is well–defined in H. Furthermore, by similar argument to that of [39, Lemma 2.5],
we can get that D ∈ C1(H,R).

The energy functional Jµ : H → R corresponding to problem (Sµ) is defined by

Jµ(u) =
1

2
∥u∥2µ +

1

2

∫
R2

(A2
1 +A2

2)|u|2dx− 1

2p

∫
R2

(
|x|−α ∗ |u|p

)
|u|pdx. (2.4)

For simplicity, in this paper, we denote

A(u) :=
1

2

∫
R2

(A2
1 +A2

2)|u|2dx.

Then for any φ ∈ H1(R2), one has

⟨A
′
(u), φ⟩ =

∫
R2

(A2
1 +A2

2)uφdx+

∫
R2

A0uφdx.

Note that ∫
R2

A0u
2dx = −2

∫
R2

A0 (∂1A2 − ∂2A1) dx

= 2

∫
R2

(A2∂1A0 −A1∂2A0) dx

= 2

∫
R2

(A2
1 +A2

2)u
2dx,

then we have ⟨A′
(u), u⟩ = 3

∫
R2(A

2
1+A

2
2)|u|2dx = 6A(u). It follows from [4, Propo-

sition 2.1] that A ∈ C1(H,R). Then under the conditions (v1) − (v3), it is easy
to see that the functional Jµ is well–defined and Jµ ∈ C1(H,R). Moreover, the
solutions of problem (Sµ) are the critical points of the functional Jµ.

For the nonlocal nonlinearityD(u) defined in (2.2), we have the following Brezis–
Lieb type Lemma [1, Lemma 3.5].

Lemma 2.1. Let {un} ⊂ H be a bounded sequence such that un → u a.e. on R2

as n→ ∞, then there hold

(i) D(un)−D(un − u) → D(u) as n→ ∞;

(ii) D
′
(un)−D

′
(un − u) → D

′
(u) in H−1 as n→ ∞.

As is shown in [14, Lemma 2.4], A(u) possesses the following properties.

Lemma 2.2. Assume that a sequence {un} ⊂ H1(R2) converges weakly to a func-
tion u in H1(R2) and {un} → u a.e. on R2 as n → ∞, then we have Aj(un) →
Aj(u) a.e. on R2 and for every φ ∈ H1(R2), there hold

(i)
∫
R2 A

2
j (un)unφdx =

∫
R2 A

2
j (u)uφdx+ o(1) for j = 1, 2;

(ii)
∫
R2 A0(un)unφdx =

∫
R2 A0(u)uφdx+ o(1);

(iii)
∫
R2 A

2
j (un − u)|un − u|2dx +

∫
R2 A

2
j (u)|u|2dx =

∫
R2 A

2
j (un)|un|2dx + o(1) for

j = 1, 2.
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Lemma 2.3. Assume that conditions (v1) − (v3) hold. Then the functional Jµ(u)
satisfies the following conditions.

(i) There exist ξ, ρ > 0 such that Jµ(u) ≥ ξ > 0 for every ∥u∥µ = ρ;

(ii) there exists e ∈ H with ∥e∥µ > ρ such that Jµ(e) ≤ 0.

Proof. (i) From (2.1) and (2.3), we have

Jµ(u) =
1

2
∥u∥2µ +A(u)− 1

2p

∫
R2

(
|x|−α ∗ |u|p

)
|u|pdx

≥ 1

2
∥u∥2µ − C0

2p
|u|2ppr (2.5)

≥ 1

2
∥u∥2µ − C0

2p
S−2p∥u∥2pµ .

Since p > 3, we can choose some ξ, ρ > 0 such that Jµ(u) ≥ ξ > 0 for every
∥u∥µ = ρ.

(ii) First, we notice that for each µ > 0, Jµ(0) = 0. Moreover, since p > 3, we
obtain

lim
t→+∞

Jµ(tu) = lim
t→+∞

(
t2

2
∥u∥2µ + t6A(u)− t2p

2p

∫
R2

(
|x|−α ∗ |u|p

)
|u|pdx

)
= −∞.

Then we can choose t0 > 0 sufficiently large such that ∥t0u∥µ > ρ and Jµ(t0u) ≤ 0.
Let e = t0u, then (ii) holds. This completes the proof.

