
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com

Volume 15, Number 4, August 2025, 2285–2300 DOI:10.11948/20240438

EXACT NULL CONTROLLABILITY OF A
FRACTIONAL NONLOCAL DELAY

EVOLUTION SYSTEM∗

Shouguo Zhu1,† and Gang Li2

Abstract We delve into the exact null controllability problem of a fractional
nonlocal weighted delay abstract system. For this strategy, we launch the resol-
vent trick and the approximation solvability method to construct control-state
approximation sequence pairs twice to explore the problem without involving
the compactness of semigroups and nonlocal items and the Lipschitz restric-
tion on nonlinear terms and nonlocal parts or the noncompactness measure
condition. Our work extends and generalizes previous results about exact null
controllability problems of all evolution systems. Moreover, a significant diffu-
sion model is displayed to show the applicability and validity of our mentioned
outcomes. Finally, the conclusion of this paper is offered.
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1. Introduction

Since fractional calculus can supply plenteous toolkits to model real-world physi-
cal problems with memory characteristics, many researchers have been involved in
the focus of fractional systems and abundant inspiring findings have been garnered
and reported, as shown in [4, 6, 13, 20, 22, 36]. Considering that fractional deriva-
tives involving a function ψ are more elastic and convenient in modeling practical
application than derivatives alone (see [11] and [15]) and Riemann-Liouville type
derivatives systems are more accurate and suitable in describing some real-world
materials with hereditary features than Caputo type (see [12] and [28]), we here
restrict our attention and exploration to ψ-Riemann-Liouville type fractional evo-
lution systems.

In 1991, Byszewski in [7] initially proposed and handled the nonlocal problems
subjected to abstract models. Later on, many scholars devoted themselves to the
investigation of nonlocal abstract equations. In most of the existing results about
nonlocal evolution systems, compactness hypothesis was usually required. In order

†The corresponding author.
1Wuxi Institute of Technology, Wuxi 214121, China
2School of Mathematical Sciences, Yangzhou University, Yangzhou 225002,
China

∗The work is supported by the NSF of China (11871064, 11771378), the NSF
of the Jiangsu Higher Education Institutions (18KJB110019, 22KJB110024)
and the key project of Wuxi Institute of Technology (JC2024-02).
Email: sgzhu2015@163.com (S. Zhu), gli@yzu.edu.cn(G. Li)

http://www.jaac-online.com
http://dx.doi.org/10.11948/20240438


2286 S. Zhu & G. Li

to drop the compactness, the noncompactness measure approach was utilized in
many fruitful results (see [19,37]). Recently, without involving the noncompactness
measure condition, the approximation solvability trick was launched to deal with
abstract systems incorporating nonlocal terms, see [24,25,33,38,39,41].

On the other hand, the controllability problems of evolution systems were in-
vestigated by many authors, see [16,22,24,30–32]. The notion of controllability can
be separated into exact controllability, exact null controllability and approximate
controllability. Exact null controllability problems governed by abstract systems
are of tremendous importance in their practical applications and aim at seeking a
control-state pair (u, x) to drive the systems to zero state. [5] and [9] employed the
compactness of the semigroup or resolvent and the boundedness of inverse operator
(Lb0)

−1 on L2(J, U)/ker(Lb0) to tackle the problems. Under the compactness restric-
tion on the semigroup, [10] discovered a more accurate criteria, the boundedness of
operator (L0)

−1N b
0 , to explore them. Subsequently, this criteria was expeditiously

adopted in plenty of results, as demonstrated in [1, 14, 17, 34]. Unfortunately, as
for the exact null controllability problems without involving compactness assump-
tion on semigroups or the noncompactness measure condition, they have not been
treated. They become the targets of our work.

Let H and U be two Hilbert spaces. We thus, in this paper, show interest in
exploring the exact null controllability problem of the following fractional nonlocal
weighted delay abstract system:Dα,ψx(s) = Ax(s) + F (s, x̃s) +Bu(s), s ∈ (0, b],

x̃0 = ϕ+ g(x) ∈ C([−r, 0], H),
(1.1)

where α ∈ ( 12 , 1), D
α,ψ is an α-order ψ-Riemann-Liouville type fractional deriva-

tive operator involving a function ψ(s), A is a generator of an analytic semigroup
{T (s)}s≥0, F : [0, b] × C([−r, 0], H) → H, g : Cα,ψ([0, b], H) → C([−r, 0], H),
B ∈ L (U,H). In addition

x̃s(θ) = x̃(s+ θ) =

Γ(α)ψ1−α(s+ θ)x(s+ θ), s+ θ ∈ [0, b],

ϕ(s+ θ) + g(x)(s+ θ), s+ θ ∈ [−r, 0],

for s ∈ [0, b] and θ ∈ [−r, 0].
If α = 1, ψ(t) = t, A = ∆, system (1.1) becomes the classical parabolic system,

which can serve as important models to describe various physical phenomena in
many fields, such as heat conduction, diffusion and seepage, see [40].

If ψ(t) = t, we explored the approximate controllability problem of this system
in [40] by employing the topological structure of the solution set and the resolvent
method without the Lipschitz condition.

