Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 15, Number 4, August 2025, 2301-2326 DOI:10.11948/20240446

THE STUDY ON THE CYCLIC GENERALIZED
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Abstract The purpose of this paper is to deal with the cyclic generalized
anti-periodic boundary value problems of the tripled fractional Langevin dif-
ferential systems. By using some fixed theorems, the existence and uniqueness
of solutions to the problem have been obtained. Moreover, the Ulam-Hyers
stability of the problem has also been presented. Furthermore, some examples
are supplied to verify our main results.
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1. Introduction

In this paper, we are concerned with the following generalized anti-periodic bound-
ary value problems of the tripled fractional Langevin differential systems.
Dy, (CDg, +N) w; (t) = g; (t, 21 (1), 22 () 23 () .t € (0,1), i =1,2,3,
a(21(0) + 25(0)) = — (22(1) + z3(1)) ,
“Dg, z1 (0) + “D§, 22 (0) = — (°Dg a2 (1) + “Dg, 23 (1)),
a (z2(0) + x3(0)) = — (x3(1) + 21(1)) ,
Dg, x5 (0) + “Dg, x5 (0) = — (°Dg x5 (1) + “Dg a1 (1))
a(z3(0) +21(0)) = — (21(1) + 22(1)),
“Dg a3 (0) + CDF x1 (0) = — (“Dgyar (1) + “Dg s (1))

(
)=
(
) =
(
)=

(1.1)
where ¢ Dg " and CDg  stand for the Caputo fractional derivative of order a and 3
with0<a<1,0<f<1, 1<a+B<2 ¢ :[0,1] xR>—=R,i=1,2,3 represent
continuous functions, a, A € (0, +00).
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With the continuous development of fractional calculus, the research on the
basic theory of fractional differential equation has become more and more popular.
The main reason is that the problems of fractional differential equations can greatly
describe the real world and has been applied in many practical research fields such
as biology, physics, fluid mechanics (see [16,22,23,28]). Therefore, it is meaningful
to consider the well-posedness and Ulam-Hyers stability of boundary value problems
for fractional differential equations.

It is well-known that the Caputo fractional differential equation is an important
part of fractional differential equations. Its boundary value problems have been
extensively investigated by many scholars (see [1,2,4,6, 10, 14, 15, 18, 21, 24] and
references therein). For example, Ahmad and Nieto [4] considered the existence
of solutions for the following fractional anti-periodic boundary value problem via
Leray-Schauder degree theory.

CD8+.r(t) = f (t>$(t)) RS [O,TL
2(0) = —z(T), 2'(0) = —2/(T),

(1.2)

where ¢ € (1,2], f:[0,1] x R — R is continuous. Since the Langevin equation has
strong physical significance, which was established by Langevin in 1908 according to
Newton’s laws (see [11]), its fractional boundary value problems have consequently
attracted many scholars’ attention. Yu, Deng and Luo [26] investigated the solv-
ability of a class of initial value problem for fractinal Langevin equation via the
Leray-Schauder nonlinear alternative as follows.

§D; (§DF +7)x(t)=f(ta(t), t€(0,1),
2k (0) =, 0 <k <1, (1.3)
22TE(0) = v, 0 < k < n,
where § D and § D¢ stand for the Caputo fractional derivative of order 8 and a
with 8 € (n —1,n],a € (m —1,m], m,n € N*, I = max{n,m}, f:[0,]] x R = R
is continuous, v € R. Subsequently, Baghani, Alzabut and Nieto [8] dealt with the
existence and uniqueness of solutions to the anti-periodic boundary value problems
for a coupled system of factional Langevin equation by Banach fixed point theorem.
DA (D™ 4 xa)a (t) = f(ta(t),y (1), t € (0,1),
DP2 (D +x2)y (t) = g (t,x (t),y (1)), t € (0,1),
2(0) + 2(1) =0, D¥x(0) + DM z(1) = 0, D?**12(0) + D?**12(1) =0,
y(0) +y(1) =0, D2y(0) + D2y(1) = 0, D>**2y(0) + D>*2y(1) = 0,

(1.4)

where D% and D? stand for the Caputo fractional derivative of order «; and B;
with a; € (0,1],8; € (1,2],i = 1,2, f,g:[0,1] Xx R — R are continuous, x1, x2 € R.
Furthermore, for more papers related to boundary value problems of fractional
Langevin equation, please refer to [5,12,13,17] and references therein.

The cyclic boundary value problem has a far-reaching influence and is widely
used in many research fields [3,7,9,20,25]. The cyclic boundary conditions are
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particularly prominent in the study of channel flow and has been used to construct
railway track coupling dynamics models [7]. Moreover, it can effectively describe the
repeated behavior of the fluid on the boundary surface. In general, these boundary
conditions help to approximate regions of infinite length to smaller regions. Fur-
themore, the cyclic boundary conditions also play an important role in the study
of lattice particles [3]. In addition, the cyclic boundary value problems are also
widely used in the variational principle of Hamiltonian systems [25] and in solving
the problems of Schrodinger operator [9].

Recently, the cyclic boundary value problems of fractional differential system
have become a hot research topic. Its characteristic is that the equations and bound-
ary conditions are coupled. Hence, compared to decoupling boundary conditions
with coupling equation, these types of problems are more complex and challeng-
ing(see [3,19,27]). For example, Zhang and Ni [27] dealt with a class of the tripled
system of fractional Langevin equations with the cyclic anti-periodic boundary value
conditions as follows.

DY, (DG, +N) xi (t) = f; (t, 21 (1), 22 (), 23 (), t € (0,1),i =1,2,3,

fi(

21(0) + 22(1) = 0, CDO 21(0)+°Dg, 22(1) =0
1’2(0) + 553(].) = 07 2(0)+ D0+1'3(1) = 0,
z3(0) +z1(1) =0, CDa ' 23(0)+9 Dy z1(1) =0

(1.5)

where D, and CD(B) . stand for the Caputo fractional derivative of order o and
Bwith0<a<1l, 0<B<1,1<a+B<2 fi:[0,1]xR>—R,i=1,23 are
continuous, A € (0,+00). Based on some fixed point theorems, the well-posedness
of solutions to (1.5) are acquired. Furthermore, the Ulam-Hyers and Ulam-Hyers-
Rassias stabilities for the problem are also obtained.

