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QUASILINEAR DOUBLE PHASE PROBLEMS
ON THE ENTIRE SPACE RN
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Abstract This study is concerned with the following double phase problem

−div(|∇u|
p−2

∇u+ µ(x)|∇u|
q−2

∇u) + V (x)(|u|
p−2

u+ µ(x)|u|
q−2

u)

= λf(x, u), x ∈ RN ,

where 1 < p < q < N , q
p
≤ 1 + α

N
, λ is a real parameter, 0 ≤ µ ∈ C0,α(RN )

with α ∈ (0, 1], V (x) is an unbounded potential function and f(x, u) is the
reaction term. The aim is to determine the precise positive interval of λ for
which the problem admits at least one or two nontrivial solutions by applying
abstract critical point results.
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1. Introduction and main results

In the last few years, the variational problems and corresponding energy functionals
are driven by the so-called double phase operator, e.g., elasticity theory, quantum
physics, transonic flows, and reaction diffusion systems etc, has been extensively
investigated; see [3, 5, 9, 30].

The present study is concerned with the existence and multiplicity of nontrivial
solutions for the following double phase problem, namely,

−div(|∇u|p−2∇u+ µ(x)|∇u|q−2∇u) + V (x)(|u|p−2

u+ µ(x)|u|q−2

u)

= λf(x, u), x ∈ RN ,
(P )

where 1 < p < q < N and

q

p
≤ 1 +

α

N
, 0 ≤ µ ∈ C0,α(RN ), α ∈ (0, 1], (1.1)

and λ is a real parameter, V (x) is an unbounded potentia function and f(x, u) is
the reaction term.
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As we have already pointed out, problem (P ) has been widely studied when
λ = 1 and on a bounded area Ω. Precisely, the following type of equation has been
studied very well−div(|∇u|p−2∇u+ µ(x)|∇u|q−2∇u) = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(P1)

where Ω ⊂ RN is a bounded domain with Lipschitz boundary. In [19], Liu and Dai
established an existence result of sign-changing ground state solution for problem
(P1), under suitable assumptions on the nonlinear term. Their approach is based on
the topological degree and critical point theory together with the Nehari manifold
method and deformation lemma. Replacing the Nehari-type monotonicity condi-
tion by a weak version of Nehari-type monotonicity condition, Hou et al. [17] have
shown that problem (P1) has a ground state sign-changing solution. In [21], by
using the strong maximum principle, the author obtained the existence of at least
three ground state solutions of (P1). In [23], Perera and Squassina using Morse
theory established the existence of a nontrivial solution for problem (P1). In [13],
by using the Nehari manifold and variational methods, Gasinski and Papageorgiou
have obtained that the problem (P1) has constant sign and nodal solutions when
the nonlinearity term has superlinear growth and but not satisfy the Ambrosetti-
Rabinowitz condition. In a recent paper [15], Ge and Chen obtained existence of
infinitely many solutions as in [19] for problem (P1) under more general assump-
tions on f . In this direction, there have been a lot of research on the existence of
solutions for Dirichlet double phase problems with convection term, after it was first
introduced in [14]. For more related results on the existence of solutions, we refer
to Refs. [22, 26–29] for double phase problems with convection term. We also refer
the reader to [1, 4, 6–8, 10–12] for further reading about the regularity for solutions
of elliptic equations with double-phase operator.

Problem (P ) has been investigated by Liu-Dai [20], Ge-Pucci [16] and Li-Liu [18]
in the particular case when λ = 1 and V (x) ≡ 1. The main results in [20] establish
the existence of ground state solutions of problem (P ) via the method of weight
function and the radially symmetric method. Later, Ge-Pucci [16] obtained the
existence of at least one nontrivial solution via perturbation methods. Moreover,
Shen, Wang, Chi and Ge [24] studied problem (P ), when µ(x), f(x, u) are 1-periodic
in x

1
, x

2
, · · · , x

N
. The authors in [24] proved the existence of ground states has been

established. Under sublinear growth condition, Li ad Liu obtained the existence of
at least two nontrivial solutions. Our problem was also studied by Stegliński [25],
in the particular case when λ = 1. The authors showed the existence of infinitely
many solutions, more precisely, they proved the existence of infinitely many large
energy solutions and small negative energy solutions, respectively.

In [2], Bae and Kim obtained the abstract critical point theorems for continu-
ously Gâteauxdi erentiable functionals satisfying the Cerami condition via the gen
eralized Ekeland variational principle developed by C.-K. Zhong [31].

