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1. Introduction and main result

In this paper, we consider the following p-Hamiltonian systems{
−
(
|u′

∣∣p−2
u′)′ = −A(t)|u|p−2u+∇G(t, u), a.e. t ∈ [0, T ],

u(T ) = Qu(0), u′(T ) = Qu′(0),
(1.1)

where p > 1, T > 0, N ≥ 1 and∇G(t, u) :=
(
∂G
∂u1

, ∂G
∂u2

, · · · , ∂G
∂uN

)
. Besides, G(t, 0) =

0 and ∇G(t+ T, u) = Q∇G
(
t, Q−1u

)
for some Q ∈ O(N). Here, O(N) denotes the

orthogonal matrix group on RN . A(t) :=
(
aij(t)

)
N×N

is a continuous symmetric

positive definite matrix with A(t+ T ) = QA(t)Q−1. Moreover, there is a constant
µ > 0 such that

(
A(t)|u|p−2u, u

)
≥ µ|u|p for all u ∈ RN and a.e. t ∈ [0, T ]. G :

[0, T ]× RN → R satisfies the following assumption:

(A) G(t, x) is measurable in t for every x ∈ RN , continuously differentiable in x
for a.e. t ∈ [0, T ] and there exist a ∈ C(R+,R+), b ∈ L1(0, T ;R+) such that

|G(t, x)| ≤ a(|x|)b(t), |∇G(t, x)| ≤ a(|x|)b(t)

for all x ∈ RN and a.e. t ∈ [0, T ].
Our goal in this paper is to find nontrivial solutions with the form u(t + T ) =

Qu(t) of system (1.1). In [22], this type of solutions of system (1.1) are called
rotating periodic solutions or Q-rotating periodic solutions. If Q = IN , where IN
is identity matrix in RN , this type of solutions are periodic solutions. If Qk = IN
for some k ∈ Z+ with k ≥ 2, they are subharmonic solutions. If Qk ̸= IN for
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any k ∈ Z+, this type of solutions are quasi-periodic solutions. Besides, a solution
is called a ground state solution to system (1.1) if the solution is one nontrivial
solution with least energy.

Actually, if u(t) satisfies (1.1), then one has

−
(
|Q−1u′(t+ T )|p−2Q−1u′(t+ T )

)′
= Q−1

(
− |u′(t+ T )|p−2u′(t+ T )

)′
= Q−1

(
−A(t+ T )|u(t+ T )|p−2u(t+ T ) +∇G(t+ T, u(t+ T ))

)
=−Q−1QA(t)Q−1|u(t+ T )|p−2u(t+ T ) +Q−1Q∇G(t, Q−1u(t+ T ))

=−A(t)|Q−1u(t+ T )|p−2Q−1u(t+ T ) +∇G(t, Q−1u(t+ T )).

On the one hand, it means that Q−1u(t + T ) is a solution of system (1.1). On
the other hand, by the uniqueness of solution, we have Q−1u(0 + T ) = u(0) and
Q−1u′(0+T ) = u′(0). So, we deduce that Q−1u(t+T ) = u(t), i.e., u(t+T ) = Qu(t)
for a.e. t ∈ [0, T ]. Hence, u(t) is a rotating periodic solution of system (1.1).

Let W 1,p
QT be the Sobolev space defined by

W 1,p
QT =

{
u : [0, T ] → RN

u is absolutely continuous,

u(T ) = Qu(0), u′ ∈ Lp
(
0, T ;RN

)
}
,

with the norm

∥u∥ =

(∫ T

0

|u(t)|pdt+
∫ T

0

|u′(t)|pdt
) 1

p

.

Denoting ∥ · ∥∞ = sup
t∈[0,T ]

| · |, | · | is the usual norm on RN , and

∥u∥p =

(∫ T

0

|u(t)|pdt
) 1

p

.

