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Abstract In this paper, backward problems of singularly perturbed parabolic
and fractional diffusion equations are studied from the additional tempera-
ture data at fixed time t = T . We analyze the ill-posedness of these two
inverse problems, and apply the quasi-reversibility regularization method to
solve these problems. Then we obtain the convergence rates of logarithmic
and Hölder types for the backward problems. Finally, several one- and two-
dimensional numerical examples are given to verify the effectiveness and fea-
sibility of the proposed method.
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1. Introduction

Singularly perturbed problems play important roles in many application fields,
for example, Navier-Stokes equations with high Reynolds numbers, heat transport
problems with large Peclet numbers, drift-diffusion equations in modeling semi-
conductor devices, and magneto-hydrodynamic pipelines at Hartmann numbers;
for references focusing on the numerical aspects see [2, 21, 38] and the references
therein.

As early as the 1950s, Haber et al. studied the boundary value problem of
singularly perturbed differential equations [12, 13]. In [34], the authors studied the
initial boundary value problem for singularly perturbed Boussinesq-type equations
and in [33], the authors studied a stable standard difference scheme for a singularly
perturbed convection-diffusion equation under computer perturbations. In [27],
Lukyanenko et al. studied the analytic-numerical approach to solving singularly
perturbed parabolic equations with the use of dynamic adapted meshes; for more
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information on singularly perturbed differential equations, see [3, 15, 17, 22, 29, 32,
36,37].

In [1], Bomba et al. studied the inverse singular perturbation problem of
convection-diffusion type over a quadrilateral curve field and in [25], Lukyanenko
et al. studied the inverse coefficient solution of nonlinear singularly perturbed
reaction-diffusion-advection equations with final time data. In [24], the authors
studied the coefficient inverse problem for a nonlinear singularly perturbed two-
dimensional reaction-diffusion equation with the location of moving front data and
in [5], Chaikovskii et al. analyzed the convergence of forward and inverse prob-
lems of the singular-perturbed time-varying reaction-advection diffusion equation.
In [4], the authors studied the asymptotic expansion regularization for inverse source
problems in two-dimensional singularly perturbed nonlinear parabolic PDEs; for
more information on inverse problems of singularly perturbed differential equations,
see [7, 8, 23,26].

To overcome the ill-posedness of the inverse problems, we need to use various
regularization methods. In 1969, Lattès and Lions [18] proposed the method of
quasi-reversibility to stabilize ill-posed problems. The main principle of this method
is to replace the original second-order ill-posed problem by a family of well-posed
fourth-order problems depending on a regularization parameter. Later, Eldén [11]
used this method to consider the inverse heat conduction problem.

This method has been applied to solve various inverse diffusion problems, for ex-
ample, Dorroh and Ru [9] considered the Cauchy problem for the heat equation (also
we can call it sideways heat equation), Duc et al. [10] considered the inverse source
problem of time-space fractional parabolic equations, Wen et al. [42] considered the
backward problem of time-fractional wave equations, and Wang et al. [40] consid-
ered the inverse space-dependent source for the time-fractional diffusion equation.
From the references by Yang et al. [47, 48], we can see that the proposed inverse
source problem is mildly ill-posed and the degree of the ill-posedness is equivalent
to the second-order numerical differentiation. In [6], the author studied the iterated
quasi-reversibility method to regularize ill-posed elliptic and parabolic problems.
For more results on numerical methods and regularization methods for diffusion
equations, one can see [19,35,41,43–45].

In this paper, we consider the singularly perturbed time-fractional diffusion
equation with Dirichlet boundary condition as follows

ε
∂2u(x, t)

∂x2
−Dα

t u(x, t) = −∂u(x, t)

∂x
, x ∈ Ω, t ∈ (0, T ),

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ),

u(x, 0) = a(x), x ∈ Ω,

(1.1)

where u is an unknown function, Ω ⊂ Rd (d = 1, 2), 0 < ε ≪ 1, and Dα
t u(x, t) is

the Caputo left-sided fractional derivative of order α ∈ (0, 1] defined by

Dα
t u(x, t) =


1

Γ(1− α)

∫ t

0

uτ (x, τ)

(t− τ)α
dτ, 0 < α < 1,

∂u(x, t)

∂t
, α = 1,

(1.2)

in which Γ(·) denotes the Gamma function. In particular, when α = 1, above
equation is the singularly perturbed parabolic equation.
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Denote f(x) = u(x, T ) as the final time data. Since the measurement is noise-
contaminated inevitably, we denote the noisy measurement of f as fδ which satisfies

||f − fδ|| ≤ δ, (1.3)

where || · || is the L2(0, 1) norm throughout this paper.

In this paper, we consider the following two inverse problems:

(IP1): When α = 1, the backward problem for the singularly perturbed
parabolic equation.

(IP2): When α ∈ (0, 1), the backward problem for the singularly perturbed
fractional diffusion equation.

This paper is organized as follows. Section 2 presents some preliminary results.
Section 3 discusses the ill-posedness of our proposed two inverse problems. The
quasi-reversibility method is given in Section 4 and error estimates are obtained
by a priori choice principle of the regularization parameters. Several numerical
experiments are presented in Section 5 and Section 6 gives a short conclusion.