Motivated by this large interest in the current literature, by using the critical
point theorem in [2], we shall study the existence of one or two nontrivial solutions.
First, we are interested in the existence of at least one solution of problem (P ). In
order to do this, we need the following assumptions on V and f :

H(V ) : The potential term V : RN → R is continuous function and satisfies
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inf
x∈RN

V (x) = V0 > 0, and there exists r > 0 such that for any b > 0

lim
|y|→∞

meas({x ∈ R
N

: V (x) ≤ b} ∩ {x ∈ R
N

: |x− y| ≤ r}) = 0,

where meas(·) is the Lebesgue measure on RN

;
H(f) : The reaction term f : RN × R → R is Carathéodory functions and

satisfies the following assumptions:
(f1) there exist γ ∈ (q, p∗) and θ

1
∈ [p, q) such that

|f(x, t)| ≤ ρ
1
(x) + σ

1
(x)|t|

θ
1
−1

, ∀(x, t) ∈ RN × R,

where p∗ = Np
N−p , 0 ≤ ρ1 ∈ L

θ
1

θ1−1

(RN ) ∩ L
p

p−1
(RN ) and 0 ≤ σ

1
∈ L

∞
(RN ) ∩

L
γ

γ−θ1 (RN ).
(f2) There exist x

0
∈ RN , a real number t

0
and a positive constant r

0
with

r
N

0
(|t0 |

p

+ |t0 |
q

)[(1− 2
−N

)2
q

(r
−p

0
+ r

−q

0
) + 1] < p

C
µ,V

w
N

such that∫
Br

0
(x

0
)

F (x, |t
0
|)dx > 0,

F (x, t) ≥ 0, ∀(x, t) ∈ Br
0
(x0) \B r0

2

(x0)× [0, |t0 |]

and

Λ
1
:= C

p
q

1
p |ρ

1
| p
p−1

+
q

θ1
p
C

θ
1

γ

θ
1

|σ
1
| γ
γ−θ1

<

p inf
x∈B r

0
2

(x0 )
F (x, |t0 |)

2NC
µ,V

(|t0 |
p + |t0 |

q )[(1− 2−N )2q (r−p

0
+ r−q

0
) + 1]

:= Λ
2
,

where F (x, t) =
∫ t

0
f(x, s)ds, B

r0
(x

0
) = {x ∈ RN : |x − x0| ≤ r

0
}, C

µ,V
=

max
{
1, sup

x∈Br
0
(x0 )

µ(x), sup
x∈Br

0
(x0 )

V (x), sup
x∈Br

0
(x

0
)

V (x)µ(x)
}

and w
N

is the volume

of the unit ball in RN .
The main results of this situation are given by the following.

Theorem 1.1. If the assumptions H(V ), (f1) and (1.1) hold, then there exists a
constant λ

0
> 0 such that the problem (P ) admits at least one solution for each

λ ∈ (0, λ0).

Theorem 1.2. If the assumptions H(V ), (f1)− (f2) and (1.1) hold, then the prob-
lem (P ) admits at least one solution for each λ ∈ ( 1

Λ
2
, 1
Λ

1
].

Moreover, we also discuss the existence of at least two solutions for the problem
(P ) as applications of critical points theorems in the second section. To do that,
we suppose that the nonlinear term f satisfies the following assumptions:

(f3) There exists θ
2
∈ (q, p∗) such that

|f(x, t)| ≤ ρ
2
(x) + σ

2
(x)|t|

θ2−1

, ∀(x, t) ∈ RN × R,



Quasilinear double phase problems on the entire space 2443

where 0 ≤ ρ
2
∈ L

θ
2

θ
2
−1

(RN ) ∩ L
∞
(RN ) and 0 ≤ σ

2
∈ L

∞
(RN ).

(f4) lim
|t|→+∞

F (x,t)
|t|q = +∞ uniformly in x ∈ RN .

(f5) There exists a constant ν ≥ 1 such that

νF(x, t) ≥ F(x, st), ∀(x, t) ∈ RN × R, s ∈ [0, 1],

where F(x, t) = f(x, t)t− qF (x, t).

(f6) There exist a real number t
0
and a positive constant r

0
with r

N

0
(|t

0
|p +

|t
0
|q )[(1− 2

−N

)2
q

(r
−p

0
+ r

−q

0
) + 1] < p

C
µ,V

w
N

such that∫
Br0

(x
0
)

F (x, |t
0
|)dx > 0,

F (x, t) ≥ 0, ∀(x, t) ∈ B
r0
(x

0
) \B r

0
2

(x
0
)× [0, |t

0
|]

and

Λ
1
:= C

θ2
|ρ

2
| p
p−1

q
1
p
+

C
θ2

θ2

θ
2

|σ
2
| γ
γ−θ2

q
θ2
p

<

p inf
x∈B r

0
2

(x0 )
F (x, |t

0
|)

2NC
µ,V

(|t
0
|p + |t

0
|q )[(1− 2−N )2q (r−p

0
+ r−q

0
) + 1]

:= Λ
2
.