Note that

(
A(t)|u|p−2u, u

)
= |u|p−2

N∑
i,j=1

aij(t)uiuj

≤ |u|p−2
N∑

i,j=1

∣∣aij(t)∣∣∣∣ui

∣∣∣∣uj

∣∣
≤

( N∑
i,j=1

∥aij(t)∥∞
)
|u|p,

then there exists a constant µ̄ ≥
N∑

i,j=1

∥∥aij(t)∥∥∞ such that
(
A(t)|u|p−2u, u

)
≤ µ̄|u|p

for all u ∈ RN . Since
(
A(t)|u|p−2u, u

)
≥ µ|u|p for some µ > 0. So, there is

µ|u|p ≤
(
A(t)|u|p−2u, u

)
≤ µ̄|u|p

for all u ∈ RN , and it follows that

min{1, µ}∥u∥p ≤ ∥u∥pA ≤ max{1, µ̄}∥u∥p,
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where

∥u∥A =

(∫ T

0

|u′(t)|pdt+
∫ T

0

(A(t)|u(t)|p−2u(t), u(t))dt

) 1
p

.

Hence, the norms ∥ · ∥ and ∥ · ∥A are equivalent.
Define the corresponding functional I on W 1,p

QT by

I(u) =
1

p

∫ T

0

|u′(t)|pdt+ 1

p

∫ T

0

(
A(t)|u(t)|p−2u(t), u(t)

)
dt

−
∫ T

0

G
(
t, u(t)

)
dt

for all u ∈ W 1,p
QT . From assumption (A), I is continuously differentiable on W 1,p

QT .
So, we have〈

I ′(u), v
〉
=

∫ T

0

(
|u′(t)|p−2u′(t), v′(t)

)
dt+

∫ T

0

(
A(t)|u(t)|p−2u(t), v(t)

)
dt

−
∫ T

0

(
∇G

(
t, u(t)

)
, v(t)

)
dt

for all u, v ∈ W 1,p
QT . If u ∈ W 1,p

QT is a critical point of I, then for any v ∈ W 1,p
QT , we

obtain

0 =
〈
I ′(u), v

〉
=

∫ T

0

(
|u′(t)|p−2u′(t), v′(t)

)
dt+

∫ T

0

(
A(t)|u(t)|p−2u(t), v(t)

)
dt

−
∫ T

0

(
∇G

(
t, u(t)

)
, v(t)

)
dt

=|u′(T )|p−2u′(T )v(T )− |u′(0)|p−2u′(0)v(0)−
∫ T

0

((
|u′(t)|p−2u′(t)

)′
, v(t)

)
dt

+

∫ T

0

(A(t)|u(t)|p−2u(t), v(t))dt−
∫ T

0

(
∇G

(
t, u(t)

)
, v(t)

)
dt

=|Qu′(0)|p−2Qu′(0)Qv(0)− |u′(0)|p−2u′(0)v(0)−
∫ T

0

((
|u′(t)|p−2u′(t)

)′
, v(t)

)
dt

+

∫ T

0

(
A(t)|u(t)|p−2u(t), v(t)

)
dt−

∫ T

0

(
∇G(t, u(t)

)
, v(t)

)
dt

=

∫ T

0

((
−
(
|u′(t)|p−2u′(t)

)′
+A(t)|u(t)|p−2u(t)−∇G

(
t, u(t)

))
, v(t)

)
dt,

which means that the solutions of system (1.1) are equivalent to the critical points of
functional I. So, we can employ the variational approaches in critical point theory
to study the existence of solutions for system (1.1).

Over the past few decades, the existence and multiplicity of periodic solutions
for p-Hamiltonian systems have been extensively investigated, see [7, 8, 12, 15–18]
and references therein. If Q = IN and A(t) = 0, system (1.1) becomes{

−
(
|u′|p−2u′)′ = ∇G(t, u), a.e. t ∈ [0, T ],

u(T ) = u(0), u′(T ) = u′(0).
(1.2)
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Jebelean and Papageorgiou [12] studied the existence and multiplicity of periodic
solutions for system (1.2) by applying the linking method and the second deforma-
tion theorem. By using the generalized mountain pass theorem, Li, Agarwal and
Ou [15] proved that system (1.2) has a nonconstant T -periodic solution. In [16], Li,
Agarwal and Tang got the existence of infinitely many periodic solutions of system
(1.2) by minimax methods in critical point theory.