We, in this paper, will develop the approximation solvability method to tackle
the exact null controllability problem of system (1.1). The main difficulty is how
to construct the control-state sequence pair (u, x) without incorporating the com-
pactness assumption and the Lipschitz restriction condition or the noncompactness
measure condition. We propose the following idea to deal with the difficulty: by em-
ploying the orthogonal projector operator Pm and the Yosida approximation of A,
we begin by constructing the approximation system to yield the first control-state
approximation sequence pair (uxmn , xmn). Then, by the approximation theory of
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semigroup or resolvent, we set up the second control-state approximation sequence
pair (uxn , xn). Finally, by utilizing the approximation theory of semigroup or re-
solvent, we garner the required control-state sequence pair (u, x).

Compared to the existing literature, this work enjoys the highlighted features:
(i) To avoid the shortcoming of singularity of ψ-Riemann-Liouville type frac-

tional systems, we adopt the weighted delay initial condition and the weighted
Banach space.

(ii) By the approximation solvability method, we construct control-state ap-
proximation sequence pairs twice to explore the exact null controllability problem
without incorporating the compactness assumption and the Lipschitz restriction
condition or the noncompactness measure condition.

Finally, we give a breakdown of this work’s structure. Section 2 contains some
helpful notations and preliminary facts. Section 3 provides a comprehensive inves-
tigation of the exact null controllability problem. Section 4 presents a significant
application model. We end the work in Section 5 with the conclusion.

2. Preliminaries

We here start by some helpful notations. Let ψ(t) be a special function satisfying
that ψ ∈ C1([0, b],R) with the norm ∥ψ∥C1 = sup

s∈[0,b]

(|ψ(t)|+ |ψ′(t)|), ψ′(t) > 0 and

ψ(0) = 0. Let C([c, d], H) = {y : [c, d] → H : y is continuous}. With the norm
∥y∥[c,d] = sup

t∈[c,d]

∥y(t)∥, C([c, d], H) is a Banach space. Set J ′ = (0, b], J = [0, b] and

x̃(s) =

Γ(α)ψ1−α(s)x(s), s ∈ J,

ϕ(s) + g(x)(s), s ∈ [−r, 0].

With the weighted norm ∥x∥α,ψ = sup
t∈J

∥x̃(t)∥, we receive an important weighted

Banach space

Cα,ψ(J,H) =

{
x ∈ C(J ′, H) |x̃(0) = lim

t→0+
x(t), x̃ ∈ C(J,H)

}
.

Let L (H,U) = {f : H → U | f is linear and bounded} and write L (H,H) as
L (H). The notation Pm : H → Hm means the orthogonal projector from H to its
m-dimensional subspace Hm. Moreover, for R > 0, set

QR={x ∈ Cα,ψ(J,H)|∥x∥α,ψ < R} and Q(m)=QR
⋂
Cα,ψ(J,Hm).

Next, we review some required notions involving the function ψ from fractional
calculus.

Definition 2.1. [18] The α-order ψ-fractional integral operator Iα,ψ is described
as

Iα,ψf(s) =
1

Γ(α)

∫ s

0

(ψ(s)− ψ(τ))α−1ψ′(τ)f(τ)dτ, s > 0, α > 0.

Definition 2.2. [18] The α-order ψ-Riemann-Liouville type fractional derivative
operator Dα,ψ is depicted as

Dα,ψf(s)=
1

Γ(1− α)

(
1

ψ′(s)

d

ds

)∫ s

0

(ψ(s)−ψ(τ))−αψ′(τ)f(τ)dτ, s > 0, 0 < α < 1.

Administrator
打字机
ⅰ
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Remark 2.1. When ψ(t) = t, the operators Iα,ψ and Dα,ψ turn into the fractional
integral operator Iα and the Riemann-Liouville type fractional derivative operator
Dα introduced in [27], respectively.

Then, we compile the concepts of fraction resolvent and ψ-Laplace transform,
respectively.

Definition 2.3. [3] The fractional resolvent {Sα(t)}t>0 ⊆ L (H) is the family
satisfying that Sα(·)x ∈ C(R+, H) for x ∈ H and there exists ω > 0 to guarantee
that for x ∈ H,

(λαI −A)−1x =

∫ ∞

0

e−λtSα(t)xdt, Reλ > ω.

Definition 2.4. [21] The ψ-Laplace transform of a function f is

Lψ[f ](λ) =
∫ ∞

0

e−λψ(s)ψ′(s)f(s)ds.

By utilizing a well-known one-side stable probability density ωα(s) [42] and an
important Wright type function Ψα(s) = 1

αs
−1−1/αωα(s

−1/α) [23], we can easily
frame the following fractional resolvent:

Lemma 2.1. [38, 39] Let A generate an analytic semigroup {T (s)}s≥0. Then
{Sα(s)}s>0 is a fractional resolvent satisfying that {s1−αSα(s)}s≥0 is equicontinu-
ous, where Sα(s) = sα−1

∫∞
0
ατΨα(τ)T (s

ατ)dτ .

Afterward, by exploring the ensuing auxiliary abstract linear system, we propose
the notion of mild solution to (1.1) and the definition of exact null controllability.Dα,ψx(t) = Ax(t) + f(t) +Bu(t), t ∈ J ′,

I1−α,ψx(t)|t=0 = x0,
(2.1)

where f ∈ L2(J,H).
Due to (2.1), we acquire

x(t) =
ψα−1(t)

Γ(α)
x0 + Iα,ψAx(t) + Iα,ψf(t) + Iα,ψBu(t).

