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Abstract We delve into the existing effective degree model and dynamical
survival analysis model for network epidemic dynamics. By employing the
integrating factor method, we elaborate on the mutual derivation process be-
tween the two models, demonstrating their equivalence. Leveraging this result,
the effective degree model is simplified to an equation that only involves sus-
ceptible individuals.
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1. Introduction

Infectious diseases, which are caused by a variety of pathogens and capable of being
transmitted between humans and animals, have attracted considerable attention
from scholars who have employed mathematical models to study these diseases
[1, 4, 24]. Due to the profound application of network transmission dynamics in
the context of infectious diseases, various network-based infectious disease models
have emerged [6, 11, 13, 21], and these models represent contact as a random graph
of N nodes formed using a configuration model [18, 20]. Rand [22] and Keeling’s
pairwise model [7] takes the binary and ternary groups formed by adjacent nodes
as the basic variables of the model, and adopts a pairwise approximation method to
close the model. Keeling’s model provides a basic reproduction number that differs
from those presented by [19] and [3], as it employs a rough approximation of the
degree of a given edge node. Volz’s edge-based compartmental model [23], on the
other hand, utilizes the probability of a susceptible node remaining susceptible at
a given time and the probability generating function, making it suitable for any
configuration network, and Decreusefond et al. [2] demonstrate that it is the large
N limit of a stochastic SIR epidemic on a configuration model network. Unlike
the first two models, the effective degree model established by Lindquist et al. [15]
focuses on the degree and state of nodes, as well as the states of their neighboring
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nodes, tracking the changes in neighbor states to investigate the dynamic properties.
Notably, Miller [17] has demonstrated that these three models are equivalent under
certain assumptions, implying that different models may possess similar predictive
capabilities and effects when describing the same infectious disease transmission
process.

Jacobsen and colleagues [5] successfully derived the large graph limit system
for the stochastic SIR model in multilayer networks using a statistical inference
approach. KhudaBukhsh and others [8] applied this system to a single-layer network
to study the prevalence of COVID-19, referring to it as dynamical survival analysis
(DSA) [9, 14]. In their recent work, Kiss et al. [12] further named the single-layer
network form of the Jacobsen model as the DSA model and proved that under
precise closure, the pairwise model is equivalent to the DSA model. Additionally,
they demonstrated that the Volz model is also equivalent to the DSA model under
any distribution. Unfortunately, there are no relevant research on the relationship
between the effective degree model and the DSA model. In this paper, we focus on
the equivalence between the effective degree model and the DSA model, leveraging
an integral factor approach and variable relationships to prove this point, providing
a detailed mutual transformation process between the two models.

The remainder of this paper is organized as follows. In Section 2, we present
the formulations of the effective degree model and the DSA model and prove two
relationships regarding the variables of the DSA model, which will assist in the
subsequent proof of equivalence. Section 3 first describes the process of transforming
the effective degree model into the DSA model and then provides the reverse process
from the DSA model to the effective degree model. In Section 4, we demonstrate
the advantages of the equivalence between the DSA model and the effective degree
model, and derive an equation for susceptible individuals from the effective degree
model. In Section 5, we elaborate on some details regarding the equivalence of the
models and conclude with a closing remark.

2. Network-based infectious disease model

The model considered in this paper is the SIR model, where individuals in the
network have three states: susceptible (S), infected (I), and recovered (R). It
is assumed that the infectious disease spreads in a static network of size N with
a configuration model structure, which can be generated by a specific algorithm.
Infected individuals are assumed to transmit the disease to each of their partners
independently at a rate β according to a Poisson process and recover independently
at a rate γ according to a Poisson process. The infectious period and the Poisson
processes are assumed to be independent.

2.1. Effective degree model

We define “ineffective” partnerships as those through which we know infection will
never be transmitted. The definition of “effective” partnerships hinges on the as-
sumption of which partnerships we know will disseminate infection. If a partnership
has not transmitted infection and neither individual is recovered, then it is an ef-
fective partnership. However, the effective degree model presented in this paper
does not require tracking the number of partners an infected individual has; thus,
we augment our definition by stating that an effective partnership must involve at
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least one susceptible individual. With this definition in place, there is no need to
track partnerships among infected individuals. To investigate the effective degree,
we define xj as the number of susceptible nodes with an effective degree of j, and yj
as the number of infected nodes with an effective degree of j. S, I and R represent
the number of susceptible nodes, infected nodes, and recovered nodes, respectively.
⟨I⟩ is the probability that a randomly selected effective partner is infected, and ν
is the total number of effective links between susceptible and infected nodes. The
following effective degree model [17] is established:

ẋj = γ⟨I⟩ [(j + 1)xj+1 − jxj ]− β⟨I⟩jxj ,

ν̇ = − (β + γ) ν + β⟨I⟩(1− 2⟨I⟩)
∑
j

j(j − 1)xj ,

⟨I⟩ = ν∑
j jxj

,

S =
∑
j

xj ,

I = N − S −R,

Ṙ = γI.