If p = 2, system (1.1) degenerates as a second order Hamiltonian system. Liu, Li
and Yang [23] used Morse theory to study the existence and multiplicity of solutions
for the following second order Hamiltonian systems{

u′′ +A(t)u+∇G(t, u) = 0, a.e. t ∈ [0, T ],

u(T ) = Qu(0), u′(T ) = Qu′(0).
(1.3)

Recently, many authors are interested in the existence of solutions for system (1.3),
and a variety of existence results are obtained by variational methods. In [22], Liu,
Li and Yang investigated system (1.3) with resonance at infinity and obtained the
existence of solutions by applying the Morse theory and the technique of penalized
functionals. If A(t) = 0, by using topological degree theory, Li, Chang and Li [19]
proved that system (1.3) with Hartman-type nonlinearity has nontrivial solutions.
In [31], by employing the index and the Leray-Schauder degree theory, Ye, Liu
and Shen obtained the existence of nontrivial solutions for system (1.3). For more
results about rotating periodic solutions, see [24,25,30] and references therein.

For the past few years, there have been a range of existence results about
the ground state solutions for differential equations, but most of the existence
results are related to the Schrödinger equation, such as Schrödinger-Poisson sys-
tem, Schrödinger-KdV system, Chern-Simons-Schrödinger system and so on, see
[5, 9, 13, 14, 20, 21, 33] and references therein. However, there are only a few works
on the existence of ground state solutions for second-order Hamiltonian systems.
When Q = IN , Ye and Tang [32] got the existence of ground state T -periodic
solutions for system (1.3). Basing on a variant generalized weak linking theorem
introduced by Schechter and Zou [27], Chen and Ma [4] obtained the existence of
at least one nontrivial ground state T -periodic solution for system (1.3). In [6], by
using generalized Nehari manifold method, Chen, Krawcewicz and Xiao established
the existence of ground state periodic solutions with the prescribed minimal period
to system (1.3). To our best knowledge, there is no literature on the existence of
ground state periodic solutions for p-Hamiltonian systems.

Motivated by [22, 23, 32], we are interested in the existence of ground state
rotating periodic solutions for system (1.1). Now we state the main result of this
paper.

Theorem 1.1. Suppose that G satisfies (A) and the following conditions:

(H1) lim
|x|→∞

G(t,x)
|x|p = +∞ uniformly in a.e. t ∈ [0, T ].

(H2) lim
|x|→0

|∇G(t,x)|
|x|p−1 = 0 uniformly in a.e. t ∈ [0, T ].

(H3) There exists θ ≥ 1 such that

G(t, τx) ≤ θG(t, x)

for all (t, x) ∈ [0, T ] × RN and τ ∈ [0, 1], where G(t, x) :=
(
∇G(t, x), x

)
−

pG(t, x).
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Then system (1.1) possesses at least one ground state rotating periodic solution.

Remark 1.1. If p = 2 and Q = IN , under conditions (H1), (H2), (H3), Ye and
Tang [32] obtained the existence of at least one ground state T -periodic solution
for second-order Hamiltonian systems (1.3) by generalized mountain pass theorem.
In this paper, we get the existence of one ground state rotating periodic solution
for p-Hamiltonian systems (1.1). Our result is new. In fact, inspired by a general
monotonicity technique developed by Struwe (see [28, 29]), this kind of condition
(H3) was first introduced by Jeanjean in [10], which was originally used to study
the existence of positive solutions for semilinear problems on RN .

2. Proof of main result

In this section, we first show the mountain pass lemma, see [1] for more details. As
stated in [2], a deformation lemma was ensured under the weaker (C) condition,
which will be explained later. It turns out that the mountain pass lemma still holds
under the (C) condition. Hence, one has the following result.

Theorem 2.1 (Mountain Pass Lemma, [1]). Let
(
W, ∥ · ∥

)
be a Banach space, and

I ∈ C1(W,R) satisfying the (C) condition. Suppose that I(0) = 0 and

(i) There exist positive constants ρ and α such that I(u) ≥ α > 0 for all u ∈ W
with ∥u∥ = ρ.

(ii) There exists e ∈ W with ∥e∥ > ρ such that I(e) < 0.

Then I possesses a critical value c ≥ α given by

c := inf
γ∈Γ

sup
s∈[0,1]

I(γ(s)),

where
Γ := {γ ∈ C([0, 1],W )|γ(0) = 0, γ(1) = e}.

Next, we will prove the main result.
Proof. Our proof is composed of three steps.

Step 1. We prove that I satisfies the (C) condition due to Cerami [3]. That is, for
every constant c and sequence {un} ⊂ W 1,p

QT , {un} has a convergent subsequence if∥∥I ′(un)
∥∥(1 + ∥∥un

∥∥
A

)
→ 0 and I(un) → c as n → ∞. (2.1)

Hence, we have

lim
n→∞

∫ T

0

(
1

p

(
∇G

(
t, un

)
, un

)
−G

(
t, un

))
dt = lim

n→∞

(
I(un)−

1

p

〈
I ′(un), un

〉)
= c.