An application of the ψ-Laplace transform approach gives

Lψ[x](λ) = (λαI −A)−1x0 + (λαI −A)−1(Lψ[f ](λ) + Lψ[Bu](λ)).

Thereby, by utilizing the inverse ψ-Laplace transform method, we receive

x(t) = Sα(ψ(t))x0 +

∫ t

0

Sα(ψ(t)− ψ(τ))ψ′(τ)(f(τ) +Bu(τ))dτ, t ∈ J ′.

Since lim
s→0+

x̃(s) = x0 implies I1−α,ψx(s)|s=0 = x0, we thus can formulate the

following concept:

Definition 2.5. The mild solution to system (1.1) related to u is the function x
satisfying x̃ ∈ C([−r, b], H), x|J ∈ Cα,ψ(J,H), x̃(s) = ϕ(s) + g(x)(s), s ∈ [−r, 0],
and for s ∈ J ′,

x(s)=Sα(ψ(s))(ϕ(0) + g(x)(0)) +

∫ s

0

Sα(ψ(s)− ψ(τ))ψ′(τ)(F (τ, x̃τ ) +Bu(τ))dτ.
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Remark 2.2. The reason of utilizing the weighted delay initial condition lies in the
fact that Riemann-Liouville systems possess the singularity and the advantage of
employing it is to guarantee the continuity of x̃ at zero. Moreover, for convenience,
we set

S(u) = {x : x is the solution to system (1.1) related to u}.

Now, we designate

Lb0u =

∫ b

0

Sα(ψ(b)− ψ(τ))ψ′(τ)Bu(τ)dτ, u ∈ L2(J, U),

N b
0(x0, f)=Sα(ψ(b))x0 +

∫ b

0

Sα(ψ(b)− ψ(τ))ψ′(τ)f(τ)dτ, (x0, f) ∈H × L2(J,H).

Definition 2.6. [8, 14] System (2.1) is exactly null controllable on J , if for all
x ∈ H, there is a γ > 0 to ensure that ∥(Lb0)∗x∥2 ≥ γ∥(N b

0)
∗x∥2 or ImLb0 ⊃ ImN b

0 .

Lemma 2.2. Let L0 be the restriction of Lb0 to [kerLb0]
⊥ and set W = (L0)

−1N b
0 :

H × L2(J,H) → L2(J, U). If system (2.1) is exactly null controllable, then H is a
bounded linear operator and the control function

u(t)=−W (x0, f)(t)=−(L0)
−1

(
Sα(ψ(b))x0 +

∫ b

0

Sα(ψ(b)− ψ(τ))ψ′(τ)f(τ)dτ

)
(t)

drives x(t) from x0 to 0.

Proof. By the similar analysis of [9], we can easily establish this criterion related
to the control function.

Definition 2.7. [9] System (1.1) is exactly null controllable on J , if there is a
state-control pair (x, u) related to u ∈ L2(J, U) and x ∈ S(u) to guarantee that
x(b) = 0.

In the end, to fulfil our aim, we require the following crucial preparations:

Theorem 2.1. [39] Let B be a bounded equicontinuous subset of Cα,ψ(J,H). Then
B is relatively weak sequentially compact in Cα,ψ(J,H).

Remark 2.3. xn ⇀ x in Cα,ψ(J,H) means x̃n ⇀ x̃ in C(J,H), which implies that
ψ1−α(t)xn(t)⇀ ψ1−α(t)x(t) for t ∈ J and xn(t)⇀ x(t) for t ∈ J ′.

Theorem 2.2. [2] Let E be a convex closed subset of H, T : [0, 1]× E → H be a
compact map with a closed graph and T (0, E) ⊂ E̊. If T (λ, ·) does not admit fixed
points on ∂E for all λ ∈ [0, 1), then we possess y ∈ E satisfying T (1, y) = y.

3. Exact null controllability

We here address the exact null controllability problem of system (1.1) without
involving the compactness assumption and the Lipschitz restriction condition or
the noncompactness measure condition. To deal with it, we need the following
prerequisites:

(HA) {T (s)}s≥0 is analytic with ∥T (s)∥ ≤M < +∞.
(HF ) F : J × C([−r, 0], H) → H satisfies
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(i) For every ϕ ∈ C([−r, 0], H), F (·, ϕ) : J → H is measurable;
(ii) For a.e. τ ∈ J , F (τ, ·) : C([−r, 0], H) → H is weak-to-weak continuous;
(iii) For every ϕ ∈ C([−r, 0], H) and τ ∈ J , ∥F (τ, ϕ)∥ ≤ ρ(τ)(1 + ∥ϕ∥[−r,0])

with ρ ∈ L2(J,R+).
(Hg) g ∈L (Cα,ψ(J,H), C([−r, 0], H)) and ∥g(y)∥[−r,0] ≤ L∥y∥α,ψ with L ≥ 0,

for every y ∈ Cα,ψ(J,H).
(Hl) The linear system (2.1) is exactly null controllable.

Remark 3.1. To facilitate our subsequent exploration, we firstly emphasize the
following important facts:

(a) By (HA) and Lemma 2.1, a fractional resolvent {Sα(s)}s>0 can be generated
by A. Moreover, for any s ∈ J , ∥Γ(α)ψ1−α(s)Sα(ψ(s))∥ ≤ M and {s1−αSα(s)}s>0

is equicontinuous.
(b) A(n), the Yosida approximation of A, can generate a contraction semigroup

{esA(n)}s>0. Thus, a fractional resolvent (denoted by {Snα(s)}s>0) can also be gen-
erated by A(n).