(2.1)

Note that the model implicitly includes yj since ν =
∑
j jyj . Assuming that the

maximum degree of nodes in the network is M , it is not difficult to observe that
the number of differential equations in the effective degree model is M + 3, which
is far fewer than the number of differential equations in the effective degree model
proposed by Lindquist et al. [15]. Therefore, model (2.1) is also referred to as the
reduced effective degree model. The initial conditions are:

xj(0) = εj ,

ν(0) = Nµρ,

⟨I⟩ (0) = ρ

1 + ρ
,

S(0) = N(1− ρ),

I(0) = Nρ,

R(0) = 0,

(2.2)

where 0 < ρ≪ 1, εj ≥ 0, µ > 0 and
∑
j εj = N(1− ρ).

2.2. Dynamical survival analysis model

In Jacobsen et al.’s work [5], the derived stochastic process was difficult to analyze.
Subsequently, using a limiting theorem, when the number of nodes approaches infin-
ity, the stochastic process converges to a system of ordinary differential equations.
This limiting system, under the context of a single-layer network, is referred to as
the dynamical survival analysis model. Define xθ as the probability that an initially
degree-1 susceptible node remains susceptible at time t in an infinite network. [A]
represents the number of nodes in state A , [AB] represents the number of pairs

formed by nodes in state A and nodes in state B, xA denotes lim
N→∞

[A]
N , and xAB

denotes lim
N→∞

[AB]
N , where A, B ∈ {S , I ,R}. The following dynamical survival
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analysis model [12] is established:

ẋθ = −β xSI
ψ′ (xθ)

,

ẋSS = −2βxSIxSS
ψ′′ (xθ)

ψ′ (xθ)
2 ,

ẋSI = xSI

[
β
(
xSS − xSI

) ψ′′ (xθ)

ψ′ (xθ)
2 − (β + γ)

]
,

ẋS = −βxSI ,
ẋI = βxSI − γxI .

(2.3)

Here, ψ(xθ) =
∞∑
k=0

pkx
k
θ is the probability generating function [16], representing

the probability that a randomly selected node remains susceptible at time t, pk
represents the degree distribution, which is the probability that a randomly selected
node in the network has a degree of k. xkθ denotes the probability that an initial
susceptible node with degree k remains susceptible at time t. The variables xS , xI
and xR satisfy the constraint xS + xI + xR = 1. The initial conditions are:

xS(0) = xθ(0) = 1− ρ,

xI(0) = ρ,

xSS(0) = µ,

xSI(0) = µρ,

(2.4)

where 0 < ρ≪ 1 and µ > 0.
We will now prove that (xSS + xSI + xSR)/ψ

′
(xθ) = xθ and xS = ψ(xθ).

Define [Sk] as the number of degree-k susceptible nodes at time t, then we have the
following:

lim
N→∞

[Sk]

N
= pkx

k
θ , (2.5)

since the series
∑
k

k[Sk]
N = [SS]+[SI]+[SR]

N is convergent, then

lim
N→∞

∑
k

k[Sk]

N
=
∑
k

lim
N→∞

k[Sk]

N
=
∑
k

kpkx
k
θ = xθ

∑
k

kpkx
k−1
θ = xθψ

′
(xθ),

(2.6)
so

lim
N→∞

[SS] + [SI] + [SR]

N
= xSS + xSI + xSR = xθψ

′
(xθ), (2.7)

namely
xSS + xSI + xSR

ψ′(xθ)
= xθ. (2.8)

Similarly, since the series
∑
k

[Sk]
N = [S]

N is convergent, then

lim
N→∞

∑
k

[Sk]

N
=
∑
k

lim
N→∞

[Sk]

N
=
∑
k

pkx
k
θ = ψ(xθ), (2.9)
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so

xS = ψ(xθ). (2.10)

These two results will play a role in the derivation of the effective degree model
from the DSA model in the subsequent sections.