Motivated by the works mentioned above, we are concerned with the generalized
cyclic anti-periodic boundary conditions to the tripled fractional Langevin differ-
ential system (1.1). By Krasnoselskii fixed point theorem and Banach contraction
mapping theorem, the well-posedness of solutions to (1.1) has been obtained. More-
over, the Ulam-Hyers stability of (1.1) has also been presented. Let’s describe the
contributions of this paper as follows.

e Our model includes the special case (1.5). Thus, our main results extend the
conclusions of [27].

e Since the equations and boundary conditions are coupled. Therefore, it is
more complex and challenging than the case of decoupling boundary conditions
with coupling equation.

e Studying the anti-periodic boundary value problem itself is very meaningful.
Moreover, there are few papers considering the cyclic boundary value problems of
tripled fractional Langevin differential system. Our main results enhance and upon
some previous results.

2. Preliminaries

For the classical definitions and properties of Riemann-Liouville fractional integrals
and Caputo fractional derivatives, one can refer to [16]. So, we won’t repeat it here.
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Lemma 2.1 (Krasnoselskii fixed point theorem, [28]). Assume that X is a Banach
space and the nonempty subset Q) C X is bounded, conver and closed. Let A and B
be two operators satisfying

(i) Ax+ By € Q for all x,y € Q;

(i) A is an operator of complete continuity;
(iii) B is a contraction mapping.
Then there ezists z € Q such that z = Az + Bz.

Considering the Banach space X = C[0, 1], with the norm defined by ||z||cc =
maxyeo,1) |2(t)|. Let X = X x X x X be equipped with the following normal

(21, 2, 23) |1 x = [[21]loo + [[22]loc + |23,

where (21, z2,23) € X. Clearly, (X, | -||x) is also a Banach space.

Lemma 2.2. Fori = 1,2,3, let 1 < a+ 8 < 2, Y; € AC|[0,1]. Then, x =
(21,22, 23) € X is a solution of the following linear system of integral equations

°DJ, (CDF, 4+ Mi(t) = Ti(t) (2.1)

with the boundary conditions

a(z (0)+wz() — (z2(1) + 23(1)),
“D§, 1 (0) + “ D a2 (0) = — (°D§, 22 (1) + “D§, 25 (1)) (2.2)
a(z2(0) + 23(0)) = — (23(1) + 21(1)) ,
“Df w9 (0) + “Df a3 (0) = — (“Dgas (1) + “Dg oz (1)), (2.3)
a(23(0) +21(0)) = — (z1(1) + z2(1))
“D§, x5 (0) + “Df a1 (0) = — (°Dg,z1 (1) + “ D22 (1)) - (2.4)
The form of x; is given by
e [ et (g ds
0= Farg | T ) (25)
—L t — ) 1z, (s)ds
o | = tas
- a++z\g,4 / =) TP (X2 () + Ty (s) ds
- +M’5)‘1_a51fs s))ds
- i | a=am o+ 11 ()
— +M16 >\ ! a 1
+ a—f—ﬁ /0 —5)2TBL(T (s) + Yo (s)) ds
M (t) )\ Mz4 A2/O 1= 5)2=1 (35 (s) + 23 (s)) ds
M,-Q(m Ml5 % 1

+ )47 (w3 (s) + 21 (s)) ds

I («a)
M;s(t)A — Mg (t) N2
I' ()

1

+ 1 (s) + 22 (s)) ds

c\c\
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Mi(t) ! -
-= 1—s)71(T 08
e = a9+ T () s
M;s5(t) /1 B-1
T3 J, (1—=5)"""(Y3(s)+T1(s))ds
Mig(t) [* P ,
— 1-— T T =1,2
o [ =0T @+ () as, =123
where
Mlj(t) = mElj —+ E4j, ng(t) = mEQj + E5j,
o My )
M3J(t):mE3]+Eﬁj7 ET]':7J7 Taj:1a2537475a6a
4N (—a+1)
= — 1)+4
miy (o) +dar(—a+1) +4),
4ar?(—a+1)
mio = W =+ 4(1)\(@ —+ 1) — 4)\,
AN} (—a?4+2a—1)  8M\*(a® —1)
miz = + —4daX(a+1) — 4\,
N (T(@)® L(a) oy
i — 22%(a® — 3a® 4+ 3a — 1) n 2X\(=3a® +3a% +a—1) 4963 42
(T(a))® I'(a) 7
2/ .3 2 _ 3 _ g2 — .
m15:2/\( a® + 3a 23a+1)+2)\(a a 3a+3)+2a5+2’
T (@) I'(a)
20_ 3 1 2 _ 3_ 42 _
m16:2/\( a®+a 2+a 1)+2)\(3a a’+a 3)76(a3+1),
(T'(a)) I'(a)
3(_ 2 _ 20,2 _
m21:4>\( ¢ —|—22a 1)+8>\ (a 1)74/\(a2+a+1),
(T'(a)) I'(a)
4N} (—a+1) 9
m22—w+4>\(_a +a+1),
4aX? (—a +1) 9
m23—W+4)\(a +a71),
203 (=a® +a?+a—1) 2X3a®—a®+a-—3) 3
Moy = + —6(a”+1),
. (D) r(a) .
202(a® —3a® +3a—1)  2X(—3a®+3a®>+a—1) 3
Mos = + + 2(a” + 1),
? (T(a)) o) oy
2203 (—a® +3a® —3a+1)  2X\(a® —a® — 3a + 3) 3
Mog = + + 2(a” + 1),
" (I'())? Ia) @y
4ar? (—a +1) 9
m31—W+4)\(a +a71),

4N3(—a? +2a — 1) n 8A\2(a? — 1)
(T (a))? I (@)

4N} (—a+1)

My = N @

m3z = —4M(a* +a+1),

+4N—a* +a+ 1),
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202(—a® +3a%? —3a+1)  2X(a® —a? —3a +3)

ms3q4 = a3 y
: I A R
m _2X(=a®+a? +a—1) 2/\(3a37a2+a+3)_  6d3
35 = T (a))Q + T (o) 6 — 6a”,
_2X%(a® —3a*+3a—1)  2X(—3a®+3a*+a—1) 3
mae = T (a))Q + T (o) + 2+ 2a°,
N 2X3(a? —2a+1)  2X2(=3a® +2a+1) N 2A(3a%2 —a +1)
B (T (a))® (I'(a))’ ()
+4(—a®> +a+1),
S 203 (=a?+2a—1)  6X%(a®> —1) 2X\(=3a?—a—1) Wt
ETT R rer | e et
— 203(a? —2a+1)  2X\%(=3a®+2a+1) 2X\(3a®> +a—1) APt
ST r@ T e Tw et
o 2)%(a? — 2a + 1) +2)\(—3a2+2a+1) Jr6(12+2a—2
b (T (@) (T (@) Fl)
20%(—a? +2a — 1) N 6A(a® —1)  2a% + 6a+2
mas = 5 —
i (T (@) (T () F(a)
— 2)%(a% — 2a + 1) +2/\(—a2—2a+3) n —2a® +2a + 6
YT @) (T (a))? I (a)
S 20%(a® —2a+1)  20*(=3¢*+2a+1)  2M\3a’+a-1) 2 ta
51 = T (a))3 + B (a))2 + (o) 4(a* +a+1),
— 223(a% — 2a + 1) . 2)2(=3a% +2a + 1) n 2X(3a® —a +1)
STCE (I'(a))’ I(a)