2. Preliminaries

In order to facilitate the following proofs on theoretical derivation, we give the
following definition and lemmas.

Definition 2.1. [16, 30] The Mittag-Leffer function is defined by

Eα,1(z) =

∞∑
s=0

zs

Γ(sα+ 1)
, z ∈ C,

with an arbitrary constant α > 0.

Lemma 2.1. For n ∈ N+ and ε, µ > 0, we have

λµ
n =

2εµn2π2 + ε+
√
|ε2 − µ− µ2n2π2|

2µ+ 2µ2n2π2
≤ 2ε

µ
+

1

µ
.

Proof. (1) Suppose ε2 − µ− µ2n2π2 ≥ 0, then we have

2εµn2π2 + ε

2µ+ 2µ2n2π2
≤ 2εµn2π2

2µ2n2π2
+

ε

2µ
≤ ε

µ
+

ε

2µ
=

3ε

2µ
,

and √
ε2 − µ− µ2n2π2

2µ+ 2µ2n2π2
≤

√
ε2

2µ
≤ ε

2µ
,

so combining above two inequalities gives

2εµn2π2 + ε+
√

|ε2 − µ− µ2n2π2|
2µ+ 2µ2n2π2

≤ 3ε

2µ
+

ε

2µ
=

2ε

µ
.



Backward problems of singularly perturbed equations 2215

(2) Suppose ε2 − µ− µ2n2π2 < 0, then we can obtain that

λµ
n =

2εµn2π2 + ε+
√
|ε2 − µ− µ2n2π2|

2µ+ 2µ2n2π2

≤
√
(2εµn2π2 + ε)2

2µ+ 2µ2n2π2
+

√
µ+ µ2n2π2 − ε2

2µ+ 2µ2n2π2

≤ 2εµn2π2 + ε

2µ+ 2µ2n2π2
+

1

2
√
µ+ µ2n2π2

≤ ε

µ
+

ε

2µ
+

1

2
√
µ

≤ 3ε

2µ
+

1

µ
.

Thus

2εµn2π2 + ε+
√
|ε2 − µ− µ2n2π2|

2µ+ 2µ2n2π2
≤ 2ε

µ
+

1

µ
.

The proof is completed.

Lemma 2.2. For n ∈ N+, x ∈ [0, 1], and 0 < ε ≪ 1, we have

|1− e
µλ

µ
nx

2ε2−2εµλ
µ
n | ≤ C1, |e

x

2ε−2µλ
µ
n | ≤ C2,

where C1, C2 are constants.

Proof. First of all, let f(x) = 1− e
µλ

µ
nx

2ε2−2εµλ
µ
n and g(x) = e

x

2ε−2µλ
µ
n . We know from

Lemma 2.1 that λµ
n is uniformly convergent, and µ, ε are constants, so whether

µλµ
n

2ε2−2εµλµ
n
and 2ε − 2µλµ

n are greater than 0 or not, f(x) and g(x) are monotonic
functions of x. Therefore, there exist constants C1 and C2 such that

|1− e
µλ

µ
nx

2ε2−2εµλ
µ
n | ≤ C1,

and

|e
x

2ε−2µλ
µ
n | ≤ C2.

The proof is completed.

Lemma 2.3. [31] For ∀r ≥ 0,

1− e−r ≤ r.

Lemma 2.4. For n ∈ N+ and ε, µ > 0, if µ ≤ 2ε2, then we have

λn − λµ
n ≤ 2

ε

µn4π4

1 + µn2π2
,

here λn = 4ε2n2π2+1
4ε , λµ

n =
2εµn2π2+ε+

√
|ε2−µ−µ2n2π2|

2µ+2µ2n2π2 .
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Proof. Note

λn − λµ
n =

4ε2n2π2 + 1

4ε
−

2εµn2π2 + ε+
√
|ε2 − µ− µ2n2π2|

2µ+ 2µ2n2π2

=
4ε2µ2n4π4 + 4ε2µn2π2 + µ+ µ2n2π2

4εµ(1 + µn2π2)

−
4ε2µn2π2 + 2ε2 + 2ε

√
|ε2 − µ− µ2n2π2|

4εµ(1 + µn2π2)

=
4ε2µ2n4π4 + µ2n2π2

4εµ(1 + µn2π2)

−
2ε2 + 2ε

√
|ε2 − µ− µ2n2π2| − µ

4εµ(1 + µn2π2)
.

Note that if µ ≤ 2ε2, then 2ε2 + 2ε
√

|ε2 − µ− µ2n2π2| − µ > 0. Thus

λn − λµ
n ≤ 4ε2µ2n4π4 + µ2n2π2

4εµ(1 + µn2π2)

≤
4µ2n4π4(ε2 + 1

4n2π2 )

4εµ(1 + µn2π2)

≤ 2

ε

µn4π4

1 + µn2π2
.

The proof is completed.

Lemma 2.5. [20] For 0 < α < 1, η > 0, we have 0 ≤ Eα,1(−η) < 1. Moreover,
Eα,1(−η) is completely monotonic, that is

(−1)n
dn

dηn
Eα,1(−η) ≥ 0, η ≥ 0.