3. Equivalence of models

3.1. From effective degree model to DSA model

During the derivation of the DSA model from the effective degree model, the vari-
ables in the DSA model need to be assumed to appear “for the first time.” Therefore,
the form of each variable in the DSA model will be gradually defined. The key ques-
tion is how the forms of these variables should be related to the variables in the
effective degree model. From the definition of ν, it is proportional to xSI . Similarly,∑
j jxj is proportional to xSS + xSI . Therefore, to define xSI , it is necessary to

study ν̇. According to the second and third equations in model (2.1), we have

ν̇ = −(β + γ)ν + β⟨I⟩(1− 2⟨I⟩)
∑
j

j(j − 1)xj

= −(β + γ)ν + β⟨I⟩(1− ⟨I⟩)
∑
j

j(j − 1)xj − β⟨I⟩2
∑
j

j(j − 1)xj

= −(β + γ)ν + β⟨I⟩(1− ⟨I⟩)
∑
j

j(j − 1)xj − β⟨I⟩
∑
j j(j − 1)xj∑

j jxj
ν.

(3.1)

Here, an integrating factor method is employed to eliminate the term −β⟨I⟩
×

∑
j j(j−1)xj∑

j jxj
ν. Define an integrating factor F (t) such that F ′(t) = β⟨I⟩

∑
j j(j−1)xj∑

j jxj
.

Introduce a variable xθ and define ẋθ = −β xSI∑
k k(

xk(0)

N )xk−1
θ

. Simultaneously, de-

fine ψ(xθ) =
∑
k
xk(0)
N xkθ . It is clear that ẋθ = −β xSI

ψ′(xθ)
. Furthermore, define

xSI

ψ′(xθ)
= νeF (t) and xSS+xSI

ψ′(xθ)
= eF (t)

∑
j jxj , we have

d

dt

xSI
ψ′(xθ)

= −(β + γ)νeF (t) + β⟨I⟩(1− ⟨I⟩)
∑
j

j(j − 1)xje
F (t)

= −(β + γ)
xSI
ψ′(xθ)

+ β⟨I⟩

(
1− ν∑

j jxj

)∑
j

j(j − 1)xje
F (t)

= −(β + γ)
xSI
ψ′(xθ)

+ β⟨I⟩
∑
j jxj − ν∑
j jxj

eF (t)
∑
j

j(j − 1)xj

= −(β + γ)
xSI
ψ′(xθ)

+ β⟨I⟩ xSS
ψ′(xθ)

∑
j j(j − 1)xj∑

j jxj

= −(β + γ)
xSI
ψ′(xθ)

+
xSS
ψ′(xθ)

F ′(t).

(3.2)
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Next, we consider d
dt

∑
j jxj . According to the first equation in model (2.1), we

have

d

dt

∑
j

jxj =
∑
j

jẋj

= γ⟨I⟩
∑
j

[
(j + 1)jxj+1 − j2xj

]
− β⟨I⟩

∑
j

j2xj

= γ⟨I⟩
∑
j

[
(j + 1)jxj+1 − j2xj

]
− β⟨I⟩

∑
j

(j2xj − jxj + jxj)

= γ⟨I⟩
∑
j

[
(j + 1)jxj+1 − j2xj

]
− β⟨I⟩

∑
j

[
j(j − 1)xj + jxj

]
= γ⟨I⟩

∑
j

[
(j + 1)jxj+1 − j2xj

]
− β⟨I⟩

∑
j

j(j − 1)xj − β⟨I⟩
∑
j

jxj

= γ⟨I⟩
∑
j

[
(j + 1)jxj+1 − j2xj

]
− β⟨I⟩

∑
j j(j − 1)xj∑

j jxj

∑
j

jxj

− β⟨I⟩
∑
j

jxj ,

(3.3)

using the same integrating factor F (t) to eliminate −β⟨I⟩
∑

j j(j−1)xj∑
j jxj

∑
j jxj , it was

previously defined that xSS+xSI

ψ′(xθ)
= eF (t)

∑
j jxj , then

d

dt

xSS + xSI
ψ′(xθ)

= γ⟨I⟩
∑
j

[
(j + 1)jxj+1 − j2xj

]
eF (t) − β⟨I⟩

∑
j

jxje
F (t)

= γ⟨I⟩
{∑

j

[
(j + 1)2 − (j + 1)

]
xj+1 −

∑
j

j2xj

}
eF (t)

− β⟨I⟩xSS + xSI
ψ′(xθ)

= −γ⟨I⟩
∑
j

(j + 1)xj+1e
F (t) − β⟨I⟩xSS + xSI

ψ′(xθ)

= −γ⟨I⟩xSS + xSI
ψ′(xθ)

− β⟨I⟩xSS + xSI
ψ′(xθ)

.