+4(—a* +a+1),
2X3(—a? +2a -1 6X2(a®? -1 2X(3a? 1
s — (—a* + 2a )+ (a ) 2M\(3a® +a+ )+4(a2+a—1),

(T ()’ (T (@))* I' (@)
20%2(a® —2a+1)  2X(—a?—-2a+3) —2a®>+2a+6

T ey T t@? T T
S 22%(a® —2a + 1) N 2\ (—3a® +2a + 1) . 6a’ + 2a — 2
” (T ()’ (' ())? I'(a)
— 2203 (—a? +2a—1)  6A(a®—1) 3 2a% + 6a + 2
" (@)’ C@? T
— —2X3(a? — 2a + 1) 3 2)\2(—3a? + 3) 3 20(3a%2 +a +1) M — sl
" (F(@)’ (F(@)? I() ( o
— —2V(=a* +2a—1) 2X*(3a® —2a—1) 2\(=3¢® —a+1)
" (@)’ (I (@))? I(a)
—4(a®* +a+1),
—2X3(=a?+2a—1) 2X2(3a®2—-2a—1) 2X\(=3a®>+a—1)
mez = -

(T ()’ T()? T (a)
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—4(a® —a+1),

— —2)\(@® —2a+1) 2)\(=3¢”+3) 2d°+6a+2

" (I () (I (a))? F(a)
S —2)%(—a® +2a — 1) B 2X(a? 4 2a — 3) B 2a? — 2a — 6

o (T (a))? (T (a))? T(a)

=22 (—a*+2a—1) _ 2X\(3a? — 2a — 1) _ —6a? — 2a + 2

© (T ())? (I (a))? T(a)
. AMa—-1) u A(a? —2a+1)  M—a®+1) 2

=4 (M -2 ) ( Ce)? T T 1) |

Proof. Applying the operator IgJr to both sides of (2.1), we can deduce
DG wi(t) =I5, Ti(t) — Azi(t) + cinen €R, i =1,2,3. (2.6)
Using the operator I, to act on both sides of (2.6), it follows

tOé

’I,’l(t) = Ig‘fﬁTz(t) — )\Ig_i_ﬂiz(t) -+ m

ci1+co, ci,ce €R, i=1,2,3.
(2.7)

Next, by (2.6) and (2.7), we can derive

1
=i i2, (2.8
t:1+r(a+1)cl+02 ( )

“D§ i (0) = —Az; (0) + e, ODg i (1) =I5 T (t)‘tzl —Azi (1) +cin,  (29)

z; (0) = ¢io, x; (1) = IS“IﬁTi (t) iy MG i (1))

which together with the cyclic anti-periodic boundary conditions (2.2)-(2.4) yield
that

c21 + c31 +aci2 + (a4 1)cog + 32

1 1
I'a+1) I'(a+1)
= — I3 (T2 (1) + T3 (1)) + A5, (w2 (1) + 25 (1))

ci1 + c31 + ci2 + acoa + (a+ 1)cso

1 1
I'(a+1) I'(a+1)
=I5 (T (1) + T3 (1) + AIG, (21 (1) + 23 (1)),
1 1
T (a+1) T(a+1)
=I5 (Y ()+T2( )+ Mgy (21 (1) +22 (1)),

A
ci1 + ( ) c21 + ( T (ot 1)> €31 — Ac12 — 2Xc2 — Acso
=AIGHY (T2( )+T3 — NI (w2 (1) + @3 (1) — 1), (T2 (1) + T3 (1)),

A A
(1 — M) c11 +ca1 + <2 — F(O“*'l)> €31 — AC12 — Acaa — 2AC32

MG (05 (1) + Ty (1) = A2IG (w5 (1) + 21 (1) — IF, (T3 (1) + Ty (1)),

ci1 + c21 + (a+ 1)cia + o2 + acso
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A A
(2 - w) ci1 + (1 - w) Co1 + €31 — 2Ac12 — Acga — ez
=AY (01 (1) + Yo (1) = NIy (21(1) + a2(1)) — Iy, (Y1 (1) + T2 (1))

So, we only need to solve the following system of linear equations to get the values
of Ci1, Ci27i = 17 27 3a

1 1
0 T lat1) Flat1) a a+1 1 11
1 1
m 0 m 1 a a —|— 1 Co1
1 1
F(a+1) T(a+1) 0 arl 1 a C31
A A
: “Ta+D) | Tatn 7 C12
A 1 DY S W G 0\
T(a+1) T (a+1) €22
2 — A 1-— A 1 =2\ =X =
T(a+1) T(a+1) Ca3
I (P2 (1) + T3 (1) + MG (22 (1) + 23 (1))
—I5TP (05 (1) + 1 (1) + Ay (5 (1) + 21 (1))
| O () T2 (1) AT (a1 (1) + 2 (1)
AP (o (1) + T3 (1)) — A0, (20 (1) + 23 (1)) — 15 (T2 (1) + T3 (1))
AL (T3 (1) + Y1 (1) = A0, (25 (1) + 21 (1)) — 15, (Y3 (1) + Y1 (1))
MG (Ta (1) + 1 (1) = AT (1 (1) + 22 (1) = 15, (11 (1) + T2 (1))

(2.10)

It’s simple to demonstrate that the determinant of the coefficient matrix associated
with the linear system (2.10) is not zero. Therefore, (2.10) admits the unique
solution.