(c) Put A
(n)
m = PmA(n) : Hm → Hm. Thanks to the boundedness of A

(n)
m , A

(n)
m

can generate a semigroup. Thus, a fractional resolvent (written {Smnα (s)}s>0) can

also be generated by A
(n)
m .

(d) As is known to all, A∗, the adjoint of A, can generate a semigroup. Let
A(n)∗ = nA∗(nI−A∗)−1. A(n)∗ can also generate a semigroup. Thus, A(n)∗ and A∗

can, respectively, generate resolvents {Sn∗α (s)}s>0 and {S∗
α(s)}s>0. Furthermore,

we have ∥Sn∗α (s)x− S∗
α(s)x∥ → 0 for x ∈ H.

(e) Due to Lemma 2.1, one can suppose that ∥Γ(α)ψ1−α(s)Snα(ψ(s))∥ ≤M and
∥Γ(α)ψ1−α(s)Smnα (ψ(s))∥ ≤M , for any s ∈ J .

Lemma 3.1. The resolvents {Sα(s)}s>0, {Snα(s)}s>0, {Smnα (s)}s>0 established in
Remark 3.1 possess the following features:

(a) S̃nα(ψ(s))x→ S̃α(ψ(s))x, n→ ∞, for any x ∈ H and s ∈ J .

(b) ∥S̃mnα (ψ(s))Pm − S̃nα(ψ(s))∥ → 0, m→ ∞, uniformly for s ∈ J .

Proof. (a) Owing to Remark 3.1, we can receive esA
(n)

x→ T (s)x, for any x ∈ H.
We thus can conclude from Lemma 2.1 that

Γ(α)ψ1−α(s)Snα(ψ(s))x→ Γ(α)ψ1−α(s)Sα(ψ(s))x.

(b) By the discussion in Lemma 3.4 of [38], one can easily receive this assertion.

Lemma 3.2. Let (HA) hold, h ∈ L2(J,H) and Λ : L2(J,H) → Cα,φ(J,H) be a
map described by

(Λh)(·) =
∫ ·

0

Sα(ψ(·)− ψ(s))ψ′(s)h(s)ds.

Then Λ is equicontinuous.

Proof. Let t1, t2 ∈ J with 0 ≤ t1 < t2 ≤ b. If t1 = 0, in light of the condition of
ψ, we get

Γ(α)ψ1−α(t2)∥(Λh)(t2)∥

≤ Mψ1−α(t2)

∫ t2

0

(ψ(t2)− ψ(s))α−1ψ′(s)∥h(s)∥ds
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≤ Mψ1−α(t2)
√

∥ψ∥C1

(∫ t2

0

(ψ(t2)− ψ(s))2α−2ψ′(s)ds

)1/2

∥h∥L2

≤
√
ψ(t2)∥ψ∥C1

2α− 1
M∥h∥L2 .

We thus arrive at lim
t2→0+

Γ(α)ψ1−α(t2)∥(Λh)(t2)∥ = 0.

If t1 > 0, for abbreviation, we set

S̃α(ψ(t)− ψ(s)) = Γ(α)(ψ(t)− ψ(s))1−αSα(ψ(t)− ψ(s)),

Φ(t2, t1) = S̃α(ψ(t2)− ψ(s))− S̃α(ψ(t1)− ψ(s)),

g(t2, t1) = (ψ(t2)− ψ(s))α−1 − (ψ(t1)− ψ(s))α−1.

Let 0 < ε < t1. We derive

∥Γ(α)ψ1−α(t2)(Λh)(t2)− Γ(α)ψ1−α(t1)(Λh)(t1)∥

≤
√
ψ2α−1(b)∥ψ∥C1

2α− 1
M∥h∥L2

(
ψ1−α(t2)− ψ1−α(t1)

)
+Γ(α)ψ1−α(b)

∫ t2

t1

∥Sα(ψ(t2)− ψ(s))ψ′(s)h(s)∥ds

+ψ1−α(b)

∥∥∥∥∫ t1−ε

0

Φ(t2, t1)(ψ(t2)− ψ(s))α−1ψ′(s)h(s)ds

∥∥∥∥
+ψ1−α(b)

∥∥∥∥∫ t1

t1−ε
Φ(t2, t1)(ψ(t2)− ψ(s))α−1ψ′(s)h(s)ds

∥∥∥∥
+ψ1−α(b)

∥∥∥∥∫ t1

0

S̃α(ψ(t1)−ψ(s))g(t2, t1)ψ′(s)h(s)ds

∥∥∥∥
≤

√
ψ2α−1(b)∥ψ∥C1

2α− 1
M∥h∥L2

(
ψ1−α(t2)− ψ1−α(t1)

)
+

√
(ψ(t2)− ψ(t1))2α−1∥ψ∥C1

2α− 1
M∥h∥L2ψ1−α(b)

+ sup
s∈[0,t1−ε]

∥∥∥∥Φ(t2, t1)∥∥∥∥
√
ψ(b)∥ψ∥C1

2α− 1
∥h∥L2

+2Mψ1−α(b)∥h∥L2

√
(ψ(t2)− ψ(t1 − ε))2α−1∥ψ∥C1

2α− 1

+ψ1−α(b)M∥h∥L2

(∫ t1

0

(
g(t2, t1)ψ

′(s)
)2
ds

)1/2

.