In order to get the weak solutions of problem (Sµ), we define the Nehari manifold

Mµ := {u ∈ H \ {0} : γ(u) = 0} ,

where

γ(u) := ⟨J
′

µ(u), u⟩ = ∥u∥2µ + 6A(u)−
∫
R2

(
|x|−α ∗ |u|p

)
|u|pdx.

Then u ∈ Mµ if and only if

∥u∥2µ + 6A(u) =

∫
R2

(
|x|−α ∗ |u|p

)
|u|pdx.

Thus, we can obtain the following conclusion.

Lemma 2.4. For each u ∈ Mµ, there exist σ, δ > 0 such that ∥u∥µ ≥ σ and

⟨γ′
(u), u⟩ ≤ −δ.

Proof. For each u ∈ Mµ, from (2.1) and (2.3), we get

0 = ⟨J
′

µ(u), u⟩

= ∥u∥2µ + 6A(u)−
∫
R2

(
|x|−α ∗ |u|p

)
|u|pdx

≥ ∥u∥2µ − C0|u|2ppr
≥ ∥u∥2µ − C0S

−2p∥u∥2pµ .

Since p > 3, there exists σ > 0 such that ∥u∥µ ≥ σ. Moreover,

⟨γ
′
(u), u⟩ = 2∥u∥2µ + 36A(u)− 2p

∫
R2

(
|x|−α ∗ |u|p

)
|u|pdx
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= (2− 2p)∥u∥2µ + (36− 12p)A(u)

≤ −(2p− 2)σ2

< 0.

This completes the proof.
By Lemma 2.4, Mµ is a smooth manifold in H. It is easy to see that Jµ is

well–defined and smooth on Mµ. Furthermore, by analogous argument to that
of [38, Theorem 4.3], we can show that if u is a critical point of Jµ constrained to
Mµ, then u is a nontrivial solution for problem (Sµ).

Lemma 2.5. For all u ∈ Mµ, Jµ is bounded from below by a positive constant.

Proof. For each u ∈ Mµ, in view of the definition of Mµ and Lemma 2.4, there
holds

Jµ(u) =
1

2
∥u∥2µ +A(u)− 1

2p

∫
R2

(
|x|−α ∗ |u|p

)
|u|pdx

=

(
1

2
− 1

2p

)
∥u∥2µ +

p− 3

p
A(u)

>

(
1

2
− 1

2p

)
σ2

> 0.

This completes the proof.

3. The (PS)c condition

In the following, our main goal is to prove that functional Jµ satisfies the (PS)c
condition. Recall that, for a given functional Jµ ∈ C1(H,R), we say that a sequence

{un} ⊂ H is a (PS)c sequence if it satisfies Jµ(un) → c and J
′

µ(un) → 0 as n→ ∞.
Moreover, if any (PS)c sequence has a convergent subsequence, then we say that
Jµ satisfies the (PS)c condition.

Lemma 3.1. Assume that conditions (v1)−(v3) hold. Let {un} be a (PS)c sequence
for Jµ(u), we have

(i) {un} is bounded in H;

(ii) either c ≥ c0 for some c0 > 0 independent of µ or c = 0.

Proof. (i) Let {un} be a (PS)c sequence for Jµ(u), that is,

Jµ(un) = c+ on(1) and J
′

µ(un) = on(1).

Since p > 3, we have

c+ on(1)−
1

2p
on(∥un∥µ)

= Jµ(un)−
1

2p
⟨J

′

µ(un), un⟩

=

(
1

2
− 1

2p

)
∥un∥2µ +

p− 3

p
A(u)
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≥
(
1

2
− 1

2p

)
∥un∥2µ.

Then

∥un∥2µ ≤ c

(
1

2
− 1

2p

)−1

, (3.1)

for n sufficiently large. Therefore, (i) holds.
(ii) Since J

′

µ(un) = on(1), we obtain

on(∥un∥µ) = ⟨J
′

µ(un), un⟩

= ∥un∥2µ + 6A(u)−
∫
R2

(
|x|−α ∗ |un|p

)
|un|pdx

≥ ∥un∥2µ − C0S
−2p∥un∥2pµ .

It follows from p > 3 that there exists σ1 ∈ (0, 1) such that

⟨J
′

µ(un), un⟩ ≥
1

4
∥un∥2µ for ∥un∥µ < σ1. (3.2)

Now, if c <
(p−1)σ2

1

2p and {un} is a (PS)c–sequence of Jµ, then from (3.1), we obtain

lim
n→∞

∥un∥2µ ≤ 2pc

p− 1
< σ2

1 .