m11$1 + M12S2 + M13$3 + M14S4 + M15S5 + M16S6

C11 = e )

o = M2161 + Ma2G2 + M23S3 + MagSy + MasSs + m26§67
e

- M3161 + M32G2 + M3353 + M3454 + M3565 + m36§67
e

1y = M4161 + My2G2 + My3S3 + MagSy + MysGs + m46§67
e

oy — M5161 + M52 + M53S3 + Mi54Sa + Mis5S5 + m56§6,
e

3 = Me161 + Me2aS2 + M63S3 + MeaSs + MesSs + m66<67
e

where
S /1 (1= 8)2~ 18 (75 (1) + T3 (1)) ds
S T(a+8) /, 2 3
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+I‘?a)/0 (1—8)*(zo (1) + 23 (1)) ds,
___ 1 ' — g)eth-1 s
@ = ~rarg ) -9 )+ 1 ()
+I‘f\oz)/0 (1 —5)*"! (z3 (1) + 21 (1)) ds,
= ~raag | -9 O )+ X () ds
1
+F(Acw /0 (1—5)""! (21 (1) + 22 (1)) ds,
“Tr (Ot)\Jr B) /0 (1 =971 (Ty (1) + Y3(1)) ds
2 1
F>(\oz) /0 (1—5)*" (w2 (1) +23(1))ds
_ﬁ/o (1= )1 (5 (1) + T5 (1)) ds,
© ﬁ/o (1= )71 (T3 (1) + Y1 (1)) ds
2 1
_F?a) A (1—5)*" (x5 (1) + 21 (1)) ds
—ﬁ/{) (1—8)71 (T3 (1) + 7Ty (1)) ds,
1
6= ﬁ /0 (1—s)2P=1 (T, (1) + T4 (1)) ds
_FA(Q) | 0=t @ @+ ) as
1
_ﬁ / (1— )71 (X1 (1) + T2 (1)) ds.
So, putting the values of ¢;1,¢2,4 = 1,2,3 into (2.7), we get the desired solution
(2.5).
On the contrary, it is easy to verify that (z1, 22, x3) € X given by (2.5) satisfies
the system (2.1) and the boundary conditions (2.2)-(2.4). O

3. The well-posedness of (1.1)

For convenience, let ¢;(t) = g;(t, x1(t), x2(t), z3(t)), i = 1,2,3, t € [0, 1]. According
to Lemma 2.2, define the operator T': X — X by
(Tz)(t) : = ((Tr2)(t), (Tax)(t), (T3x)(t))
= (Th (z1, 22, x3)(t), To(x1, 22, x3)(t), T3 (21, 22, 23) (1)), (3.1)
where
1 A

(Tiz) (1) = W/O (t — 5)°TF=1g, (s) ds—m/o (t — 5)°1a; (s) ds
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— M1 (t) + Mg
I'a+B)

(t)/\/0 (1= 8)P=1 (g (5) + b3 (s)) ds

/0 (1= )P (65 (s) + o (5)) ds

~Mis(t) + Mis(t)\
T (a+p)

_ Z:}(zz)ailg;e(t)k/ol(l $)OHB=L (1 (5) + 2 () ds
Mﬁ@§Q£MHM2AQ1_QaI@Q
+MZQ(t)AFOf;%(i)V /O 1 e (o
+Mﬁ@§f£%UM2£%1 %1 (a1

ng?ﬂ(i) / (1= 5P (60 (9) + 65 () ds

_J\F4i55(1;)/0 (1—8)7"1 (63 (s) + 1 (5)) ds

D [0t o )+ b o) =125

Therefore, the solution to problem (1.1) corresponds to the function x = (z1, 22, x3),
given that x = (z1, 22, x3) is a fixed point of the operator T. By the Krasnoselskii’s
fixed point theorem, we proceed to establish the existence of solutions for the system

(1.1).

Theorem 3.1. Assume that the following conditions hold.

(Hi)

gi 1 [0,1] x R® = R,i = 1,2,3 are continuous;

(Hs) For all (t,u,v,w) € [0,1]xR3, there exist nonnegative functions k}, k2, k3, k} €

C[0,1],i = 1,2, 3 satisfying

(2R A A At A A )

i (8w, v, w)] < ki (8) + K7 ()lu] + K7 ()]v] + k5 ()]

Then the system (1.1) admits at least one solution with the condition that

3

T(a+1)>T(a+1)(E+n+7)> L+ (3N + 1) A+ 3N\, (3.2)

i=1

where

&1

Lo =

€3

L+ [ Moo, + | Mas|| A+ [[Mas]l o + [ Ml oA | [[Mis]l o, + [[Mi6l] o

Tla+pB+1) L(B+1) ’
1+ [ M1 [l o + [1Maall oA + [[Masll o + 1Ma6]l0cA | [1M24]l o + ([ Ma6]lo
I'(a+p8+1) T(5+1) ’
_ 14 M1 [loe + [ Msall oA + ([ M2l oo + [[M35][ oA | [ M3all o + 1M35 ] o
T(a+pf+1) CE
0 = [ M1 [loo + 1M1all oA + [[Maslloo + 1Ma6llogA | [1Miallo + [[Mi6lo
T(at B+ 1) NCESIE
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| Ma4l| o + | Mas]l

= | Ma1l o + | Maall (A + | Ma2]| , + [[Mas]| A
, =

D(a+B+1) r(B+1)

ns = 1Ml oo + 1 M35]| oA + [ M3l o + | Ms6llooA | M5l + [1Ms6ll
Tla+8+1) L(B+1)

= [ M1l + [[M1all oA + 1M1zl + 1M15]laA | [ Miallog + M5l
Tla+8+1) L(B+1)

g = [ Maa] o + [[Ma5]| oA + [|Mas]lo + 1 MagllaA | M50 + [[Ma6]] o
Ma+p+1) rB+1)

g = IMallog + [ MsallogA + [ Masllog + [ Msslloo |, [1Msalloc + [1Mas o
T(a+p+1) T(3+1)

5 = maXx {517§2a§3}a
7] = max {nla 12, 773}7
7Y = max {73773;73}7

k;ll = max \k;zl(t)|, kf
telo,

1]

= max |kf(t)|, k;f = max \kf(t)|,

te[0,1] t€[0,1]

k} = max [k}(t)|, €=k +k+E, i=1,2,3.
t€[0,1]

Proof. Fix ¢ > 0 such that

5>

(E+n+7)(at1) 3 k!
=1

D(a+1)—T(a+1)(E+n+7)

Consider the set

(

(Giz) (t)

Fx
(Gx

(2

; .
;= [(3N1 + 1) A + 3N5A2]
=1

Qs = {x = (21, 29,23) € X° : ||z x <6}

Define the operators F,G : Qs — X by

)(®)
t

)(#)

= (
= (
= ((G4
= (

(F1z)(t), (Fax)(t), (Fx)(t))
Fl(xl,l’g, 3]‘3)(t),Fg(ﬂ?l,ﬁﬂz,1'3)(t)7F3($1,$2,$3)(t)),

)(t), (G2x)(t), (Gs2)(t))

Gi(z1,22,23)(t), G2(21, 02, 73)(t), G5 (21, 22, 23)(1)),

+

)
Mo (£)\ — M5 (t)\?