Hence, a joint combination of Remark 3.1, the arbitrariness of ε and 2-mean con-
tinuity (see Problem 23.9 in [35]) enables us to acquire the equicontinuity of Λ.

We now focus on the exact null controllability problem.

Theorem 3.1. Under assumptions (HA), (HF ), (Hg) and (Hl), system (1.1) is
exactly null controllable if

ML+
M∥ψ∥C1√
2α− 1

(
∥B∥∥W∥(L+ ∥ρ∥L2(L+ 1)) + ∥ρ∥L2(L+ 1)

)
< 1. (3.1)
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Proof. The proof mainly consists in the construction of u ∈ L2(J, U) and x ∈ S(u)
to guarantee that x(b) = 0. Below, we shall construct the control function u and
the mild solution x ∈ S(u) by the approximation solvability trick. For clarity, we
proceed in four procedures.

Step 1. Let R > 0, q ∈ Q(m) and λ ∈ [0, 1]. We start with an auxiliary operator
Σ : Q(m) × [0, 1] → Cα,ψ(J,Hm) described by

Σ(q, λ)(s) = λSmnα (ψ(s))Pm(ϕ(0) + g(q)(0))

+ λ

∫ s

0

Smnα (ψ(s)− ψ(τ))ψ′(τ)Pm(Buq(τ) + F (τ, q̃τ ))dτ,

uq(s) = −W (ϕ(0) + g(q)(0), F (τ, q̃τ ))(s)

= −(L0)
−1

(
Sα(ψ(b))(ϕ(0) + g(q)(0))

+

∫ b

0

Sα(ψ(b)− ψ(τ))ψ′(τ)F (τ, q̃τ )dτ

)
(s).

We shall verify that Σ meets the restriction conditions of Theorem 2.2.
Firstly, it is evident that Σ̃(q, 0) = 0 ∈ Q̊(m).
We then examine the compactness of Σ. Put

Σ̃(Q(m) × [0, 1]) =
⋃

q∈Q(m),λ∈[0,1]

Γ(α)ψ1−α(·)λ
(
Smnα (ψ(·))Pm(ϕ(0) + g(q)(0))

+

∫ ·

0

Smnα (ψ(·)− ψ(τ))ψ′(τ)Pm(Buq(τ) + F (τ, q̃τ ))dτ

)
.

Because of (HF ) and (Hg), we acquire that

∥q̃τ∥[−r,0] = sup
θ∈[−r,0]

∥q̃τ (θ)∥

≤ sup
s∈[−r,0]

∥q̃(s)∥+ sup
s∈J

∥q̃(s)∥

≤ ∥ϕ∥[−r,0] + LR+R

and

∥uq∥L2 =

(∫ b

0

∥W (ϕ(0) + g(q)(0), F (τ, q̃τ ))∥2dτ
)1/2

≤ ∥W∥
(
∥ϕ(0)∥+ ∥g(q)(0)∥+ ∥F (τ, q̃τ )∥L2

)
≤ ∥W∥

(
∥ϕ(0)∥+ LR+ ∥ρ∥L2(1 + ∥ϕ∥[−r,0] + LR+R)

)
:= k.

Accordingly, we have

∥Σ̃(q, λ)(t)∥

≤ M(∥ϕ(0)∥+ LR) +Mψ1−α(b)

∫ t

0

(ψ(t)− ψ(τ))α−1ψ′(τ)PmBuq(τ)dτ

+Mψ1−α(b)

∫ t

0

(ψ(t)− ψ(τ))α−1ψ′(τ)PmF (τ, q̃τ )dτ
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≤ M

(
∥ϕ(0)∥+ LR+

∥ψ∥C1√
2α− 1

(
∥B∥k + ∥ρ∥L2(1 + ∥ϕ∥[−r,0] + (L+ 1)R))

)
. (3.2)

This yields the boundedness of Σ̃(Q(m) × [0, 1]). In addition, Lemma 3.2 can yield

the equicontinuity of Σ̃(Q(m) × [0, 1]). Hence, we obtain the compactness of Σ.
Next, we check that Σ possesses a closed graph. Let {qk} ⊆ Q(m) with qk → q

and λk ⊆ [0, 1] with λk → λ. Due to qk → q and (Hg), we derive g(qk)(s) → g(q)(s)
for any s ∈ [−r, 0] and lim

k→∞
q̃k(s) → q̃(s) for any s ∈ J. For any s ∈ [−r, 0], we thus

have

q̃k(s) = ϕ(s) + g(qk)(s) → ϕ(s) + g(q)(s) = q̃(s).

As a result, we receive q̃k(s) → q̃(s) for any s ∈ [−r, b], which indicates that q̃kτ → q̃τ
for τ ∈ [0, s], s ∈ J ′. As such, (HF ) forces that

F (τ, q̃kτ )⇀ F (τ, q̃τ ) and PmF (τ, q̃kτ ) → PmF (τ, q̃τ ).