Lemma 2.6. [46] For any λk satisfying λk > λ1 > 0, there exist positive constants
C, C > 0 depending on α, T, λ1 such that

C

λk
≤ Eα,1(−λkT

α) ≤ C

λk
.

3. Ill-posedness of the inverse problem

In this section, we will analyze the ill-posedness of (IP1) and (IP2).
First of all, we will study (IP1): The backward problem for the singularly

perturbed parabolic equation when α = 1.
If α = 1, Equation (1.1) can be changed into the following equation

ε
∂2u(x, t)

∂x2
− ∂u(x, t)

∂t
= −∂u(x, t)

∂x
, x ∈ Ω, t ∈ (0, T ),

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ),

u(x, 0) = a(x), x ∈ Ω.

(3.1)
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Applying the method of separation of variables, we seek a solution of (3.1) of
the form

u(x, t) =

∞∑
n=1

ρn(t)yn(x). (3.2)

Substituting (3.1) into (3.2), we require that yn(x) satisfies the equation

εy′′n(x) + y′n(x) = −λyn(x), x ∈ (Ω) (3.3)

and the boundary conditions

yn(0) = yn(1) = 0,

where λ is an unknown constant. The eigenvalues and eigenfunctions are

λn =
4ε2n2π2 + 1

4ε
, yn(x) = sin(nπx), n ≥ 1. (3.4)

The solution of the direct problem (3.1) is given by formula

u(x, t) =

∞∑
n=1

ane
− x

2ε−λnt sin(nπx), (3.5)

here {an}∞n=1 are the Fourier coefficients of the function a(x). Then putting t = T
in (3.5) we obtain that

f(x) =

∞∑
n=1

ane
−λnT e−

x
2ε sin(nπx),

therefore

a(x) =

∞∑
n=1

fne
λnT e

x
2ε sin(nπx), (3.6)

here {fn}∞n=1 are the Fourier coefficients of the function f(x) as follows

fn =
2

π

∫ 1

0

f(ξ) sin(nπξ)dξ.

From the right hand side of (3.6), we see that the coefficient function eλnT

approaches infinity when n → ∞. Therefore, for (3.6), the exact data function f(x)
must decay rapidly when n → ∞, otherwise a small error in the measured data
will explode and completely destroy the solution. In [14], a detailed proof of the
ill-posedness of this inverse problem was given.

(IP2): Let α ∈ (0, 1), we study the backward problem for the singularly perturbed
fractional diffusion equation as follows.

Firstly, we give the following singularly perturbed fractional diffusion equation
ε
∂2u(x, t)

∂x2
−Dα

t u = −∂u(x, t)

∂x
, x ∈ Ω, t ∈ (0, T ),

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ),

u(x, 0) = a(x), x ∈ Ω.

(3.7)
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Similarly by the method of separative of variables, the solution of the direct
problem (3.7) is given by

u(x, t) =

∞∑
n=1

ane
− x

2εEα,1(−λnt
α) sin(nπx), (3.8)

where, {an}∞n=1 are the Fourier coefficients of the function a(x) and λn = 4ε2n2π2+1
4ε .

Then putting t = T in (3.8), we obtain that

f(x) =

∞∑
n=1

anEα,1(−λnT
α)e−

x
2ε sin(nπx),

therefore

a(x) =

∞∑
n=1

fn
Eα,1(−λnTα)

e
x
2ε sin(nπx). (3.9)

Because λn > 0 and λn is monotonically increasing, it follows from Lemma 2.5 that
Eα,1(−λnT

α) → 0 as n → ∞. Hence, above backward problem is also an ill-posed
problem.

4. Quasi-reversibility regularization method and er-
ror estimate

In this section, we propose the quasi-reversibility method to solve (IP1) and (IP2).

4.1. Quasi-reversibility regularization method and error esti-
mate for (IP1)

Add to the singularly perturbed parabolic equation the proposed quasi-reversibility
regularization item νxxt:

ε
∂2ν(x, t)

∂x2
− ∂ν(x, t)

∂t
= −∂ν(x, t)

∂x
− µνxxt(x, t), x ∈ Ω, t ∈ (0, T ),

ν(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ),

ν(x, 0) = a(x), x ∈ Ω,

ν(x, T ) = f(x), x ∈ Ω,

(4.1)

where µ > 0 is a regularization parameter. Applying the method of separation of
variables, we seek a solution of the form

ν(x, t) =

∞∑
n=1

ρn(t)yn(x). (4.2)

Substituting (4.1) into (4.2), we require that yn(x) satisfies the equation

(ε− µλµ)y′′n(x) + y′n(x) = −λµyn(x), x ∈ (0, 1) (4.3)
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and the boundary conditions

yn(0) = yn(1) = 0. (4.4)

Using the method of solving ordinary differential equation (4.3), we get the
following eigenvalue equation

(ε− µλµ)m2 +m+ λµ = 0,

consequently,

m =
−1±

√
1− 4(ελµ − µ(λµ)2)

2(ε− µλµ)
.

Then the general solution for yn(x) is

yn(x) = e
−1

2(ε−µλµ) (C1e

√
1−4(ελµ−µ(λµ)2)

2(ε−µλµ)
x + C2e

−
√

1−4(ελµ−µ(λµ)2)
2(ε−µλµ)

x),

here C1 and C2 are constants.