(t —s)* ta;(s)ds

I'(a)

Mz (t)A
L Mas()

I'(a)

M1 (A

— My

+

I'(«)

1

I'la+pB)

/ (t — 5)°F=1g, () ds
0

1
JACEREE

0
- Miﬁ(t))‘ /0 (1 _ 8)04—1 (.Tl(S

) +x1(s)) ds

)+ xa(s)) ds

)

)

)

)

)

2 1
O [0 92 (aale) + (o)) s, i = 1,23
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Lo i1 () + Mg (H)A /01 (1- S)a+B—1 (p2 (s) + @3 (5)) ds

T (a+B)
Mz‘gd? / C(L— 97 (0 (5) + 6 () ds
A (5;) / (1= )71 (s (5) + 61 (5)) ds

M (t)
IN(E))

Now, in terms of Krasnoselskii’s fixed point theorem, our proof can be divided into
three steps.

A(l—ﬁwiwmg+¢ﬂ®m&i=ng

(i) The following property will be proved.
Gz + Fy € Q; for any x = (21,72, 23) € Q5 and y = (y1,y2,93) € Ls.

As a matter of fact, for any z,y € Qs, it follow |z||x < 0,]|y|lx < ¢. Then, from
(H2), we can get that

1 ! a+pB—1
(G0 < gy [ =97 fon ()]s

|My (8)] 4 [ M ()| XA 1 _ g)otB-l s s)|) ds
R O 1 (0 0)] 0 ()

|Mya(t)] + | Mys ()| X 1 _ gjatB-1 s s)|) ds
S /Ou Y (g (5)] + 61 (5)]) d

|M13( )‘+|M16( )|/\ _ g)at+B-1 s S S
‘ G /Ou )T (|1 ()] + 162 ()]) d

|M14 ) 9P (2 ()] + 163 (5)]) ds

|M15 )

/ (1= )51 (|65 (5)] + |1 (5)]) ds

M
o 16“"/ )71 (161 ()] + |62 () ds

chitalzlx | [Mu®)+ [ Mia®)] A
“T(a+B+1) Fa+B8+1)

[Ma(t)| + [Mis(t)| A
[(a+B8+1)

| Mz (t)] + [Mie(t)| A
Fa+pB8+1)

|Mi4(t)]

rp+1)

+

(ks + ks + Lol x + 3]l x)

(k! + kY + bzl + ]|z )

(k1 + ks + Gzl y + Clllly)

(kL + kL + Lol + 5]l )
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156
r(B+1)
Mig(t
+r(516+()1|> (k1 + K + il + Callal )

< €k} ki + vki + (€01 + nly + L) 6.

+ (k1 + k3 + Gzl + €3]z )

Similarly, we also find
|(Gow)(t)] < €ky + ks + vk + (§2 +nls + 1) 6,
|(Gs)(8)] < k3 + ki +vk3 + (§s + b1 + 7L2) b.
Moreover, we can get the following inequality

|(Fiy)(t)]
A ! a—1
< [ =9 ol as

2 1
Jr|M12(t)\ /\F4<ra|)]\/fl5(t)| A /O (1= 8)* " (|lys(s)| + |y (s)]) ds

[Mis(D)| A+ [Mis(£) A2 [ -
T /O“‘S) (Iy1 ()] + ly2(s)]) ds

2 1
|Mu<t>AFU>M O / (1= )" (ya(s)+| ya(s) ) ds

A | Mg ()| A + | My5(8)| N2
S Tarn il Tzt Ul + ol
Mol 2 PO (e + el
| My (8)| X 4 [ Mg ()| N
rary (el + lsle)
_ L0Mus ()] + [Mas(8)] + M (DDA + ([Mis(8)] + [Mis(0)] + | Maa(1))A?]3
a I'(a+1)
A
+m||y1”oo‘

Similarly, we have

|(Fay)(®)]
LMoo ()] + [ Mog(t)] + [Mar (6)) A+ (1Mas (0)] + [Mas ()] + | Maa(1)]) X°] 8
- I(a+1)
A
+ m”yzﬂw
|(Fay)(®)]
LM ()] + [ Mz (6)] + [Mas (6))) A + (| Maa(t)] + [Mas (4)] + [Mss (1)) A?] 0
- IMNa+1)
A
+ 7oy 198l

I'a+1)
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For convenience, we introduce the following constants

Nip = [[Maz|l o + [[Masll o + 1Maill,  Now = [[Muallo + [[Misll o + | M6l o »
Niz = [[Maz| o, + M3l + [Ma1]l o,  Noz = [[Maall, + [[Mas]], + | Ma6]| o,
Nig = ([ M3zl oo + |M33]l oo + IM31llog,  Noz = [[Maall o + [ M35l o + | M36]| o »

where

Ny = max {Ny1, Ni2, Ni3}, No = max { Ny, Nag, Nos}.

Therefore, we can obtain
() < gyl + SR,
(P ) £ sl + S,
() € gl + P2,

According to the above results, we can obtain the following estimates immediately.

A
[(Grz)(t) + (F1y)(t)| < &kt + mks + vk3 + (§61 + nlo + vl3) 6 + nglﬂ‘f)
N1+ NoA2
Ma+1) 7
A
|(Go)(t) + (Fey)(1)] < €ks + ks + ki + (662 + s +761) 6 + F&” 5
N+ NQ/\2
I(a+1) 7
A
|(Gaa)(t) + (Fay)(8)] < €R3 + k] + 7k} + (€65 + by +7L2) 6 + m'é’ﬂz‘s
NiA+ NoA2
MNa+1)

Taking the norm for Gz + Fy on X, one has

1Gz + Fyllx = |G1z + Fiylleo + |Ga + Faylloo + |Gsz + Fsyllo

3
3Ny + 1) X+ 3Ny)\2
§(€+n+7)2(k}+5£i)+( IF(iH) 225
=1

<.

Hence, Gz + Fy € Qs for all x,y € Q5.
(ii) The operator F' is a contraction on Qs will be shown. In fact, for any =

(z1,22,23) € Qs and y = (Y1, Y2, y3) € s, it follows

|(F12)(t) — (Fay)(t)]
- (Nid + NoX?) (lz1 = w1l o + 122 = 9ol + 123 — ysll,)
- INa+1)
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Allzy =yl
INa+1)
(N1)\ + Nz)\Q)

<2 o —wl
= Tlag n)* T Yl

Similarly, we have

(N1>\ + N2>\2)

|(Foa)(t) — (Foy)(1)] < ] 22 = 2l = yllx

A
|*F(a—|—1 Ia+1)

(F)0) - (Fa) 0] < 2 s~ ol + o 2B oy

Taking the norm Fx — Fy on X, we get

(3N1 + 1) A + 3N2A2
INa+1)

[Fz— Fy|x < = yllx-

By (3.2), we can get that F' is a contraction.