Thereby, for any (z, h) ∈ (H × L2(J,H))∗ = H∗ × (L2(J,H))∗, we obtain

(z, h)(ϕ(0) + g(qk)(0), F (τ, q̃kτ ))

= z(ϕ(0) + g(qk)(0)) + h(F (τ, q̃kτ ))

= z(ϕ(0)) + z(g(qk)(0)) + h(F (τ, q̃kτ ))

→ z(ϕ(0)) + z(g(q)(0)) + h(F (τ, q̃τ ))

= (z, h)(ϕ(0) + g(q)(0), F (τ, q̃τ )),

which shows that (ϕ(0) + g(qk)(0), F (τ, q̃kτ ))⇀ (ϕ(0) + g(q)(0), F (τ, q̃τ )). Since W
is linear and bounded, W is weakly continuous. Therefore we can assert that

H(ϕ(0) + g(qk)(0), F (τ, q̃kτ ))⇀ H(ϕ(0) + g(q)(0), F (τ, q̃τ )),

that is uqk(s)⇀ uq(s). Consequently, we acquire∥∥Σ̃(qk, λk)(s)− Σ̃(q, λ)(s)
∥∥

= Γ(α)ψ1−α(s)
∥∥Σ(qk, λk)(s)− Σ(q, λ)(s)

∥∥
≤ |λk − λ|∥Σ̃(q, 1)(s)∥+M∥Pmg(qk)(0)− Pmg(q)(0)∥

+Mψ1−α(b)

∫ s

0

(ψ(s)− ψ(τ))α−1ψ′(τ)∥Pm(F (τ, qkτ )− F (τ, qτ ))∥dτ

+Mψ1−α(b)

∫ s

0

(ψ(s)− ψ(τ))α−1ψ′(τ)∥Pm(uqk(τ)− uq(τ))∥dτ,

which indicates that Σ admits a closed graph.
In the end, we show that Σ(·, λ) does not possess fixed points on ∂Q(m). Let

q = Σ(q, λ) and λ ∈ (0, 1). Due to (3.1) and (3.2), we can choose some R satisfying

M

(
∥ϕ(0)∥+ LR+

∥ψ∥C1√
2α− 1

(
∥B∥k + ∥ρ∥L2(1 + ∥ϕ∥[−r,0] + (L+ 1)R)

))
< R,

which enables us to conclude that there is no q ∈ ∂Q(m) such that q = Σ(q, λ).
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Thereby, Theorem 2.2 can force that q = Σ(q, 1) possesses a fixed point xmn,
that is

xmn(s) = Smnα (ψ(s))Pm(ϕ(0) + g(xmn)(0))

+

∫ s

0

Smnα (ψ(s)− ψ(τ))ψ′(τ)Pm(Buxmn(τ) + F (τ, x̃mnτ ))dτ,

uxmn(s) = −W (ϕ(0) + g(xmn)(0), F (τ, x̃mnτ ))(s)

= −(L0)
−1

(
Sα(ψ(b))(ϕ(0) + g(xmn)(0))

+

∫ b

0

Sα(ψ(b)− ψ(τ))ψ′(τ)F (τ, x̃mnτ )dτ

)
(s).

Step 2. We claim that {xmn}m>0 established in Step 1 admits a subsequence (still
relabeled as {xmn}m>0) satisfying that xmn ⇀ xn, m→ ∞, where

xn(s) = Snα(ψ(s))(ϕ(0) + g(xn)(0))

+

∫ s

0

Snα(ψ(s)− ψ(τ))ψ′(τ)(Buxn(τ) + F (τ, x̃nτ ))dτ, (3.3)

uxn(s) = −W (ϕ(0) + g(xn)(0), F (τ, x̃nτ ))(s)

= −(L0)
−1

(
Sα(ψ(b))(ϕ(0) + g(xn)(0))

+

∫ b

0

Sα(ψ(b)− ψ(τ))ψ′(τ)F (τ, x̃nτ )dτ

)
(s).

Since Step 1 gives the equicontinuity and boundedness of {xmn}m>0, we can
assume, from Theorem 2.1, that xmn ⇀ xn, m→ ∞, in Cα,ψ(J,H). Thus, we have
x̃mn(s) ⇀ x̃n(s) for s ∈ J. Because of (Hg), g is weak continuous. Hence, we can
derive g(xmn)(s)⇀ g(xn)(s) and

x̃mn(s) = ϕ(s) + g(xmn)(s)⇀ ϕ(s) + g(xn)(s) = x̃n(s)

for s ∈ [−r, 0]. Thereby, we receive x̃mn(s) ⇀ x̃n(s) for s ∈ [−r, b], which implies
that x̃mnτ (θ)⇀ x̃nτ (θ) for θ ∈ [−r, 0]. Due to (3.2) and

∥x̃mnτ ∥[−r,0] = sup
θ∈[−r,0]

∥x̃mn(τ + θ)∥

≤ sup
s∈[−r,0]

∥x̃mn(s)∥+ sup
s∈[0,τ ]

∥x̃mn(s)∥

≤ ∥ϕ∥[−r,0] + LR+R,

we get x̃mnτ ⇀ x̃nτ . Applying (HF ) leads to F (τ, x̃mnτ ) ⇀ F (τ, x̃nτ ). Arguments
similar to that in Step 1 can give

W
(
ϕ(0) + g(xmn)(0), F (τ, x̃mnτ )

)
⇀W

(
ϕ(0) + g(xn)(0), F (τ, x̃nτ )