(3.4)

From xSI

ψ′(xθ)
= νeF (t) and xSS+xSI

ψ′(xθ)
= eF (t)

∑
j jxj along with the third equation in

model (2.1), we can derive ⟨I⟩ = xSI

ψ′(xθ)
/xSS+xSI

ψ′(xθ)
. Substituting this expression into

equation (3.4) yields

d

dt

xSS + xSI
ψ′(xθ)

= −(β + γ)
xSI
ψ′(xθ)

, (3.5)

combining with equation (3.2), we obtain

d

dt

xSS
ψ′(xθ)

= − xSS
ψ′(xθ)

F ′(t). (3.6)
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Next, we introduce a new variable: xSR and define it as xSR = (xθ − xSS−xSI

ψ′(xθ)
) ·

ψ′(xθ). Using the previous results, it is straightforward to derive d
dt

xSR

ψ′(xθ)
= γ xSI

ψ′(xθ)
.

We now claim that xj =
∑
k≥j xk(0)C

j
k(
xSS+xSI

ψ′(xθ)
)j( xSR

ψ′(xθ)
)k−j . We will verify the

correctness of this claim by taking the derivative of xj :

ẋj =
∑
k≥j

xk(0)C
j
k

d

dt

[(
xSS + xSI
ψ′(xθ)

)j (
xSR
ψ′(xθ)

)k−j]

=
∑
k≥j

xk(0)C
j
k

[
−j(β + γ)

xSI
ψ′(xθ)

(
xSS + xSI
ψ′(xθ)

)j−1(
xSR
ψ′(xθ)

)k−j

+γ(k − j)
xSI
ψ′(xθ)

(
xSS + xSI
ψ′(xθ)

)j (
xSR
ψ′(xθ)

)k−j−1
]

=

(
xSI

ψ′(xθ)

)
(
xSS+xSI

ψ′(xθ)

)∑
k≥j

xk(0)C
j
k

[
−j(β + γ)

(
xSS + xSI
ψ′(xθ)

)j (
xSR
ψ′(xθ)

)k−j

+γ(k − j)

(
xSS + xSI
ψ′(xθ)

)j+1(
xSR
ψ′(xθ)

)k−j−1
]

=

(
xSI

ψ′(xθ)

)
(
xSS+xSI

ψ′(xθ)

)∑
k≥j

xk(0)

[
−jCjk(β + γ)

(
xSS + xSI
ψ′(xθ)

)j (
xSR
ψ′(xθ)

)k−j

+γCjk(k − j)

(
xSS + xSI
ψ′(xθ)

)j+1(
xSR
ψ′(xθ)

)k−j−1
]

= ⟨I⟩ [−(β + γ)jxj + γxj+1] .

(3.7)

This is consistent with the first equation in model (2.1), thus our claim is verified.
Therefore ∑

j

xj =
∑
k

∑
j

xk(0)C
j
k

(
xSS + xSI
ψ′(xθ)

)j (
xSR
ψ′(xθ)

)k−j

=
∑
k

xk(0)

(
xSS + xSI + xSR

ψ′(xθ)

)k
= Nψ(xθ).

(3.8)

Now, we need to express F ′(t) in terms of the variables in the DSA model. To
achieve this, we introduce two equations:

∞∑
j=0

Cjkjp
jqk−j = p

∞∑
j=0

Cjkjp
j−1qk−j

= p
d

dp

∞∑
j=0

Cjkp
jqk−j

= p
d

dp
(p+ q)k

= kp(p+ q)k−1,

(3.9)
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and

∞∑
j=0

Cjkj(j − 1)pjqk−j = p2
∞∑
j=0

Cjkj(j − 1)pj−2qk−j

= p2
d2

dp2

∞∑
j=0

Cjkp
jqk−j

= p2
d2

dp2
(p+ q)k

= k(k − 1)p2(p+ q)k−2.