Thus, ∥un∥µ < σ1 for n sufficiently large, then from (3.2), we get

1

4
∥un∥2µ ≤ ⟨J

′

µ(un), un⟩ = on(1)∥un∥µ,

which indicates that ∥un∥µ → 0 as n → ∞ and c = 0, then (ii) holds for c0 =
(p−1)σ2

1

2p . This completes the proof.

Lemma 3.2. Assume that conditions (v1)− (v3) hold. Let µ > 0 be fixed and {un}
be a (PS)c–sequence of Jµ. Then up to a subsequence un ⇀ u in H with u being a

weak solution of problem (Sµ). Moreover, Jµ(un−u) → c−Jµ(u) and J
′

µ(un−u) → 0
as n→ ∞.

Proof. By Lemma 3.1(i), we know that {un} is bounded in H. Then there is a
subsequence of {un} such that un ⇀ u in H as n→ ∞. In order to see that u is a
critical point of Jµ, we recall that

un ⇀ u in H, (3.3)

un → u in Lr
loc(R2) for r ∈ (2,∞), (3.4)

un → u a.e. on R2. (3.5)

In view of J
′

µ(un) → 0, Lemma 2.2 and (3.3), for any v ∈ H, we obtain

⟨J
′

µ(u), v⟩ = lim
n→∞

⟨J
′

µ(un), v⟩ = 0,

which implies that u is a weak solution of problem (Sµ). Now, we consider a new
sequence vn = un − u, then by Brézis–Lieb Lemma [3] and Lemma 2.2, we have

∥vn∥2µ = ∥un∥2µ − ∥u∥2µ + o(1), (3.6)
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A(vn) = o(1). (3.7)

Next we prove that
Jµ(vn) = c− Jµ(u) as n→ ∞, (3.8)

and
J

′

µ(vn) → 0 as n→ ∞. (3.9)

By (3.6) and (3.7), we obtain

Jµ(vn) =
1

2
∥vn∥2µ +A(vn)−

1

2p

∫
R2

(
|x|−α ∗ |vn|p

)
|vn|pdx

=
1

2
∥un∥2µ − 1

2
∥u∥2µ − 1

2p

∫
R2

(
|x|−α ∗ |un − u|p

)
|un − u|pdx (3.10)

+on(1)

= Jµ(un)− Jµ(u) +
1

2p
(D(un)−D(u)−D(un − u)) + on(1).

From Lemma 2.1(i), D(un)−D(u)−D(un − u) → 0 as n→ ∞. Then from (3.10),
we obtain (3.8). In order to prove (3.9), let φ ∈ H, it is easy to see that

⟨J
′

µ(vn), φ⟩ = ⟨J
′

µ(un), φ⟩ − ⟨J
′

µ(u), φ⟩+ on(1)−
∫
R2

(
|x|−α ∗ |vn|p

)
|vn|p−2vnφdx

+

∫
R2

(
|x|−α ∗ |un|p

)
|un|p−2unφdx−

∫
R2

(
|x|−α ∗ |u|p

)
|u|p−2uφdx.

By Lemma 2.1(ii), we easily obtain that

lim
n→∞

sup
∥φ∥µ≤1

∫
R2

[ (
|x|−α ∗ |vn|p

)
|vn|p−2vn

−
(
|x|−α ∗ |un|p

)
|un|p−2un +

(
|x|−α ∗ |u|p

)
|u|p−2u

]
φdx = 0.

Hence, there holds
lim
n→∞

⟨J
′

µ(vn), φ⟩ = 0 ∀ φ ∈ H,

which indicates that (3.9) holds. This completes the proof.