(ili) The G is equicontinuous on {25 will be obtained. As a matter of fact, since
the functions g1, g2, g3 are continuous, this means that the operator G is con-
tinuous on §25. Therefore, we need to prove that G is relatively compact on
Qs. In fact, for any = € Qs, by using (i), we obtain G is uniformly bounded
on {25. For convenience, we have import the following constants.

7. {|mi1| + o] + [mas| + (Imaal + | mis| + [mae[) A [maal + |mis | + |mig]
’ I'(a+p+1) r(B+1)
3
x> (K} + 6:0) .
=1

Next, for any x = (21, x2,23) € Q5 and t1,ty € [0,1] with 0 < t; <9 < 1, we can
obtain
[(Giz)(t2) — (Giz)(t1)|
ki + (k2 + k3 + kD) ||z x
< oHrB L (4, — g)etB-114
< kel [y, (1 — )+ )ds

to
+/ (ty — )2 P~ 1ds}

13 = 19) [(Bul + Bl 3) (8 + 4+ bo]lal x +bsll]x) |
I(a+1) Fla+8+1)

13 = 19) [ (Bl +|Fus| ) (6 + 4 + a2l + Esll]y) |
I'(a+1) Fla+p+1)

(18 = 19) [ (1Bl +|Erel ) (1 + 43 + a2l x +Eall]l) |
I'a+1) a4+ p+1)

(ty —t5) || Eva] (K3 + k3 + |||  + C5]|z]| )
T(a+1) rB+1)
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(ty —1§) | |Bis| (b1 + k3 + G2l x + L))
[la+1) rB+1)
(ty —1§) | |Bs| (k1 + k3 + Gzl x + Lallz]lx)
[la+1) rB+1)
kit Bk +EY6 a
< 1+ (kT + k7 + K (ta+ﬁ__t?+5>_+ ty — 17 ..
Fla+p+1) I'a+1)

Similarly, the following conclusions can also been obtained.

K3+ (k3 +K3+k3)6 g —
(Gaa)ltz) — Gaa)len)| < 2L D0 (g0 ey ¢ BT,

Fla+p+1) Mla+1)
kY + (k3 + k3 +k3) 0/, a fy — 8
|(G3x)(t2) — (Gax)(t1)] < D(a+B+1) : <t2+B —h +ﬁ) * mLS

Based on the facts that t**7 and t* are uniformly continuous on [0, 1], we can get
|(Gix)(t2) — (Giz)(t1)] = 0, as ta — ¢ independent of z, i=1,2,3.

Thus, the operator G is equicontinuous on 5. Therefore, by the Arzeld-Ascoli
theorem, we obtain that G is a relatively compact on £25. Hence, all the conditions
of Lemma 2.1 hold, then the operator G + F' has a fixed point, which means that
it is a solution of the system (1.1). O

In the results below, the uniqueness of solution to the system (1.1) has been
established by the Banach’s contraction mapping theorem.

Theorem 3.2. Assume that the condition (Hy) and the following conditions hold.

(Hs) For for any t € [0,1],x;,y; € R,i = 1,2, 3, there exist constants L; > 0,1 =
1,2, 3 satisfying

|gi(t,$17l’2,l’3) - gi(t7y15y27y3)|
< Li(lzy — ya| + |lw2 — yo| + |23 — y3)), i=1,2,3.

Then the system (1.1) admits the unique solution with the condition that
(Ay + Ay + A3)T(a+ 1)+ (3N; + 1) A+ 3N2A? < T(a + 1), (3.3)
where
= &Ly + 0Ly +vLg, Ay = Lo +nLs + vL1, Ag = {Lg +nLy + v Lo.
Proof. Fix p > 0 such that

Fla+1)(E+v+1n) (wy +ws + ws)
D(a+1) = 3[(N1 + 1) A+ NoX2] —T(a+ 1)+~ +n) (L1 + Ly + L)

<p

where

= t,0,0,0 = t,0,0,0 = t,0,0,0)|.
w1 g&gﬁ”gl(a s Uy )|,’LU2 tIél[g‘ﬁ]LgQ(v s Uy )|,’LU3 tIen[gJ’)%Hgii(v s Uy )|



The cyclic anti-periodic boundary value problems 2317

To begin with, consider the set

Q, ={(21,22,23) € X : [[z]|x < p},
and show that T, C Q,. In fact, for any = = (x1,22,23) € Q,, from (Hs), it
follows
g1t 1, 22, 23)| < [g1(L, 21, 22, 23) — 91(¢,0,0,0)| + [91(2,0,0,0)]
< Ly (2]l + 22l + llzsllo) +wr
= Liz| x + w
< Lip+wi.
Similarly, by (Hs), we can derive
|92 (t, 21, 22, 23)| < Lallz|lx + w2 < Lop + wo,
|93 (t, 21, 2, 23)| < Ls||z[| x + ws < Lap + ws.
Thus, it follows

|(Thzx) (1)]
< Lwptw Ao (M) [Mia(®)] ) (Lap + w2 + Lsp + ws)
“T(a+8+1) TI(a+1) Fa+p5+1)
N (M ()] + [Miz(8)] + [Miz(t)]) A+ (|Mua($)] + |Mis(8)] + [Mas(t)]) A] p
MNa+1)
. ([Ma2(t)] + [Mis(t)| A) (Lsp + w3 + Laip + w1)
Fa+p+1)
n ([Mi3(t)] + [Mi(t)| A) (L1p + w1 + Lap + wo)
Fla+pB+1)
+ | M14(2)(t)] (L2p + w2 + L3p + w3)
L(B+1)
n | Mis(t)| (Lzp +ws + Lip 4 wy)
T(B+1)
|M16(t)‘ (Llp —+ w1y + L2p =+ 11)2)
L(B+1)
hS (M +F1(LA++1])V2A L +&(Lip+wi) +n(Lap +w2) + v (Lzp+ ws) .
Similarly, we also find
|(Tox) ()]
A DAL o gt w0) + €t ) (),
|(T3z) (1)
2
< (¥ +F1(LA++1;V2A Lo +n(Lip+wi) + v (Lep+ wa) + & (L3p + ws) .

Thus, we can get

3[(N1 + 1) A+ NaA?] p
INa+1)

[Tz|x < + (§+y+n) (Liptwi+Lap+we+Lap+ws) < p.
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This means 7, C €,. For convenience, let

¢zm(t) = gi(tvxl(t)vxZ(t)7x3(t))a
¢zy(t) = gi(tvyl(t)7y2(t)vy3(t))’ te [07 1]’ 1=1,2,3.