Case 1. If 1 − 4(ελµ
n − µ(λµ

n)
2) > 0, the boundary conditions yn(0) = 0 and

yn(1) = 0 imply that C1 = 0 and C2 = 0. Hence, we can get the solution yn(x) = 0.
This trivial solution is not satisfied.

Case 2. If 1 − 4(ελµ
n − µ(λµ

n)
2) = 0, the unique solution satisfying the boundary

conditions is yn(x) = 0, which is the same as Case 1.

Case 3. If 1− 4(ελµ
n − µ(λµ

n)
2) < 0, the general solution using Euler’s formula is

yn(x) =e
−1

2(ε−µλµ) (C1 cos(

√
4(ελµ − µ(λµ)2)− 1

2(ε− µλµ)
x)

+ C2 sin(

√
4(ελµ − µ(λµ)2)− 1

2(ε− µλµ)
x)).

For above solution, boundary condition yn(0) = 0 requires that C1 = 0, so

yn(x) = C2e
−1

2(ε−µλµ) sin(

√
4(ελµ − µ(λµ)2)− 1

2(ε− µλµ)
x).

On the other hand, boundary condition yn(1) = 0 requires that

C2e
−1

2(ε−µλµ) sin(

√
4(ελµ − µ(λµ)2)− 1

2(ε− µλµ)
) = 0,

if C2 = 0 then yn(x) = 0; if C2 ̸= 0 then sin(

√
4(ελµ−µ(λµ)2)−1

2(ε−µλµ) ) = 0, so√
4(ελµ − µ(λµ)2)− 1

2(ε− µλµ)
= nπ.

Therefore, we can obtain the non-trivial solution for (4.3) satisfying the above
boundary conditions (4.4) if and only if

1− 4(ελµ − µ(λµ)2) < 0, (4.5)
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and √
4(ελµ − µ(λµ)2)− 1

2(ε− µλµ)
= nπ. (4.6)

Solving the equation (4.6) for λµ, we have√
4(ελµ − µ(λµ)2)− 1 = 2nπ(ε− µλµ).

By simple calculation, we can get

(4µ+ 4µ2n2π2)(λµ
n)

2 − (4ε+ 8µεn2π2)λµ
n + (1 + 4ε2n2π2) = 0. (4.7)

The eigenvalues and eigenfunctions are respectively

λµ
n =

2εµn2π2 + ε+
√

|ε2 − µ− µ2n2π2|
2µ+ 2µ2n2π2

, yn(x) = sin(nπx), n ≥ 1. (4.8)

The solution of the direct problem (4.1) is given by the formula:

ν(x, t) =

∞∑
n=1

ane
− x

2ε−2µλ
µ
n
−λµ

nt sin(nπx). (4.9)

Then substituting the exact data f(x) and the error data fδ(x) at time t = T
respectively into (3.5), we can obtain

f(x) =

∞∑
n=1

ane
−λµ

nT e
− x

2ε−2µλ
µ
n sin(nπx),

and

fδ(x) =

∞∑
n=1

ane
−λµ

nT e
− x

2ε−2µλ
µ
n sin(nπx).

Therefore

aµ(x) =

∞∑
n=1

fne
λµ
nT e

x

2ε−2µλ
µ
n sin(nπx),

and

aδµ(x) =

∞∑
n=1

fδ
ne

λµ
nT e

x

2ε−2µλ
µ
n sin(nπx), (4.10)

here {fδ
n}∞n=1 are the Fourier coefficients of the function fδ(x).

By the same notation as [49], we also use ||·||p to denote the norm of the Sobolev
space Hp(Ω) defined by

||f(·)||2p =

∞∑
n=1

(1 + n2π2)pf2
n, (4.11)

where, p > 0 is a constant and {fn}∞n=1 are the Fourier coefficients of the function
f(x). Moreover, we have the following a priori bound about u(x, 0)

||u(·, 0)||p ≤ E. (4.12)

Then, we have the following error estimate between a(x) and aδµ(x).
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Theorem 4.1. Suppose that the noisy data satisfy the condition (1.3), δ is a con-
stant and given by (1.3), µ ≤ 2ε2, with the regularization parameter µ chosen as

µ =
(2ε+ 1)T

ln(Eδ (ln
E
δ )

−2p)
, (4.13)

and the a priori assumption (4.12) holds. Then for p > 0, we have

||a(·)− aδµ(·)|| ≤C ′ max


(

(2ε+ 1)T

ln(Eδ (ln
E
δ )

−2p)

) p
4

,
(2ε+ 1)T

ln(Eδ (ln
E
δ )

−2p)

E

+ C2
E

(ln E
δ )

2p
.

Proof. From (3.6) and (4.10), we have

||a(·)− aδµ(·)|| ≤ ||a(·)− aµ(·)||2 + ||aµ(·)− aδµ(·)||

= ||
∞∑

n=1

fne
λnT e

x
2ε sin(nπx)−

∞∑
n=1

fne
λµ
nT e

x

2ε−2µλ
µ
n sin(nπx)||

+ ||
∞∑

n=1

fne
λµ
nT e

x

2ε−2µλ
µ
n sin(nπx)−

∞∑
n=1

fδ
ne

λµ
nT e

x

2ε−2µλ
µ
n sin(nπx)||

= ||
∞∑

n=1

(fne
x
2ε − fne

x

2ε−2µλ
µ
n )(eλnT − eλ

µ
nT ) sin(nπx)||︸ ︷︷ ︸

I1

+ ||
∞∑

n=1

(fne
x

2ε−2µλ
µ
n − fδ

ne
x

2ε−2µλ
µ
n )eλ

µ
nT sin(nπx)||︸ ︷︷ ︸

I2

.