(3.10)

Using these two equations, we can derive that

F ′(t) = β⟨I⟩
∑
j j(j − 1)xj∑

j jxj

= β⟨I⟩
∑
k

∑
j j(j − 1)xk(0)C

j
k(
xSS+xSI

ψ′(xθ)
)j( xSR

ψ′(xθ)
)k−j∑

k

∑
j jxk(0)C

j
k(
xSS+xSI

ψ′(xθ)
)j( xSR

ψ′(xθ)
)k−j

= β⟨I⟩
(xSS+xSI

ψ′(xθ)
)2
∑
k k(k − 1)xk(0)x

k−2
θ

(xSS+xSI

ψ′(xθ)
)
∑
k kxk(0)x

k−1
θ

= β⟨I⟩
(
xSS + xSI
ψ′(xθ)

)
ψ′′(xθ)

ψ′(xθ)

= β
xSI
ψ′(xθ)

ψ′′(xθ)

ψ′(xθ)

= βxSI
ψ′′ (xθ)

ψ′ (xθ)
2 .

(3.11)

Next, we need to find ẋSS and ẋSI . The derivative of xSS

ψ′(xθ)
is obtained as

d

dt

xSS
ψ′(xθ)

=
ẋSSψ

′(xθ)− xSS
d
dt

1
ψ′(xθ)

ψ′(xθ)2

=
ẋSS(ψ

′(xθ))
2 + βxSSxSIψ

′′(xθ)

ψ′(xθ)3
,

(3.12)

so

ẋSS =
1

ψ′(xθ)2

[(
d

dt

xSS
ψ′(xθ)

)
ψ′(xθ)

3 − βxSSxSIψ
′′(xθ)

]
, (3.13)

using equations (3.6) and (3.11), we can obtain

ẋSS =
1

ψ′(xθ)2

(
− xSS
ψ′(xθ)

F ′(t)ψ′(xθ)
3 − βxSSxSIψ

′′(xθ)

)
= −xSSF ′(t)− βxSSxSI

ψ′′ (xθ)

ψ′ (xθ)
2

= −βxSSxSI
ψ′′ (xθ)

ψ′ (xθ)
2 − βxSSxSI

ψ′′ (xθ)

ψ′ (xθ)
2

= −2βxSIxSS
ψ′′ (xθ)

ψ′ (xθ)
2 .

(3.14)
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Similarly, The derivative of xSI

ψ′(xθ)
is obtained as

d

dt

xSI
ψ′(xθ)

=
ẋSIψ

′(xθ)− xSI
d
dt

1
ψ′(xθ)

ψ′(xθ)2

=
ẋSI(ψ

′(xθ))
2 + βx2SIψ

′′(xθ)

ψ′(xθ)3
,

(3.15)

so

ẋSI =
1

ψ′(xθ)2

[(
d

dt

xSI
ψ′(xθ)

)
ψ′(xθ)

3 − βx2SIψ
′′(xθ)

]
, (3.16)

using equations (3.2) and (3.11), we can obtain

ẋSI =
1

ψ′(xθ)2

{[
−(β + γ)

xSI
ψ′(xθ)

+
xSS
ψ′(xθ)

F ′(t)

]
ψ′(xθ)

3 − βx2SIψ
′′(xθ)

}
= −(β + γ)xSI + xSSF

′(t)− βx2SI
ψ′′ (xθ)

ψ′ (xθ)
2

= −(β + γ)xSI + βxSIxSS
ψ′′ (xθ)

ψ′ (xθ)
2 − βx2SI

ψ′′ (xθ)

ψ′ (xθ)
2

= xSI

[
β
(
xSS − xSI

) ψ′′ (xθ)

ψ′ (xθ)
2 − (β + γ)

]
.

(3.17)

Finally, we define xS such that ẋS = −βxSI and xI such that ẋI = βxSI − γxI .
Therefore, the DSA model (2.3) is derived from the effective degree model (2.1).

3.2. From DSA model to effective degree model

Now we proceed to derive the effective degree model from the DSA model. Similarly,
during the derivation process, the variables in the effective degree model need to be
assumed to appear for the “first time”. Here are the definitions:

xj =
∑
k≥j

NpkC
j
k

(
xSS + xSI
ψ′(xθ)

)j (
xSR
ψ′(xθ)

)k−j
,

ν = NxSI ,∑
j

jxj = N(xSS + xSI),

⟨I⟩ = ν∑
j jxj

=
xSI

xSS + xSI
,

S = NxS ,

I = NxI ,

R = NxR.