)
,

that is, uxmn(s)⇀ uxn(s). Therefore, we can assert from Lemma 3.1 that

∥S̃mnα (ψ(s))Pm(ϕ(0) + g(xmn)(0))− S̃nα(ψ(s))(ϕ(0) + g(xn)(0))∥
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≤ ∥S̃mnα (ψ(s))
(
Pm(ϕ(0) + g(xmn)(0))− Pm(ϕ(0) + g(xn)(0))

)
∥

+∥S̃mnα (ψ(s))Pm(ϕ(0) + g(xn)(0))− S̃nα(ψ(s))(ϕ(0) + g(xn)(0))∥
≤ M∥Pm(ϕ(0) + g(xmn)(0))− Pm(ϕ(0) + g(xn)(0))∥

+∥S̃mnα (ψ(s))Pm(ϕ(0) + g(xn)(0))− S̃nα(ψ(s))(ϕ(0) + g(xn)(0))∥
→ 0, m→ ∞.

Likewise, as m→ ∞, we can derive

∥S̃mnα (ψ(s)− ψ(τ))PmF (τ, x̃mnτ )− S̃nα(ψ(s)− ψ(τ))F (τ, x̃nτ )∥ → 0

and

∥S̃mnα (ψ(s)− ψ(τ))PmBuxmn(s)− S̃nα(ψ(s)− ψ(τ))Buxn(s)∥ → 0.

Therefore, the uniqueness of the weak limit and the dominated convergence
theorem enable us to acquire (3.3).

Step 3. We examine that {xn}n>0 constructed in Step 2 possesses a subsequence
(still written {xn}n>0) satisfying that xn ⇀ x, n→ ∞, where

x(s) = Sα(ψ(s))(ϕ(0) + g(x)(0))

+

∫ s

0

Sα(ψ(s)− ψ(τ))ψ′(τ)(Bux(τ) + F (τ, x̃τ ))dτ, (3.4)

ux(s) = −W (ϕ(0) + g(x)(0), F (τ, x̃τ ))(s)

= −(L0)
−1

(
Sα(ψ(b))(ϕ(0) + g(x)(0))

+

∫ b

0

Sα(ψ(b)− ψ(τ))ψ′(τ)F (τ, x̃τ )dτ

)
(s). (3.5)

Thanks to (3.2) and Lemma 3.2, we can receive the equicontinuity and bound-
edness of {xn}n>0. we can suppose, from Theorem 2.1, that, xn ⇀ x, n→ ∞. Uti-
lizing similar reasoning as in Step 2 can give g(xn)(0) ⇀ g(x)(0), uxn(τ) ⇀ ux(τ)
and F (τ, x̃nτ )⇀ F (τ, x̃τ ). Based on Remark 3.1 and Lemma 3.1, for any z ∈ H, we
receive 〈

z, S̃nα(ψ(s))(ϕ(0) + g(xn)(0))− S̃α(ψ(s))(ϕ(0) + g(x)(0))
〉

=
〈
z, S̃nα(ψ(s))ϕ(0)− S̃α(ψ(s))ϕ(0)

〉
+
〈
S̃n∗α (ψ(s))z − S̃∗

α(ψ(s))z, g(x
n)(0)− g(x)(0)

〉
+
〈
S̃∗
α(ψ(s))z, g(x

n)(0)− g(x)(0)
〉

+
〈
z, S̃nα(ψ(s))g(x)(0)− S̃α(ψ(s))g(x)(0)

〉
→ 0,

which yields S̃nα(ψ(s))(ϕ(0) + g(xn)(0)) ⇀ S̃α(ψ(s))(ϕ(0) + g(x)(0)). Similarly, we
can assert that∫ s

0

Snα(ψ(s)− ψ(τ))ψ′(τ)Buxn(τ)dτ ⇀

∫ s

0

Sα(ψ(s)− ψ(τ))ψ′(τ)Bux(τ)dτ,
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0

Snα(ψ(s)− ψ(τ))ψ′(τ)F (τ, x̃nτ )dτ ⇀

∫ s

0

Sα(ψ(s)− ψ(τ))ψ′(τ)F (τ, x̃τ )dτ.

Hence, the uniqueness of the weak limit forces (3.4), that is x ∈ S(ux).

Step 4. What is left is to demonstrate x(b) = 0. Utilizing (3.4) and (3.5) yields

x(b) = Sα(ψ(b))(ϕ(0) + g(x)(0)) +

∫ b

0

Sα(ψ(b)− ψ(τ))ψ′(τ)(Bux(τ) + F (τ, x̃τ ))dτ

= Sα(ψ(b))(ϕ(0) + g(x)(0)) +

∫ b

0

Sα(ψ(b)− ψ(τ))ψ′(τ)F (τ, x̃τ ))dτ

−
∫ b

0

Sα(ψ(b)− ψ(τ))ψ′(τ)B(L0)
−1

(
Sα(ψ(b))(ϕ(0) + g(x)(0))

+

∫ b

0

Sα(ψ(b)− ψ(τ))ψ′(τ)F (τ, x̃τ )dτ

)
(τ)dτ

= 0.

We thus achieve the exact null controllability of (1.1).

Remark 3.2. So far, we have offered the construction of the required control func-
tion u and the solution x ∈ S(u) by the approximation solvability trick. Emphasis
here is that our result does not involve the compactness and Lipschitz restriction
condition.