Now, we show that 7" is a contraction mapping on €2,. As a matter of fact, for any
x = (x1,22,23) € X and y = (y1,¥2,y3) € X, we have

(Ti2)(#) — (Ta)(®)
# ' 750‘ﬁ*1 s) — S S
§r<a+5>/0<t Y b (5) — duy ()] d
At o e M) M)
i [ = e () = (o) s+ PGS
1
x / (1= )™ (5) — bay ()] + sz (5) — sy (s)])ds

|Mia(t)| + [Mas(t)| A
I'(a+pB)

1
) /0 (1= )77 (630 () = day ()] + 10 (5) — G1y (5)]) ds

|Mi3(t)| + [Mas(t)| A
I'(a+pB)

1
. /o (1= 5)* 07 (|p1a (5) — b1y ()] + |d2s (5) — 2y (5)]) ds
| M1 ()] A + | Maa(t)] N2

+

/0 (1= )2 (|2 (5) — 2 ()] + |23 (5) — s (5)))ds

I'(a)
|Mis(t)| A+ [Mis ()| A2 [ a-—
LSRG (9) =0 0] s (5) o () s
_|_|M13( )[A + |M16( ) A /0 (1—8)*"(Je1(s) — y1(s)] + |z2(s) — y2(s)|) ds
|M14 | $)P7L (|pax(s) — Pay(s)] + |¢h32(s) — ¢3y(s)]) ds
|M15 | )P (|32 (8) — D3y (5)] + |P12(5) — b1y (5)]) ds
|M16 |

$)771 (1912(5) — b1y ()] + [d20 () — D2y ()]) ds

(|M11()|/\+|M14()| %) (lleg — yall oo + 123 — ysll.)

<
- I'a+1)
(| Mo (8)| A+ [Mys ()| A?) (llzs — yslloo + 21 — w1l
+
INa+1)
(| Mas(t)| A+ | Mg ()| A?) (lzr — y1ll oo + 22 — w2l o)
Jr
I'a+1)
o = yll, + gl -
Tlatp+1)"  Ye T a1yt~ Yl
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(| M1 (t)] + [Mya(t)| A) (L2 + L3)

(|Mq2(t)| + | Mi5(t)| X) (L3 + Ly)
(|My3(t)| + [ Mys(t)| A) (L1 + L2)
N |Mia()| (L2 + L3) [z — yllx | [Mis(D)] (Ls + L) lz — yll
rg+1) L(B+1)
|Mig(t)| (L1 + L) |z — yl x
rB+1)
N1+ No)2 A
< AMifjz —yllx + ﬁ”x —yllx + m”xl — Y1l oo

Similarly, we can show that

[(Taz)(t) = (T2y)(D)]

N1+ No)? A
< Aoz — NA+ ATy A gy —
|(Ts2)(t) — (Tay)(t)]
N1+ Na? A
< Agla— DAt A, — Y as— sl

According to the above inequality, we have

(3N, + 1)A + 3N A2

1T — Tyl < [Ar+ Ao + A + ]nx—ynx. (3.4)

I'a+1)
By (3.3), it follows that T is a contraction. Then the operator T has the unique
fixed point = € €2, which is the unique solution of the system (1.1). O

4. Ulam-Hyers stability analysis of (1.1)

In this part, the Ulam-Hyers stability of the system (1.1) will be shown. For this
purpose, we first present the concept of stability related to our problem. For
(i =1,2,3), assume that ¢; > 0,g; : [0,1] x R® — R are continuous functions
and U; : [0,1] — R™ are non-increase continuous functions. Now, let us show the
following two inequalities.

‘CD& (OD§y 4+ A) @i (t) — gi (8,21 (1), 2 (1) , 23 (t))’

Scia te [071]7i:17233a (41)
D8, (CDgy + N i (1) = gi (bwa (1), 22 (1) 0 ()
< (t)e, tel0,1],i=1,23. (4.2)

Definition 4.1. If there is a constant ¢, g,.4, > 0 such that for each € = € (1, €2, €3)
> 0 and for each v = (v, ve,v3) € X satisfying the inequalities (4.1) and conditions
(2.2)-(2.4), there exists a solution u = (u1, ug, ug) € X of (1.1) meeting

H U= v”X < Cg1,92,93€-
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Then, the system (1.1) is called Ulam-Hyers stable.

Remark 4.1. The fuction v = (v1,v2,v3) € X is called a solution of (4.1), for
i =1,2,3, if there exist functions ®; € C'[0, 1] that depend on v; respectively such
that the following conditions hold.

() |®; ()] < et € [0,1];
(i) “Dg, (ODg, +N) vi (t) = gi (t, 01 (£) ,v2 (t) 03 (£)) + @, (t) ¢ € [0,1].

Next, the sufficient conditions of Ulam-Hiers stability for the system (1.1) is
provided.

Theorem 4.1. Assume that (Hy), (Hs) and (3.14) are satisfied. If u=(uy,us, us) €
X is the solution of the system (1.1) and v = (v1,va,v3) € X is the solution of the
inequality problem (4.1) and (2.2)-(2.4). Then, there exists a constant cg, g,,95 > 0
such that for each € = € (€1,€2,€3) >0,

H L U”X < Cg1,g2.95;
which means that the system (1.1) is Ulam-Hyers stable.

Proof. Based on the fact that v is the solution of (4.1) and (2.2)-(2.4), in view of
Remark 4.1, we get v; is the solution of the following problem.

DY, (DG, 4+ A) vi () = gi (t, 01 () vz (t) 3 (£)) + ®; (1), £ € (0,1) i =1,2,3,
a(v1 (0) +v2(0)) = — (v2 (1) + v3 (1)),

“Dgyv1 (0) +°Dg vz (0) = — (YD vz (1) +9Dgvs (1))

a(v2 (0) +vs(0)) = — (vs (1) +v1 (1)),

“Dg,v2 (0) +°Dg, v3 (0) = — (YD vs (1) +€ D, v1 (1))

a(v3 (0) +v1 (0)) = = (v (1) + 02 (1)),

“Dg,v3 (0) +°Dg,v1 (0) = — (“ Dy v1 (1) +€ D va (1))

(4.3)

From Lemma 3.1, the solution v = (v1,v2,v3) € X of system (4.3) is presented as
follows.

vi(t)
- s /| (=95 6 5) + i (5)] ds - e / (- 9 s (5)ds
—Ma (<)(j+]\gl')4(t”/1(1 S [ (5) + 6 (5) + s (5) + Py (5)] ds
§ =M DI M OX [7 4 o=t [3y(5) 4 61 5) + 055) 1 ()] s
$ MO EMON [ 4 gyt [31(9) 4 83 6) + 01 (5) 02 (5] s
()>\ Mz4

/\2/0 1—5)* " vy (s) 4+ v3 ()] ds
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My (t) X — Mis (t) X2