(3.18)
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Based on the above definitions, we first take the derivative of xj :

ẋj =
∑
k≥j

NpkC
j
k

d

dt

[(
xSS + xSI
ψ′(xθ)

)j (
xSR
ψ′(xθ)

)k−j]

=
∑
k≥j

NpkC
j
k

[
−j(β + γ)

xSI
ψ′(xθ)

(
xSS + xSI
ψ′(xθ)

)j−1(
xSR
ψ′(xθ)

)k−j

+γ(k − j)
xSI
ψ′(xθ)

(
xSS + xSI
ψ′(xθ)

)j (
xSR
ψ′(xθ)

)k−j−1
]

=

(
xSI

ψ′(xθ)

)
(
xSS+xSI

ψ′(xθ)

)∑
k≥j

NpkC
j
k

[
−j(β + γ)

(
xSS + xSI
ψ′(xθ)

)j (
xSR
ψ′(xθ)

)k−j

+γ(k − j)

(
xSS + xSI
ψ′(xθ)

)j+1(
xSR
ψ′(xθ)

)k−j−1
]

=

(
xSI

ψ′(xθ)

)
(
xSS+xSI

ψ′(xθ)

)∑
k≥j

Npk

[
−Cjkj(β + γ)

(
xSS + xSI
ψ′(xθ)

)j (
xSR
ψ′(xθ)

)k−j

+Cjk(k − j)γ

(
xSS + xSI
ψ′(xθ)

)j+1(
xSR
ψ′(xθ)

)k−j−1
]

=⟨I⟩
[
− (β + γ)jxj + γxj+1

]
,

(3.19)

and then the derivative of ν:

ν̇ = NẋSI

= NxSI

[
β
(
xSS − xSI

) ψ′′ (xθ)

ψ′ (xθ)
2 − (β + γ)

]
= βNxSI

(
xSS + xSI − 2xSI

) ψ′′ (xθ)

ψ′ (xθ)
2 − (β + γ)NxSI

= βN
xSI

xSS + xSI
(xSS + xSI)

(
xSS + xSI − 2xSI

) ψ′′ (xθ)

ψ′ (xθ)
2 − (β + γ)ν

= −(β + γ)ν + βN
xSI

xSS + xSI
(xSS + xSI)

2

(
1− 2

xSI
xSS + xSI

)
ψ′′ (xθ)

ψ′ (xθ)
2

= −(β + γ)ν + βN⟨I⟩(xSS + xSI)
2
(
1− 2⟨I⟩

) ψ′′ (xθ)

ψ′ (xθ)
2

= −(β + γ)ν + βN⟨I⟩
(
xSS + xSI
ψ′ (xθ)

)2

(1− 2⟨I⟩)ψ′′ (xθ)

= −(β + γ)ν + β⟨I⟩
(
xSS + xSI
ψ′ (xθ)

)2 (
1− 2⟨I⟩

)∑
k

k(k − 1)Npkx
k−2
θ .

(3.20)

As mentioned earlier when introducing the DSA model, we have already derived the
conclusion that (xSS+xSI+xSR)/ψ

′
(xθ) = xθ. Using this conclusion and equation
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(3.10), we can infer that

k(k−1)Npk

(
xSS + xSI
ψ′ (xθ)

)2

xk−2
θ =

∑
j

NpkC
j
kj(j−1)

(
xSS + xSI
ψ′(xθ)

)j (
xSR
ψ′(xθ)

)k−j
,

(3.21)
given the expression xj=

∑
k≥j NpkC

j
k(
xSS+xSI

ψ′(xθ)
)j( xSR

ψ′(xθ)
)k−j , equation (3.20) trans-

forms into
ν̇ = −(β + γ)ν + β⟨I⟩(1− 2⟨I⟩)

∑
j

j(j − 1)xj . (3.22)

Finally, we perform transformations on the variables S, I and R. For
∑
j xj , we

have ∑
j

xj =
∑
k

∑
j

NpkC
j
k

(
xSS + xSI
ψ′(xθ)

)j (
xSR
ψ′(xθ)

)k−j

=
∑
k

Npk

(
xSS + xSI + xSR

ψ′(xθ)

)k
= Nψ(xθ).