(2.2)
Since the embedding

W 1,p
QT ↪→ C

(
0, T ;RN

)
is compact. By standard argument, it suffices to prove that {un} is bounded.

Arguing by contradiction, if {un} is unbounded, without loss of generality, we
may assume that

∥un∥A → ∞ as n → ∞.
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Let zn = un

∥un∥A
, then ∥zn∥A = 1. So, there is a z ∈ W 1,p

QT such that

zn ⇀ z in W 1,p
QT ,

zn → z in C
(
0, T ;RN

)
.

(2.3)

If z ≡ 0, motivated by [10], let
{
τn
}
⊂ R satisfy

I(τnun) = max
τ∈[0,1]

I(τun).

For any m > 0, denoting νn = p
√
2pmzn, then, one gets from (2.3) that

νn → 0 in C
(
0, T ;RN

)
. (2.4)

Observe that
p
√
2pm

∥un∥A
∈ (0, 1) for n large enough, and we have

max
τ∈[0,1]

I(τun) = I(τnun)

≥ I(νn)

=
1

p
∥νn∥pA −

∫ T

0

G(t, νn)dt

= 2m−
∫ T

0

G(t, νn)dt.

According to (2.4), it yields that

lim inf
n→∞

I(τnun) ≥ 2m−
∫ T

0

G(t, 0)dt > m.

Due to the arbitrariness of m, we obtain

lim
n→∞

I(τnun) = +∞. (2.5)

For the reasons of I(0) < +∞ and I(un) → c as n → ∞, one sees that τn ∈ (0, 1)
and

0 = τn
dI(τun)

dτ

∣∣∣∣
τ=τn

= ⟨I ′(τnun), τnun⟩

=

∫ T

0

|τnu′
n|pdt+

∫ T

0

(
A(t)|τnun|p−2τnun, τnun

)
dt−

∫ T

0

(
∇G(t, τnun), τnun

)
dt

(2.6)
for n large enough. Hence, from (2.5), (2.6) and

(
H3

)
, we get∫ T

0

(
1

p

(
∇G(t, un), un

)
−G(t, un)

)
dt

=
1

p

∫ T

0

G(t, un)dt
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≥ 1

pθ

∫ T

0

G(t, τnun)dt

=
1

θ

∫ T

0

(
1

p

(
∇G(t, τnun), τnun

)
−G(t, τnun)

)
dt

=
1

θ

∫ T

0

(
1

p
|τnu′

n|p +
1

p

(
A(t)|τnun|p−2τnun, τnun

)
−G(t, τnun)

)
dt

=
1

θ
I(τnun)

→ +∞,

which contradicts with (2.2).
If z ̸≡ 0, since

I(un) =
1

p
∥un∥pA −

∫ T

0

G(t, un)dt,

by (2.1) and (2.3), we have

1

p
= lim

n→∞

∫ T

0

G(t, un)

∥un∥pA
dt = lim

n→∞

(∫
z=0

+

∫
z ̸=0

)
G(t, un)

∥un∥pA
dt. (2.7)

From (H1), there exists M1 > 0 such that

G(t, x) ≥ 0

for all |x| ≥ M1 and a.e. t ∈ [0, T ]. Uniting assumption (A), it follows that

G(t, x) ≥ −aM1
b(t)

for all x ∈ RN and a.e. t ∈ [0, T ], where aM1
= max

|x|∈[0,M1]
a(|x|). Then, one obtains

that ∫
z=0

G(t, un)

∥un∥pA
dt ≥ − aM1

∥un∥pA

∫
z=0

b(t)dt

≥ − aM1

∥un∥pA

∫ T

0

b(t)dt

for all n ∈ N, which leads to

lim inf
n→∞

∫
z=0

G
(
t, un

)
∥un∥pA

dt ≥ 0.

In addition, for t ∈ Ω∗ := {t ∈ [0, T ] : z(t) ̸= 0}, one has
∣∣un(t)

∣∣ → +∞ as n → ∞.
Therefore, one deduces from (H1) that

G(t, un)

|un|p
|zn|p → +∞ as n → ∞.