Lemma 3.3. Let C1 be fixed. Given ε > 0 there exist µε = µ(ε, C1) > 0 and
Rε = R(ε, C1) > 0 such that if {un} is a (PS)c–sequence of Jµ(u) with c ≤ C1 and
µ ≥ µε, there holds

lim sup
n→∞

∫
R2\BRε

(
|x|−α ∗ |un|p

)
|un|pdx ≤ ε. (3.11)

Proof. For R > 0, we set

Ω+
R := {x ∈ R2 : |x| ≥ R, V (x) ≥M}, Ω−

R := {x ∈ R2 : |x| ≥ R, V (x) < M},
(3.12)

by (3.1), there holds∫
Ω+

R

|un|2dx ≤ 1

1 + µM

∫
R2

(1 + µV (x))|un|2dx
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≤ 1

1 + µM

∫
R2

(|∇un|2 + (1 + µV (x))|un|2)dx

≤ 1

1 + µM

(
2pc

p− 1
+ on(∥un∥µ)

)
(3.13)

≤ 1

1 + µM

(
2pC1

p− 1
+ on(1)

)
→ 0, as µ→ +∞.

In view of the Hölder inequality, Lemma 3.1(ii) and (2.1), for 1 < q < 2, we get

∫
Ω−

R

|un|2dx ≤
(∫

R2

|un|2qdx
) 1

q

(∫
Ω−

R

1dx

) q−1
q

≤ S−2∥un∥2µ · |L(Ω−
R)|

q−1
q (3.14)

≤ S−2 2pC1

p− 1
· |L(Ω−

R)|
q−1
q

→ 0, as R→ ∞.

By the Hardy–Littlewood–Sobolev inequality, we obtain

∫
R2\BRε

(
|x|−α ∗ |un|p

)
|un|pdx ≤ C0

(∫
R2\BRε

|un|
4p

4−α dx

) 4−α
2

. (3.15)

Setting ℓ = 2(p−2)+α
2p , from (3.13), (3.14) and the Gagliardo–Nirenberg inequality

[13,32,37]

|u|s ≤ C(s)|∇u|β2 |u|
1−β
2 , β = 2(

1

2
− 1

s
),

there holds∫
R2\BRε

|un|
4p

4−α dx

≤ C(p, α)

(∫
R2\BRε

|∇un|2dx

) 2pℓ
4−α

·

(∫
R2\BRε

|un|2dx

) 2p(1−ℓ)
4−α

≤ C(p, α)

(∫
R2

|∇un|2dx
) 2pℓ

4−α

·

(∫
Ω+

R

|un|2dx+

∫
Ω−

R

|un|2dx

) 2p(1−ℓ)
4−α

(3.16)

≤ C(p, α)∥un∥
4pℓ
4−α
µ ·

(∫
Ω+

R

|un|2dx+

∫
Ω−

R

|un|2dx

) 2p(1−ℓ)
4−α

→ 0, as µ,R→ ∞.

In view of (3.15) and (3.16), we complete the proof.
Thus, we have the following compactness result.

Lemma 3.4. Suppose that conditions (v1)−(v3) hold. Then for each C2 > 0, there
exists µ0 > 0 such that Jµ satisfies the (PS)c–condition for all c ≤ C2 and µ ≥ µ0.
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Proof. Let c0 > 0 be given by Lemma 3.1(ii) and choose ε > 0 such that ε < pc0
p−1 .

Thus, for given C2 > 0, we choose µε > 0 and Rε > 0 defined in Lemma 3.3. We
claim that µ0 = µε is required in Lemma 3.4. Let {un} ⊂ H be a (PS)c–sequence
of Jµ(u) with µ ≥ µ0 and c ≤ C2. From Lemma 3.2, we assume that un ⇀ u in
H and vn = un − u is a (PS)c̄–sequence of Jµ with c̄ = c − Jµ(u). Next we claim
c̄ = 0. In fact, if c̄ ̸= 0, then from Lemma 3.1(ii), we have c̄ ≥ c0 > 0. Since {vn}
is a (PS)c̄–sequence of Jµ, one has

Jµ(vn) = c̄+ on(1) and J
′

µ(vn) = on(1).

Then there holds

c̄+ on(1)−
1

2
on(∥vn∥µ)

= Jµ(vn)−
1

2
⟨J

′

µ(vn), vn⟩

= −2A(vn) +

(
1

2
− 1

2p

)∫
R2

(
|x|−α ∗ |vn|p

)
|vn|pdx (3.17)

≤
(
1

2
− 1

2p

)∫
R2

(
|x|−α ∗ |vn|p

)
|vn|pdx.

Thus, we have

lim
n→∞

∫
R2

(
|x|−α ∗ |vn|p

)
|vn|pdx ≥ c̄

(
1

2
− 1

2p

)−1

≥ 2pc0
p− 1

.