Next, we will estimate I1 and I2. Note

I1 = ||
∞∑

n=1

(fne
x
2ε − fne

x

2ε−2µλ
µ
n )(eλnT − eλ

µ
nT ) sin(nπx)||

= ||
∞∑

n=1

fne
x
2ε (1− e

x

2ε−2µλ
µ
n
− x

2ε )(eλnT − eλ
µ
nT ) sin(nπx)||

= ||
∞∑

n=1

fne
x
2ε (1− e

εx

2ε2−2µελ
µ
n
− εx−µλ

µ
nx

2ε2−2µελ
µ
n )(eλnT − eλ

µ
nT ) sin(nπx)||

= ||
∞∑

n=1

fne
x
2ε (1− e

µλ
µ
nx

2ε2−2εµλ
µ
n )(eλnT − eλ

µ
nT ) sin(nπx)||

= ||
∞∑

n=1

fne
x
2ε eλnT (1− e

µλ
µ
nx

2ε2−2εµλ
µ
n )(1 + n2π2)

p
2 (1 + n2π2)−

p
2

× (1− e−(λnT−λµ
nT )) sin(nπx)||

≤ sup
n
|1− e

µλ
µ
nx

2ε2−2εµλ
µ
n ||(1− e−(λn−λµ

n)T )(1 + n2π2)−
p
2 |E.
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By calculation, if µ ≤ 2ε2, we have

λn − λµ
n ≥ 0.

According to Lemma 2.3 and Lemma 2.4, we obtain

(1− e−(λn−λµ
n)T ) ≤ (λn − λµ

n)T ≤ 2T

ε

n4π4

1 + µn2π2
. (4.14)

Let A(nπ) = (1 − e−(λn−λµ
n)T )(1 + n2π2)−

p
2 . In order to estimate A(nπ), we will

consider two cases.

Case 1. When nπ ≥ µ− 1
4 , we have

A(nπ) ≤ (1 + n2π2)−
p
2 ≤ (nπ)−p ≤ µ

p
4 .

Case 2. When 1 < nπ < µ− 1
4 , we estimate A(nπ) by (4.14) as

A(nπ) ≤ 2T

ε

µn4π4

1 + µn2π2
(1 + n2π2)−

p
2 ≤ 2T

ε
µn4π4(1 + n2π2)−

p
2 ≤ 2T

ε
µ(nπ)4−p.

If 0 < p < 4, note that nπ < µ− 1
4 , and the above inequality becomes into

A(nπ) ≤ 2T

ε
µ(nπ)4−p ≤ 2T

ε
µ

p
4 ,

else if p ≥ 4, note that nπ > 1, and we get

A(nπ) ≤ 2T

ε
µ.

Now combining the above, we get

A(nπ) ≤ max{2T
ε
µ

p
4 ,

2T

ε
µ}.

Therefore, we obtain

I1 ≤ C1
2T

ε
max{µ

p
4 , µ}E ≤ C ′ max{µ

p
4 , µ}E. (4.15)

According to Lemma 2.1, Lemma 2.2 and (1.3), we conclude that

I2 = ||
∞∑

n=1

fne
λnT e

x

2ε−2µλ
µ
n sin(nπx)−

∞∑
n=1

fδ
ne

λµ
nT e

x

2ε−2µλ
µ
n sin(nπx)||

= ||
∞∑

n=1

(fn − fδ
n)e

λµ
nT e

x

2ε−2µλ
µ
n sin(nπx)||

≤ sup
n
|e

x

2ε−2µλ
µ
n ||eλ

µ
nT |δ

≤ C2e
2ε+1

µ T δ.

Thus, we have

||a(·)− aδµ(·)|| ≤ I1 + I2 ≤ C ′ max{µ
p
4 , µ}E + C2e

2ε+1
µ T δ.
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We plug (4.13) into the above equation to get:

||a(·)− aδµ(·)|| ≤C ′ max


(

(2ε+ 1)T

ln(Eδ (ln
E
δ )

−2p)

) p
4

,
(2ε+ 1)T

ln(Eδ (ln
E
δ )

−2p)

E

+ C2
E

(ln E
δ )

2p
.

Now, the proof of the theorem is completed.

Remark 4.1. Since the regularization parameter µ → 0 as the measured error
δ → 0, we find

lim
δ→0

||a(·)− aδµ(·)|| → 0,

if p > 0, µ ≤ 2ε2.