(3.23)

Using the conclusion xS = ψ(xθ), we have
∑
j xj = NxS , which implies that

S =
∑
j

xj . (3.24)

Given that xS , xI and xR satisfy xS + xI + xR = 1, it follows that NxS +NxI +
NxR = N , which means

I = N − S −R. (3.25)

Also means that

Ṙ = −Ṡ − İ

= −NẋS −NẋI

= NβxSI −N(βxSI − γxI)

= γNxI

= γI.

(3.26)

So far, the effective degree model (2.1) has been derived from the DSA model (2.3).

4. Survival analysis perspective of effective degree
model

The significant advantage of proving the equivalence between the effective degree
model and the DSA model is that the effective degree model can inherit the statis-
tical interpretation of the DSA model. In [12], the notation St := xS is employed
to represent the survival probability of susceptible nodes (i.e., the probability that
a node that is susceptible at t = 0 remains susceptible at t > 0), and it is demon-
strated how to derive a single autonomous differential equation for St := xS from
the DSA model. This equation allows for numerical calculations of the survival
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probability for any t ∈ [0,∞) solely based on the parameters of the network model.
In this section, we will proceed to show how a single autonomous differential equa-
tion for s = S

N can be derived from the effective degree model. In the effective

degree model, the average degree of the network is given by
∑

j jxj∑
j xj

, and the aver-

age excess degree is
∑

j j(j−1)xj∑
j jxj

. Let the ratio of the average excess degree to the

average degree be denoted as κ =
∑

j j(j−1)xj
∑

j xj

(
∑

j jxj)2
=

∑
j j(j−1)xj

(
∑

j jxj)2
S. Although S

varies with time t, κ remains a constant due to the static nature of the network.
Furthermore, let D = ν

S , B =
∑
j jxj − ν, with initial conditions D(0) = µρ

1−ρ and

B(0) = µN , hence

Ḃ =
∑
j

jẋj − ν̇

= γ⟨I⟩
∑
j

[
(j + 1)jxj+1 − j2xj

]
− β⟨I⟩

∑
j

j(j − 1)xj − β⟨I⟩
∑
j

jxj

−

−(β + γ)ν + β⟨I⟩(1− ⟨I⟩)
∑
j

j(j − 1)xj − β⟨I⟩2
∑
j

j(j − 1)xj


= γ⟨I⟩

∑
j

[
(j + 1)2 − (j + 1)

]
xj+1 −

∑
j

j2xj


− β⟨I⟩

∑
j

j(j − 1)xj − β⟨I⟩
∑
j

jxj

+ (β + γ)ν − β⟨I⟩(1− ⟨I⟩)
∑
j

j(j − 1)xj + β⟨I⟩2
∑
j

j(j − 1)xj

=− γ⟨I⟩
∑
j

(j + 1)xj+1 − β⟨I⟩
∑
j

jxj + (β + γ)ν

− 2β⟨I⟩(1− ⟨I⟩)
∑
j

j(j − 1)xj

=− 2β⟨I⟩(1− ⟨I⟩)
∑
j

j(j − 1)xj

=− 2βνB

∑
j j(j − 1)xj

(
∑
j jxj)

2
.

(4.1)

Derived from (2.1), we obtain

Ṡ =
∑
j

ẋj

=
∑
j

γ⟨I⟩ [(j + 1)xj+1 − jxj ]−
∑
j

β⟨I⟩jxj

= −
∑
j

β⟨I⟩jxj

= −
∑
j βνjxj∑
j jxj

= −βν,

(4.2)
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combining (4.1) and (4.2) leads to

Ḃ

Ṡ
= 2B

∑
j j(j − 1)xj

(
∑
j jxj)

2
= 2κ

B

S
, (4.3)

integrating it with the initial conditions B(0) = µN and S(0) = N(1− ρ) leads to

B(t) =
µ

1− ρ
S2κ. (4.4)

So

Ḋ =
ν̇S − νṠ

S2

=
−(β + γ)νS + β⟨I⟩(1− ⟨I⟩)

∑
j j(j − 1)xjS − β⟨I⟩2

∑
j j(j − 1)xjS + βν2

S2

=
− (β + γ) νS + βκνB − βκν2 + βν2

S2

= −(β + γ)
ν

S
+ βκ

µ

1− ρ
S2κ−1 ν

S
− βκ(

ν

S
)2 + β(

ν

S
)2

= β(1− κ)D2 +

[
βκµ

1− ρ
S2κ−1 − (β + γ)

]
D.

(4.5)

By appropriately transforming the expressions regarding S and I in (2.1), we obtain

Ṡ = −βDS,
İ = βDS − γI,

Ḋ = β(1− κ)D2 +

[
βκµ

1− ρ
S2κ−1 − (β + γ)

]
D.