On the other hand, from Lemma 3.3, one has

lim sup
n→∞

∫
R2\BRε

(
|x|−α ∗ |vn|p

)
|vn|pdx ≤ ε <

pc0
p− 1

,

which implies that vn → v in H with v ̸= 0, which is a contradiction. Hence, c̄ = 0
and it follows from (3.1) that

lim
n→∞

∥vn∥2µ ≤ 2pc̄

p− 1
= 0,

therefore, vn → 0 in H, i.e., un → u in H. This completes the proof.

4. Proof of Theorem 1.1

In this section, we give the proof of our main result. First, we define the minimax
cµ as

cµ := inf
u∈Mµ

Jµ(u). (4.1)

By Lemma 2.5, we have cµ > 0. In the following, we first show that there exists
uµ ∈ Mµ with Jµ(uµ) = cµ, i.e., uµ is a ground state solution of problem (Sµ).
Next we consider the energy functional associated with limit problem (S∞) defined
by

J∞(u) =
1

2

∫
Ω

(|∇u|2 + |u|2)dx+A(u)− 1

2p

∫
Ω

(
|x|−α ∗ |u|p

)
|u|pdx.
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Let
M∞ = {u ∈ H1

0 (Ω) \ {0} : ⟨J
′

∞(u), u⟩ = 0}

be the Nehari manifold and set

c∞ = inf
u∈M∞

J∞(u).

We will show that there exists û ∈ M∞ with J∞(û) = c∞, i.e., û is a ground state
solution of problem (S∞).

Proof of Theorem 1.1. From Lemma 2.3, Jµ satisfies the mountain–pass ge-
ometry, then there exists a (PS)cµ sequence {un} ⊂ H such that Jµ(un) →
cµ and J

′

µ(un) → 0. Furthermore, from Lemma 3.1(i), {un} is bounded in H.
Thus, up to a subsequence, we suppose that un ⇀ u0 in H and un → u0 a.e. on
R2. From Lemma 3.4, there exists µ⋆ > 0, such that for µ ≥ µ⋆, un → u0 in H.
From Lemma 3.2, there holds J

′

µ(u0) = 0. Moreover, cµ > 0 implies that u0 ̸= 0.
Then u0 ∈ Mµ. In view of Fatou’s Lemma, we obtain

Jµ(u0) = Jµ(u0)−
1

2p
⟨J

′

µ(u0), u0⟩

=

(
1

2
− 1

2p

)
∥u0∥2µ +

p− 3

p
A(u0)

≤ lim inf
n→∞

[(
1

2
− 1

2p

)
∥un∥2µ +

p− 3

p
A(un)

]
= lim inf

n→∞

(
Jµ(un)−

1

2p
⟨J

′

µ(un), un⟩
)

= cµ.

Therefore, Jµ(u0) ≤ cµ. On the other hand, it follows from the definition of cµ that
cµ ≤ Jµ(u0). Thus, Jµ(u0) = cµ. Take uµ = u0, then uµ is a ground state solution
of problem (Sµ).

Next we consider the concentration behavior of the solutions. Let un := uµn
be

the solution of (Sµn
) with un ∈ Mµn

such that Jµn
(un) = cµn

and µn → +∞ as
n→ ∞. By Lemma 3.1(i), we know that {un} must be bounded in H1(R2). Thus,
we suppose that un ⇀ û in H1(R2) and un → û in Lr

loc(R2) for r ∈ (2,∞). We
claim û|Ωc = 0, where Ωc = R2 \Ω. In fact, if û|Ωc ̸= 0, then there exists a compact
subset Σ ⊂ Ωc with dist(Σ, ∂Ω) > 0 such that û|Σ ̸= 0. Then∫

Σ

|un|2dx→
∫
Σ

|û|2dx > 0.

Furthermore, there exists ε0 > 0 such that V (x) ≥ ε0 for any x ∈ Σ. We also notice
that un ∈ Mµn , then we obtain

Jµn
(un) =

1

2

∫
R2

(|∇un|2 + (1 + µnV (x))|un|2)dx+A(un)−
1

2p
D(un)

=

(
1

2
− 1

2p

)∫
R2

(|∇un|2 + (1 + µnV (x))|un|2)dx+
p− 3

p
A(un)

≥
(
1

2
− 1

2p

)∫
R2

(1 + µnV (x))|un|2dx
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≥
(
1

2
− 1

2p

)∫
Σ

(1 + µnε0)|un|2dx

→ +∞, as n→ ∞.