4. An application

We here take up a significant diffusion model to show the applicability of our ab-
stract outcomes. We opt for the following nonlocal delay system:

D
2
3 ,ln(1+s)x(s, z) = ∆x(s, z) + u(s, z) + F (s, z, x̃s(z))), on (0, b]× Ω,

x(s, z) = 0, on (0, b)× ∂Ω,

x̃(s, z) =

N∑
i=1

cix̃(s+ si, z) + ϕ(s, z), (s, z) ∈ [−r, 0]× Ω,

(4.1)

where D
2
3 ,ln(1+s) is a 2

3 -order ln(1+ s)-Riemann-Liouville type fractional derivative
operator, si ∈ [r, b], ci ∈ R, k = 1, 2, · · · , N , Ω is a bounded region in Rn (n ≥ 2)
with a Lipschitz boundary ∂Ω and for θ ∈ [−r, 0],

x̃s(θ, z) = x̃(s+ θ, z) =


Γ(α)ln

1
3 (1 + s+ θ)x(s+ θ, z), s+ θ ∈ [0, b],

N∑
i=1

cix̃(s+ θ + si, z), s+ θ ∈ [−r, 0].

Let H = U = L2(Ω). Designate an operator A:

Ax = ∆x, x ∈ D(A) = H1
0 (Ω) ∩H2(Ω).

Then, A can generate a contractive analytic self-adjoint semigroup {T (s)}s≥0 (see
[26]):

T (s)x =

∞∑
n=1

e−λns⟨x, ξn⟩ξn,
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where {−λn, ξn}∞n=1 is the eigensystem of A and λn > 0. Then (HA) holds. More-
over, M = 1. Due to Lemma 2.1, A can also generate a self-adjoint resolvent
{Sα(s)}s>0:

Sα(s)x =

∞∑
n=1

sα−1Eα,α(−λnsα)⟨x, ξn⟩ξn.

Let α = 2
3 , ψ(s) = ln(1 + s), x(s)(z) = x(s, z), B = I, u(s)(z) = u(s, z),

ϕ(s)(z) = ϕ(s, z), u ∈ L2([0, b], H), L =
N∑
i=1

ci. Delineate functions

f : J × C([−r, 0], H) → H and g : Cα,ψ([0, b], H) → C([−r, 0], H)

as F (s, x̃s)(z) = F (s, z, x̃s(z)) and g(x)(s)(z) =
N∑
i=1

cix̃(s+si, z), respectively. Then

(Hg) holds and system (4.1) can be adapted to the abstract form of (1.1).
Consider the auxiliary linear control system:

Dα,ψx(s, z) = ∆x(s, z) + u(s, z) + f(s, z), on (0, b]× Ω,

x(s, z) = 0, on (0, b)× ∂Ω,

x̃(0, z) = x0(z), z ∈ Ω.

(4.2)

Based on [29], we have∫ b

0

∥Sα(ψ(b)− ψ(τ))ψ′(τ)x∥2dτ

=

∞∑
k=1

∫ b

0

(ψ(b)− ψ(τ))2α−2E2
α,α(−λk(ψ(b)− ψ(τ))α)ψ′2(τ)dτ⟨x, ξk⟩2

≥
∞∑
k=1

ψ2α−2(b)E2
α,α(−λkψα(b))

∫ b

0

ψ′2(τ)dτ⟨x, ξk⟩2

≥ ψ2(b)

b

∞∑
k=1

ψ2α−2(b)E2
α,α(−λkψα(b))⟨x, ξk⟩2

=
ψ2(b)

b
∥Sα(ψ(b))x∥2,

which forces∫ b

0

∥Sα(ψ(b)− ψ(τ))ψ′(τ)x∥2dτ

≥ ψ2(b)

b+ ψ2(b)

(
∥Sα(ψ(b))x∥2 +

∫ b

0

∥Sα(ψ(b)− ψ(τ))ψ′(τ)x∥2dτ
)
.

Thus, system (4.2) is exactly null controllable. Hence, (Hl) holds.
Hence, by Theorem 3.1, if (HF ) holds and

L+
∥ψ∥C1√
2α− 1

(
∥B∥∥W∥(L+ ∥ρ∥L2(L+ 1)) + ∥ρ∥L2(L+ 1)

)
< 1,

we can achieve the exact null controllability of system (4.1).
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5. Conclusion

In the existing findings, with the aid of the compactness of the semigroup or the
noncompactness measure condition, many investigators coped with exact control-
lability problems and exact null controllability problems. In the present paper, by
employing the approximation solvability trick and the resolvent technique, we have
displayed the exact null controllability result of the ψ-Riemann-Liouville fractional
nonlocal weighted delay abstract system (1.1) without involving the compactness
of the semigroup or the noncompactness measure condition. Moreover, with the
help of Yosida approximation of semigroup, our methods can enable us to deal with
exact null controllability problems of fractional evolutional systems with Caputo
type derivatives or Hilfer type derivatives.

For our future research, the following issues will continue to be focused on:
(i) We wish to analyze whether our methods are still valid for exact controlla-

bility problems of evolution systems.
(ii) We wish to seek some natural conditions to ensure that our methods are still

valid for approximate controllability problems of evolution systems.
(iii) Numerical simulation about the theoretical results will be touched in the

future work.
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