M OAZ M0 | (1= 9 o (5) 0 ()] ds
M;s (t) AF—(QJ\)4¢6 (t) 3 /01 (1 - 8)* " vy (8) + vs (5)] ds
A [ )+ B 6) + 0 6) + 03 5]
- A&éi) / (1= )77 [85 (5) + 1 (5) + @3 () + @1 (5)] ds
M) 00 [31 ()4 a9+ 1 ()4 0 (6)] s, 1€ 0,1,
where

¢~51 (s) =g1(s,0
(b? (S) = g2 (87’01 (S) , U2 (8) , U3 (S)) )
$3 (s) = g3 (8,01
Under current conditions, review the operator T' that defined in (3.11), it follows

that 7' is a contraction operator. Thus, the system (1.1) has the unique solution
u = (u1,ug,us) € X that is the fixed point of T. From (3.4), we have

[ Tu—Tollx =[] u—Tvlx
[(BN1 4 1) A + 3N A%
I'(a+1)

A+ A+ Az + | u—vlx,
which means

lu—olx < Tlat])
T(a+1)[1— (A + A2+ A3)] — [(BN1 + 1) A+ 3N2A2]

|| Tv — ’UH)(.
(4.4)
Moreover, the following estimate can be obtained.

|(Ty) (£) = w1 (2)]

. 1“(a1+5)/0t (t— )51 B | (s)|ds
(O BRAL T (197 3 5) 4 3 0] s
B G 01 (1= )75 g (5) + @1 (s)] ds
= (&TgMMA (1 () 4 s )]
|M14 | )P [@y () + @3 ()] ds
|M15 |

5)° 71 [®3 (s) + D1 (5)] ds
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Mis A [ 11 (s S\l ds
AR [ = @ (5)+ 2 0))

< ([M15 () |[+[Mig () |) €1+ (| M4 () [+ Mig () ) 2+ (M5 () [+|M1a () ]) €3

L(B+1)
+(1 + | Mg ()] + | Mz ()] + [Mys ()| A+ [ Mg (£)| A) e
M'a+p8+1)
+(|M11 ()] + [Miz ()| + [ Mg ()| A+ [Mig (B)| A) €2
I'la+pB+1)
Jr(|Ml (t)] + | Mz ()] + [Myg (8)| A+ [My5 (t)| A) €3
IF'la+p5+1)

< fe1 +meg + yes.
Similarly, we have

|(To) (1) = va (B)] < Eez + nes + e,
(T5) (t) — w3 (B)] < Ees + ner + vea.

Thus, it follows

| To —ollx = [Tow — wnlloy + |1 Tow — walloo + | Tov — vs]l.
3
<E+Fn+7)d e
=1

Setting € = max {e1, €2, €3}, by (4.4), we obtain

u—vlx < l(a+1)(+n+)e
“T(a+1)[1— (A4 Ay +A3)] — [(BNy + 1) A+ 3N,2]

Consequently, the system (1.1) is Ulam-Hyers stable. O

5. Example

Example 5.1. Let « = 0.1, § = 0.2, A = 0.001 a = 0.8. The following tripled
system has been considered.

cpl/s (00350 + (1/1000)) 2 (t) = gi (t, 1 (1) 22 (1), 23 (1)), i =1,2,3,

2 (1 (0) + 2 (0)) = — (22 (1) 5 (1),

Dy 1 (0) + Dy (0) = — (“Dg! s (1) + D5/ (1)

2 (2 (0) + 5 (0)) = — (23 (1) +01 (1), (51)
© D4/ 3 (0) +€ Dy s (0) = — (€ DY w5 (1) +€ DYy (1))
2 (2 (0) + 21 (0)) = — (w1 (1) + 22 (1),

5
1 10 1/10 1 10 1/10
© D3/ s (0) +° Dy 1 (0) = — (O D5 a1 (1) +° Dy w2 (1))
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where
1 1 1
_ 434 L S =
g1 (t,zq (8), 22 (), 23 () =t7/* + ggSina (t) + 50%? (t) + 50 %° (t),
1 1 1
go (6,1 (8) 2 (), 23 (1) = /8 + 280°1 (t) + 90" (t) + %sinmg (t),
1 1 . 1
g3 (t, a1 (8) 22 (), 23 (1) =t7/10 4 20%1 (t) + gsinz2 (t) + 3053 (t).
Choosing

ki (8) = 910 k) (8) = 7% kg (1) = £7/1°,

k%(t>:iks<>f280k<> o
K (1) = 80k2<> oo M 0=,
B0 = gk (0= 5.k () = o

then the assumptions (H;) and (H3) hold. Furthermore, we can figure it out as
follows.

3
E+n+y<81, Ni<2 Ny<15 Y £;~0.1115.

Thus, we get

3N1 + 1) A+ 3N2A2
I'la+1)

3
(£+n+v)zﬂi+( ~ 0.9026 < 1.
=1

So, the condition (2.2) is satisfied. Consequently, it follows that the system (5.1)
has at least one solution.

Example 5.2. Let a = 0.1,8 = 0.15,\ = 0.002,a = 0.8. The following tripled
system has been considered.

D (ODG + (1/500)) @i (1) = gi (b1 (8) 2 (1), 3 (1) 5 i = 1,2,3,

2 (21.0) + 2 0)) = — (22 (1) (1)

C Dy (0) +° Dy 0w (0) = — (O Dy w2 (1) +° DY s (1)),

%( (0) +23(0)) = — (23 (1) + 21 (1)), (5.2)

Dy w5 (0) + DL w3 (0) = — (D w5 (1) +° DG 021 (1)

§< (0) +21(0)) = — (21 (1) + 22 (1)),

© Dy s (0) +€ DY (0) = = (CD s (1) +° DY 2 (1)

where

Fu (b1 (0), 22 () 5 (1)) = 5 [m +sin ez ()] + %} ’
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ot (6.2 (0) 22 (0) = 2 [snfon (0] + 120y 10O
fa(t, w1 (), 22 (), 23 () = % L —|&:T|1x(1t)(|t)| 1 fzm(;)(L) + sin |x3 (t)@ :
Choosing
L=~ [,=2 [——

'400 75y 20’
then the assumption (H;) and (Hs) hold. Furthermore, we can figure it out as
follows.

§+77+"}/<8, Ny <2, Ny<1.5, A1+ As + A3 ~ 0.8845.
So, we obtain

[(BN1 + 1) A+ 3N2A?]
I'(a+1)

Thus, the condition (3.3) is also satisfied. Then the system (5.2) has the unique
solution.

A+ As + A3 + ~ (0.8992 < 1.
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