This contradiction shows that û|Ωc = 0 and û ∈ H1
0 (Ω) by the condition (v2). Then

for any φ ∈ C∞
0 (Ω), since ⟨J ′

µn
(un), φ⟩ = 0, it is easy to check that∫

R2

(∇û∇φ+ ûφ)dx+ ⟨A
′
(û), φ⟩ =

∫
R2

(
|x|−α ∗ |û|p

)
|û|p−2ûφdx,

that is, û is a weak solution of problem (S∞) by the density of C∞
0 (Ω) in H1

0 (Ω).

Now, we claim that un → û in Lr(R2) for 2 < r < ∞. Otherwise, by the
concentration compactness principle of Lions [27], there exist η > 0, ρ > 0, xn ∈ R2

with |xn| → +∞ such that ∫
Bρ(xn)

|un − û|2dx ≥ η > 0. (4.2)

On the other hand, we notice that L(Bρ(xn) ∩ {x|V (x) ≤ M}) → 0 as n → +∞
and un ∈ Mµn , Then by the Hölder inequality, for 1 < q < 2, we obtain∫

Bρ(xn)∩{x|V (x)≤M}
|un − û|2dx

≤ (L(Bρ(xn) ∩ {x|V (x) ≤M}))
q−1
q

(∫
R2

|un − û|2qdx
) 1

q

→ 0,

as n→ ∞. Therefore, we have

Jµn(un)

≥
(
1

2
− 1

2p

)∫
Bρ(xn)∩{x|V (x)≥M}

(|∇un|2 + (1 + µnV (x))|un|2)dx

≥
(
1

2
− 1

2p

)
µn

(
M

∫
Bρ(xn)

|un − û|2dx−
∫
Bρ(xn)∩{x|V (x)≤M}

|un − û|2dx

)

=

(
1

2
− 1

2p

)
µn

(
M

∫
Bρ(xn)

|un − û|2dx− on(1)

)
→ +∞, as n→ ∞.

This contradiction indicates that un → û in Lr(R2) for 2 < r <∞.

Next we shall show that û ∈ H1
0 (Ω) is a ground state solution of problem (S∞),

i.e., J∞(û) = c∞. Since H1
0 (Ω) can be viewed as a subspace of H, we have cµ ≤ c∞

for all µ ≥ 0. On the other hand,

cµn
= Jµn

(un)−
1

6
⟨J

′

µn
(un) , un⟩

=
1

3

∫
R2

(|∇un|2 + |un|2)dx+

(
1

6
− 1

2p

)∫
R2

(
|x|−α ∗ |un|p

)
|un|p dx.
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Taking n→ ∞, by Fatou’s Lemma and J
′

∞(û) = 0, we get

c∞ ≥ lim
n→∞

(
1

3

∫
R2

(|∇un|2 + |un|2)dx+

(
1

6
− 1

2p

)∫
R2

(
|x|−α ∗ |un|p

)
|un|p dx

)
≥ 1

3

∫
R2

(|∇û|2 + |û|2)dx+

(
1

6
− 1

2p

)∫
Ω

(
|x|−α ∗ |û|p

)
|û|pdx

= J∞(û)

≥ c∞.

Then J∞(û) = c∞. Hence, û ̸= 0 is a ground state solution of problem (S∞).
Finally, we show that un → û in H1(R2). In view of weak convergence of {un},

the fact that un ∈ H1(R2) is the solution of problem (Sµn) and û ∈ M∞, combining
Lemma 2.2 with Lemma 2.1, we obtain

∥un − û∥2µn
=

∫
R2

(|∇(un − û)|2 + Vµn
(x)|un − û|2)dx

=

∫
R2

(|∇un|2 + Vµn(x)|un|2)dx−
∫
R2

(|∇û|2 + Vµn(x)|û|2)dx+ on(1)

=

∫
R2

(
|x|−α ∗ |un|p

)
|un|pdx−

∫
R2

(
|x|−α ∗ |û|p

)
|û|pdx− 6A(un)

+6A(û) + on(1)

= on(1), as n→ ∞,

which indicates that un → û in H1(R2) as n→ ∞. This completes the proof. □
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