4.2. Quasi-reversibility regularization method and error esti-
mate for (IP2)

The quasi-reversibility regularization term Dα
t νxx is added to the singular pertur-

bation fractional diffusion equation:

ε
∂2ν

∂x2
−Dα

t ν = −∂ν

∂x
− µDα

t νxx, x ∈ Ω, t ∈ (0, T ),

ν(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ),

ν(x, 0) = a(x), x ∈ Ω,

ν(x, T ) = fδ(x), x ∈ Ω,

(4.16)

where µ > 0 is a regularization parameter.
Similar to Problem (4.1) we can get the same λµ

n, so the solution of Problem
(4.16) is given by the following

u(x, t) =

∞∑
n=1

ane
− x

2ε−2µλ
µ
n Eα,1(−λµ

nt
α) sin(nπx). (4.17)

Then substituting the exact data f(x) and the error data fδ(x) at time t = T
respectively into (4.17), we can obtain

f(x) =

∞∑
n=1

anEα,1(−λµ
nT

α)e
− x

2ε−2µλ
µ
n sin(nπx),

and

fδ(x) =

∞∑
n=1

anEα,1(−λµ
nT

α)e
− x

2ε−2µλ
µ
n sin(nπx).

Therefore

aµ(x) =

∞∑
n=1

fn
Eα,1(−λµ

nTα)
e

x

2ε−2µλ
µ
n sin(nπx),

and

aδµ(x) =

∞∑
n=1

fδ
n

Eα,1(−λµ
nTα)

e
x

2ε−2µλ
µ
n sin(nπx). (4.18)
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Theorem 4.2. Assume that the noisy data satisfy the condition (1.3), δ is a con-
stant and given by (1.3), µ ≤ 2ε2, with the regularization parameter µ chosen as

µ = (
δ

E
)

2
p+2 , (4.19)

and the a priori assumption (4.12) holds. Then for p > 0, we have

||a(·)− aδµ(·)|| ≤ C4 max{δ
p

p+2E
2

p+2 , δ
2

p+2E
p

p+2 }+ (2ε+ 1)C2

C
δ

p
p+2E

2
p+2 .

Proof. From (3.9) and (4.18), we have

||a(·)− aµ(·)||
≤ ||a(·)− aµ(·)||2 + ||aµ(·)− aδµ(·)||

= ||
∞∑

n=1

fn
Eα,1(−λnTα)

e
x
2ε sin(nπx)−

∞∑
n=1

fn
Eα,1(−λµ

nTα)
e

x

2ε−2µλ
µ
n sin(nπx)||2

+ ||
∞∑

n=1

fn
Eα,1(−λµ

nTα)
e

x

2ε−2µλ
µ
n sin(nπx)−

∞∑
n=1

fδ
n

Eα,1(−λµ
nTα)

e
x

2ε−2µλ
µ
n sin(nπx)||

= ||
∞∑

n=1

(
fn

Eα,1(−λnTα)
e

x
2ε − fn

Eα,1(−λµ
nTα)

e
x

2ε−2µλ
µ
n ) sin(nπx)||︸ ︷︷ ︸

I3

+ ||
∞∑

n=1

fn − fδ
n

Eα,1(−λµ
nTα)

e
x

2ε−2µλ
µ
n sin(nπx)||︸ ︷︷ ︸

I4

.

Next, we will estimate I3 and I4:

I3 = ||
∞∑

n=1

(
fn

Eα,1(−λnTα)
e

x
2ε − fn

Eα,1(−λµ
nTα)

e
x

2ε−2µλ
µ
n ) sin(nπx)||

= ||
∞∑

n=1

fne
x
2ε

Eα,1(−λnTα)
(1− e

µλ
µ
nx

2ε2−2εµλ
µ
n )(1 + n2π2)

p
2 (1 + n2π2)−

p
2

× (1− Eα,1(−λnT
α)

Eα,1(−λµ
nTα)

) sin(nπx)||

≤ sup
n
|1− e

µλ
µ
nx

2ε2−2εµλ
µ
n ||(1− Eα,1(−λnT

α)

Eα,1(−λµ
nTα)

)(1 + n2π2)−
p
2 |E.

Given that λn > 0, λµ
n > 0, if µ ≤ 2ε2, we have λn − λµ

n > 0. We can see from
Lemma 2.5 that the function Eα,1α(−η) of η is monotonically decreasing, then

Eα,1(−λnT
α) < Eα,1(−λµ

nT
α),

so,
Eα,1(−λnT

α)

Eα,1(−λµ
nTα)

< 1.
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By Lemmas 2.4, 2.6 and (3.4), we have

1− Eα,1(−λnT
α)

Eα,1(−λµ
nTα)

≤ 1−
C
λn

C
λµ
n

= 1− C
λµ
n

λn

≤ C̃(1− λµ
n

λn
)

≤ C̃(
λn − λµ

n

λµ
n

)

≤ C̃(

2
ε

µn4π4

1+µn2π2

εn2π2 + 1
4ε

)

≤ C3
µn2π2

1 + µn2π2
.

Let B(nπ) = (1 − Eα,1(−λnT
α)

Eα,1(−λµ
nTα)

)(1 + n2π2)−
p
2 , to estimate B(nπ), we will consider

two cases.

Case 1. For nπ ≥ µ− 1
2 , we can easily estimate B(nπ) as

B(nπ) ≤ (1 + n2π2)−
p
2 ≤ (nπ)−p ≤ µ

p
2 .