(4.6)

Further processing the Eq. (4.6) leads to

Ḋ

Ṡ
+ (1− κ)

D

S
= − κµ

1− ρ
S2κ−2 +

β + γ

β

1

S
. (4.7)

When κ ̸= 1, the differential equation (4.7) is solved to obtain

D = C1S
κ−1 − µ

1− ρ
S2κ−1 +

β + γ

β(1− κ)
S, (4.8)

where C1 = µρN1−κ(1−ρ)−κ+µNκ(1−ρ)κ−1− β+γ
β(1−κ)N

−κ(1−ρ)−κ. Substituting
equation (4.8) into the first Eq.(4.6) leads to

Ṡ = −C2S
κ +

βµ

1− ρ
S2κ − β + γ

1− κ
S2, (4.9)

where C2 = βµρN1−κ(1 − ρ)−κ + βµNκ(1 − ρ)κ−1 − β+γ
1−κN

−κ(1 − ρ)−κ. When
κ = 1, the differential equation (4.7) is solved to obtain

D =
β + γ

β
lnS − µ

1− ρ
S + C3, (4.10)
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where C3 = β+γ
β ln [N(1− ρ)] − Nµ − µρ

1−ρ . Substituting equation (4.10) into the

first equation of Eq. (4.6) leads to

Ṡ = −(β + γ)S lnS +
βµ

1− ρ
S2 − C4S, (4.11)

where C4 = (β + γ) ln [N(1− ρ)] − βNµ − βµρ
1−ρ . Regarding s = S

N as the survival
probability of susceptible nodes, it is easy to derive that

ṡ =


− C2s

κNκ−1 +
βµ

1− ρ
s2κN2κ−1 − β + γ

1− κ
s2N, κ ̸= 1,

− (β + γ)s ln(Ns) +
βµ

1− ρ
s2N − C4s, κ = 1.

(4.12)

Since it is evident that ṡ(∞) = 0, Eq.(4.12) implies that the condition s(∞) > 0
has to satisfy

C2s
κ−2Nκ−2 = − βµ

1− ρ
s2κ−2N2κ−2 +

β + γ

1− κ
, κ ̸= 1, (4.13)

(β + γ) ln(Ns) = − βµ

1− ρ
sN + C4, κ = 1. (4.14)

Given that we observe the infection times (t1, . . . , tk) for a randomly chosen subset
of k initially susceptible nodes within a time interval [0, T ], where T is less than
or equal to infinity, we can formulate the approximate log-likelihood function as
follows:

ℓ(β, γ, µ, ρ,N |t1, . . . , tk) =
k∑
i=1

ln s(ti)− k ln(1− s(T )). (4.15)

Equation (4.12) indicates that we only need a few parameters to obtain the value
of s, without relying on other variables, which is very convenient. This approach
is similar to the single equation regarding St obtained through the DSA model
in [12]. It is worth mentioning that to obtain quantities other than s, evaluation of
additional ODEs is needed [10].

5. Discussion

In the dynamics of network-based infectious diseases, three types of complex net-
work models are widely employed: the pairwise model [7], the edge-based compart-
mental model [23], and the effective degree model [15]. Miller et al. [17] demon-
strated the equivalence of these three models under certain conditions. Recently,
KhudaBukhsh et al. [8] derived the DSA model based on the large graph limit sys-
tem studied by Jacobsen et al. [5] Subsequently, Kiss et al. [12] further proved the
equivalence between the pairwise model, the edge-based compartmental model, and
the DSA model.

This paper demonstrates the equivalence between the network effective degree
model and the DSA model, strengthening the connections between network models.
The greatest benefit of this result is that the effective degree model can share
the statistical interpretation of the DSA model, especially in terms of statistical
inference from data. We also simplify the effective degree model into a differential
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equation regarding susceptible individuals, which can be represented by certain
parameters. Based on this, the effective degree model can be better applied to
address practical infectious disease issues in the future, such as effectively tracking
infectious diseases and taking corresponding measures.

As a future research direction, we propose to apply dynamical survival analysis
to analyze data arriving from the effective degree model. This approach, in addition
to enabling the derivation of the likelihood function presented in this paper, has the
potential to yield insights into basic reproduction number, dropout rates, recovery
rates, the final epidemic size, and other key epidemiological metrics.
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