Since meas(Ω∗) > 0, by the Lebesgue-Fatou lemma, it yields that∫
z ̸=0

G(t, un)

∥un∥pA
dt =

∫
z ̸=0

G(t, un)

|un|p
|zn|pdt → +∞ as n → ∞,
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which contradicts with (2.7). Hence, from the both situations, we can draw a
conclusion that {un} is bounded in W 1,p

QT .

Step 2. We show that I satisfies conditions of Theorem 2.1.

On the one hand, by Sobolev’s inequality (proposition 1.1, [26]), there is M2 > 0
such that

∥u∥∞ ≤ M2∥u∥A (2.8)

for all u ∈ W 1,p
QT . From (H2), for any ε ∈

(
0, 1

2pMp
2 T

)
, there exists δ > 0 such that

|∇G(t, x)| ≤ pε|x|p−1

for all |x| ≤ δ and a.e. t ∈ [0, T ]. Hence, one has

|G(t, x)| ≤ ε|x|p (2.9)

for all |x| ≤ δ and a.e. t ∈ [0, T ]. For u ∈ W 1,p
QT with ∥u∥A < δ

M2
, by (2.8), we have

∥u∥∞ < δ. From (2.9) and taking ∥u∥A = ρ with ρ ∈
(
0, δ

M2

)
, it turns out that

I(u) =
1

p

∫ T

0

|u′(t)|pdt+ 1

p

∫ T

0

(
A(t)|u(t)|p−2u(t), u(t)

)
dt−

∫ T

0

G(t, u(t))dt

≥ 1

p
∥u∥pA − ε

∫ T

0

|u(t)|pdt

≥
(
1

p
− εMp

2T

)
∥u∥pA

≥ ρp

2p
.

Setting α = ρp

2p , one has inf
∥u∥A=ρ

I(u) ≥ α > 0.

On the other hand, choosing

η(t) = (sin(ωt), 0, · · · , 0) ∈ W 1,p
QT ,

where ω = 2π
T . From (H1), for M3 = ωp+µ̄

p + 1, there exists M4 > 0 such that

G(t, x) ≥ M3|x|p

for all |x| ≥ M4 and a.e. t ∈ [0, T ]. So, by assumption (A), it follows that

G(t, x) ≥ M3|x|p −M3M
p
4 − aM4

b(t) (2.10)

for all x ∈ RN and a.e. t ∈ [0, T ], where aM4
= max

|x|∈[0,M4]
a(|x|). Now, we deduce
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from (2.10) that

I(sη) =
1

p

∫ T

0

|sη′|pdt+ 1

p

∫ T

0

(A(t)|sη|p−2(sη), (sη))dt−
∫ T

0

G(t, sη)dt

≤ωp

p
|s|p

∫ T

0

| cos(ωt)|pdt+
(
µ̄

p
−M3

)∫ T

0

|sη|pdt

+ aM4

∫ T

0

b(t)dt+M3M
p
4T

=

(
ωp

p
+

µ̄

p
−M3

)
|s|p

∫ T

0

|η|pdt+ aM4

∫ T

0

b(t)dt+M3M
p
4T

=− |s|p
∫ T

0

|η|pdt+ aM4

∫ T

0

b(t)dt+M3M
p
4T.

Since
∫ T

0
|η|pdt > 0, we have

I(sη) → −∞ as s → ∞.

So, there exists e ∈ W 1,p
QT such that ∥e∥A ≥ ρ and I(e) < 0. Hence, there is a

nontrivial critical point u∗ ∈ W 1,p
QT such that I(u∗) ≥ α > 0 according to Theorem

2.1.

Step 3. We prove that there exists at least one ground state solution. Going after
the argument of Jeanjean and Tanaka [11], we denote

K =
{
u ∈ W 1,p

QT : I ′(u) = 0, u ̸= 0
}
,

and

κ = inf{I(u) : u ∈ K}.

In virtue of (H3), it holds that

G(t, x) ≥ 1

θ
G(t, 0) = 0

for all (t, x) ∈ [0, T ]× RN , i.e.,

(∇G(t, x), x)− pG(t, x) ≥ 0 (2.11)

for all (t, x) ∈ [0, T ]× RN . For any u ∈ K, applying (2.11), one sees

I(u) = I(u)− 1

p

〈
I ′(u), u

〉
=

∫ T

0

(
1

p

(
∇G(t, u), u

)
−G(t, u)

)
dt

≥ 0.