Case 2. For 1 < nπ < µ− 1
2 , we estimate B(nπ) by Lemma 2.3 as

B(nπ) ≤ C3
µn2π2

1 + µn2π2
(1 + n2π2)−

p
2 ≤ C3µn

2π2(1 + n2π2)−
p
2 ≤ C3µ(nπ)

2−p.

If 0 < p < 2, note that nπ < µ− 1
2 , above inequality becomes into

B(nπ) ≤ C3µ(nπ)
2−p ≤ C3µ

p
2 ,

else if p ≥ 2, note that nπ > 1, we get

B(nπ) ≤ C3µ.

Now combining above, we get

B(nπ) ≤ C4 max{µ
p
2 , µ}.

Therefore, we can obtain
I3 ≤ C4 max{µ

p
2 , µ}E. (4.20)

According to Lemmas 2.1, 2.2, 2.6 and (1.3), we can get

I4 = ||
∞∑

n=1

fn − fδ
n

Eα,1(−λµ
nTα)

e
x

2ε−2µλ
µ
n sin(nπx)||

≤ sup
n
|e

x

2ε−2µλ
µ
n || 1

Eα,1(−λµ
nTα)

|δ

≤ C2
λµ
n

C
δ

≤ (2ε+ 1)C2

C

δ

µ
.
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Thus, we have

||a(·)− aδµ(·)|| ≤ I1 + I2 ≤ C4 max{µ
p
2 , µ}E +

(2ε+ 1)C2

C

δ

µ
.

Substituting (4.19) into the above equation to, we can achieve

||a(·)− aδµ(·)|| ≤C4 max{δ
p

p+2E
2

p+2 , δ
2

p+2E
p

p+2 }

+
(2ε+ 1)C2

C
δ

p
p+2E

2
p+2 .

The proof is completed.

Remark 4.2. When the measured error δ → 0, for p > 0, µ ≤ 2ε2. We can obtain

lim
δ→0

||a(·)− aδµ(·)|| → 0, p > 0.

5. Numerical experiments

To verify the above theoretical results, we will give some numerical experiments in
this section. The numerical examples are calculated as follows:

First, the accurate data function f(x) is obtained by solving the direct problem
with the exact initial value a(x).

Then, we add a perturbation of the normal distribution to each resulting function
f(x), giving the vector fδ(x),

fδ = f + δf · randn(size(f)), (5.1)

where “randn(·)” is a normally distributed random variable with zero mean and
unit standard deviation.

Finally, fδ is applied to (4.10) and (4.18) to obtain the regularization solution.
In order to illustrate the accuracy of the numerical solution, we compute the relative
error in L2(Ω) between the numerical and exact solutions by

E(a) =
||aδµ(·)− a(·)||L2(0,1)

||a(·)||L2(0,1)
, (5.2)

where aδµ(x) is the regularization solution, and a(x) is the exact solution.

5.1. Numerical experiments for (IP1)

Example 5.1. Consider the continuous initial value

a(x) = sin(3πx)ex, x ∈ [0, 1]. (5.3)

In this example, let ε = 0.001. Numerical results at different noise levels δ =
0.01, 0.05, 0.1 are shown in Figure 1.

It can be seen from the figure that the numerical results are in agreement with
the exact solution to a high noise level δ = 0.1, The results show that the accuracy
and stability of the proposed method is satisfactory for inverse initial value problem.
In Table 1, we show the values of E(a) under different ε and δ, and it can be observed
that the numerical results are stable with the parameters ε.
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Figure 1. Exact solution and its approximation for Example 5.1 when ε = 0.001.

Table 1. The relative errors E(a) with different singular value ε and noise level δ for Example 5.1.

ε δ=0.01 δ=0.05 δ=0.1

0.001 0.0173 0.0403 0.0727

0.005 0.0151 0.0311 0.0581

0.008 0.0106 0.0302 0.0511

Example 5.2. Consider non-smooth initial value

a(x) =



−4x, 0 ≤ x ≤ 1

4
,

8x− 3,
1

4
< x ≤ 1

2
,

−8x+ 5,
1

2
< x ≤ 3

4
,

4x− 4,
3

4
< x ≤ 1.

(5.4)

In this example, let ε = 0.003. The numerical results with various noise levels
δ = 0.01, 0.05, 0.1 are illustrated in Figure 2. As can be seen from the figure, our
numerical method is also very effective for reconstructing the initial values of the
nonsmooth functions with cusps.

Example 5.3. Consider piecewise initial value

a(x) =



0, 0 ≤ x ≤ 1

4
,

1,
1

4
< x ≤ 1

2
,

−1,
1

2
< x ≤ 3

4
,

0,
3

4
< x ≤ 1.

(5.5)

In this example, let ε = 0.005. Numerical results at different noise levels δ =
0.01, 0.05, 0.1 are displayed in Figure 3. It can be seen from the figure that the
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Figure 2. Exact solution and its approximation for Example 5.2 when ε = 0.003.

error between the approximate solution and the exact solution is very small and
show that the approximate solution has good stability.
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Figure 3. Exact solution and its approximation for Example 5.3 when ε = 0.005.