(2.12)

Hence, it is easy to get that I(u∗) ≥ κ ≥ 0. Now, we assume that there exists
{wn} ⊂ K such that

I(wn) → κ as n → ∞.
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Then according to step 1, one knows that {wn} is bounded. So, there is a w ∈ W 1,p
QT

such that

wn ⇀ w in W 1,p
QT ,

wn → w in C
(
0, T ;RN

)
.

Using (H2) again, for any ε1 > 0, there exists M5 > 0 such that

|∇G(t, x)| ≤ ε1|x|p−1 (2.13)

for all |x| ≤ M5 and a.e. t ∈ [0, T ]. Next, we want to prove that w ̸= 0. Otherwise,
if w = 0, then by Sobolev inequality, there exists N1 > 0 such that∥∥wn

∥∥
∞ ≤ M5 (2.14)

for all n ≥ N1. Noting that {wn} ⊂ K, so it follows that

0 =
〈
I ′(wn), wn

〉
=

∥∥wn

∥∥p
A
−

∫ T

0

(
∇G(t, wn), wn

)
dt (2.15)

for all n ∈ N. Then, one can get from (2.13), (2.14) and (2.15) that

∥wn∥pA ≤
∫ T

0

∣∣∇G(t, wn)∥wn

∣∣dt
≤ ε1

∫ T

0

|wn|p−1|wn|dt

≤ ε1T∥wn∥p∞
≤ ε1TM

p
5

for all n ≥ N1. Owing to the arbitrariness of ε1, it implies that ∥wn∥A = 0, a
contradiction. Therefore, w ̸= 0. In accordance with (2.12) and Fatou’s lemma, it
holds that

κ = lim inf
n→∞

I(wn)

= lim inf
n→∞

(
I(wn)−

1

p

〈
I ′(wn), wn

〉)
= lim inf

n→∞

∫ T

0

(
1

p

(
∇G(t, wn), wn

)
−G(t, wn)

)
dt

≥
∫ T

0

(
1

p

(
∇G(t, w), w

)
−G(t, w)

)
dt

= I(w)

≥ κ.

Hence, I(w) = κ. w is a nontrivial critical point of functional I with least energy.
So, we get at least one ground state rotating periodic solution for system (1.1).
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3. Example

In this section, we give an example. We consider the following p-Hamiltonian sys-
tems {−

(
|u′|p−2u′)′ = −λ|u|p−2u+∇G(t, u), a.e. t ∈ [0, T ],

u(T ) = Qu(0), u′(T ) = Qu′(0),
(3.1)

where

∇G(t, u) = p

(
3 + cos

2π

T
t

)(
ln(1 + |u|p) + |u|p

1 + |u|p

)
|u|p−2u.

Hence, by simple calculating, one has

G(t, u) =

(
3 + cos

2π

T
t

)
|u|p ln(1 + |u|p),

and

G(t, u) := (∇G(t, u), u)− pG(t, u) = p

(
3 + cos

2π

T
t

)
|u|2p

1 + |u|p
.

In the following part, it is easy to verify that conditions G(t, u) ∈ C1
(
[0, T ]×RN ,R

)
with ∇G(t+T, u) = Q∇G(t, Q−1u) for some Q ∈ O(N), G(t, 0) = 0 and (H1), (H2)
are satisfied. Taking

f(τ) =
G(t, τu)
G(t, u)

=

(
∇G(t, τu), τu

)
− pG(t, τu)(

∇G(t, u), u
)
− pG(t, u)

=
p
(
3 + cos 2π

T t
)

|τu|2p
1+|τu|p

p
(
3 + cos 2π

T t
)

|u|2p
1+|u|p

=

(
1 + |u|p

)
τ2p

1 + |τu|p
.

By straightforward computation, we have

df(τ)

dτ
=

p
(
2 + |τu|p

)(
1 + |u|p

)
τ2p−1(

1 + |τu|p
)2 ≥ 0

for all τ ∈ [0, 1]. So, one can deduce that f(τ) ≤ f(1) = 1. Then there exists θ ≥ 1
such that

G(t, τu)
G(t, u)

≤ θ for all (t, u) ∈ [0, T ]× RN .

Therefore, condition (H3) holds. By Theorem 1.1, there exists at least one ground
state rotating periodic solution for system (3.1).
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