Example 5.4. Consider a two-dimensional example

a(x, y) = sin(3πx) sin(2πy) + x(1− x) + y2(1− y)2. (5.6)

In this example, let ε = 0.001, µ = 6.737 × 10−6, 6.74 × 10−6, 6.75 × 10−6. The
numerical results with various noise levels δ = 0.01, 0.05, 0.1 are illustrated in
Figure 4, and the corresponding numerical errors are shown in the Figure 5. From
these figures, we can see that the proposed method is also very effective for two-
dimensional examples.

From the figures above, we can see that the numerical results obtained by our
regularization method are in good agreement with the exact values, even when rela-
tively large errors are added to the measured data. It shows that our regularization
method is very effective for retrieving the initial values of singularly perturbed
parabolic equations.
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(a) exact solution (b) numerical solution with δ = 0.01

(c) numerical solution with δ = 0.05 (d) numerical solution with δ = 0.1

Figure 4. Numerical results for source term in Example 5.4.

5.2. Numerical experiments for (IP2)

Example 5.5. Consider the continuous initial value

a(x) = sin(5πx)ex + x(1+α)(1− x)(2+α), x ∈ [0, 1]. (5.7)

In this example, let ε = 0.001, α = 0.8. Numerical results at different noise levels
δ = 0.01, 0.05, 0.1 are shown in Figure 6. As can be seen from the figure, the
error between the regularized and exact solutions is very small, indicating that our
numerical method is very efficient for reconstructing continuous initial values.

Example 5.6. Consider the non-smooth initial value

a(x) =



0, 0 ≤ x ≤ 1

4
,

4x− 1,
1

4
< x ≤ 1

2
,

−4x+ 3,
1

2
< x ≤ 3

4
,

0,
3

4
< x ≤ 1.

(5.8)

In this example, let ε = 0.004, α = 0.8. Numerical results with different noise levels
δ = 0.01, 0.05, 0.1 are shown in Figure 7. For fractional diffusion equations, our
numerical method is also feasible to reconstruct the initial values containing cusps.
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with δ = 0.1

Figure 5. The comparison of the numerical effects between the exact source term and its computed
approximations for Example 5.4.
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Figure 6. Exact solution and its approximation for Example 5.5 when ε = 0.001, α = 0.8.
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Table 2 reports the relative errors of Example 5.6 for different α and ε. From the
table, we notice that the relative error E(a) is relatively stable.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

e
x
a

c
t 

s
o

lu
ti
o

n
 a

(x
) 

a
n

d
 a

p
p

ro
x
im

a
te

 s
o

lu
ti
o

n
s
 a

(x
)

exact solution

=0.01

=0.05

=0.1

Figure 7. Exact solution and its approximation for Example 5.6 when ε = 0.004, α = 0.8.

Table 2. The relative errors E(a) with different fractional order α and noise level ε when δ = 0.01 for
Example 5.6.

α ε=0.001 ε=0.005 ε=0.008

0.2 0.0072 0.0064 0.0052

0.5 0.0065 0.0056 0.0046

0.8 0.0058 0.0054 0.0043

Example 5.7. Consider piecewise continuous initial value

a(x) =


0, 0 ≤ x ≤ 1

4
,

sin(0.25π)e
1
2 + 0.5(3+2α),

1

4
< x ≤ 1

2
,

sin(5πx)ex + x(1+α)(1− x)(2+α),
1

2
< x ≤ 1.

(5.9)

In this example, let ε = 0.008, α = 0.8. Numerical results with different noise levels
δ = 0.01, 0.05, 0.1 are displayed in Figure 8.

Example 5.8. Consider a two-dimensional example

a(x, y) = cos(4πx) cos(2πy) + (
2x3

3
− x2)e(2y

3−3y2). (5.10)

In this example, let ε = 0.001 and α = 0.8, and we choose that µ = 6.7× 10−6, 8×
10−6, 9 × 10−6 for different noise levels δ = 0.01, 0.05, 0.1, respectively. The
numerical results are illustrated in Figure 9, and the corresponding numerical errors
are shown in the Figure 10. From these figures, we can see that the method used
in this paper is also very effective for the two-dimensional fractional examples.
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Figure 8. Exact solution and its approximation for Example 5.7 when ε = 0.008, α = 0.8.

(a) exact solution (b) numerical solution with δ = 0.01

(c) numerical solution with δ = 0.05 (d) numerical solution with δ = 0.1

Figure 9. Numerical results for source term in Example 5.8 when α = 0.8.

Combining Figures 1-10 with Tables 1-2, we can see that the numerical method
presented in this paper is very effective for the inversion of the initial values of
singularly perturbed parabolic and fractional diffusion equations, and has good
convergence for both one- and two-dimensional numerical examples. Moreover, the
numerical solutions are in good agreement with the exact solutions, even for the
noise level up to δ = 0.1.
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Figure 10. The comparison of the numerical effects between the exact source term and its computed
approximations for Example 5.8 when α = 0.8.

6. Conclusion

In this paper, we consider the problem of recovering the initial values of the singu-
larly perturbed parabolic and fractional diffusion equations. Based on the quasi-
reversibility method, we present regularized solutions and error estimates for both
problems, respectively. Numerical examples of one- and two-dimensional show that
the regularization method is effective and accurate under different noise levels.

In the future, we will study the singularly perturbed fractional diffusion wave
equation α ∈ (1, 2), and try to analyze its existence, uniqueness and convergence
estimates.
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