In this situation we can show the following results:

Theorem 1.3. If the assumptions H(V ), (f1), (f3)−(f5) and (1.1) hold, then there
exists a constant λ

0
> 0 such that the problem (P ) admits at least two solutions for

each λ ∈ (0, λ
0
).

Theorem 1.4. If the assumptions H(V ), (f1), (f3)− (f6) and (1.1) hold, then the
problem (P ) admits at least two solutions for each λ ∈ ( 1

Λ
2

, 1
Λ

1

].

The rest of the paper is organized as follows. In Sect. 2, we collect notations and

facts about the Musielak-Orlicz space W
1,H

(RN ), and we provide some preliminary
lemmas, which are crucial in proving our main results. We complete the proofs of
Theorems 1.1-1.4 in Sections 3.

2. Notations and some preliminary lemmas

• L
p

(RN ) is the usual Lebesgue space, with norm

|u|p = |u|
L
p
(RN )

= (

∫
RN

|u|
p

dx)
1
p
.

Under assumption on µ, we define functions H : RN × [0,+∞) → [0,+∞) by

H(x, t) = t
p

+ µ(x)t
q

. The Musielak-Orlicz space L
H

(RN ) is defined by

L
H

(RN ) =
{
u : RN → R is measurable and

∫
RN

H(x, |u|)dx < +∞
}
,
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endowed with the norm

|u|
H
= |u|

L
H

(RN )
= inf

{
τ > 0 :

∫
RN

H(x,
|u|
τ
)dx ≤ 1

}
.

• W
1,H

(RN ) is the usual Musielak-Orlicz Sobolev space, that is,

W
1,H

(RN ) = {u ∈ L
H

(RN ) : |∇u| ∈ L
H

(RN )},

and it is equipped with the norm

∥u∥ = ∥u∥W 1,H
(RN ) = |u|

H
+ |∇u|

H
.

• “⇀”means weak convergence, “→“means strong convergence.

• “↪→”and “↪→↪→”mean the continuous embedding and compact embedding,
respectively.

• E = {u ∈ W
1,H

(RN ) :
∫
RN V (x)H(x, |u|)dx < +∞} and it is equipped with

the norm

∥u∥
E
= inf

{
τ > 0 :

∫
RN

[
H(x,

|∇u|
τ

) + V (x)H(x,
|u|
τ
)
]
dx ≤ 1

}
.

With these norms, the spaces L
H

(RN ), W
1,H

(RN ) and E are separable reflexive
Banach spaces; see [20, Theorem 2.7] for further details.

• For any u ∈ E, define functional

I
V
(u) :=

∫
RN

[
H(x, |∇u|) + V (x)H(x, |u|)

]
dx.

From Ge-Pucci [16, Lemma 2.3] we directly obtain that

min{∥u∥
p

E
, ∥u∥

q

E
} ≤ I

V
(u) ≤ max{∥u∥

p

E
, ∥u∥

q

E
} (2.1)

for all u ∈ E. From [16, Theorem 2.1], we know that the embedding

E ↪→↪→ L
ϑ

(RN ) (2.2)

is compact whenever ϑ ∈ [p, p∗).

• Let L : E → E∗ be the operator defined by

⟨L(u), v⟩ =
∫
RN

[|∇u|
p−2

∇u · ∇v + µ(x)|∇u|
q−2

∇u · ∇v

+ V (x)(|u|
p−2

uv + µ(x)|u|
q−2

uv]dx,

where ⟨·, ·⟩ is the duality pairing between E and its dual space E∗. Similar to Lemma
9 of Ref. [25], we can show that this operator is bounded, continuous, monotone
(hence maximal monotone), and of type (S+).

We recall that the definitions of the (C)-condition and (C)τ -condition is as
follows:
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Definition 2.1. Let X be a real Banach space andX∗ its topological dual, I : X →
R be a continuously Gâteaux differentiable functions. Suppose that any sequence
{un} ⊂ X with

I(un) is bounded and ∥I ′(un)∥X∗ (1 + ∥un∥X
) → 0 as n → +∞,

has a convergent subsequence. Then, we assert that I satisfies the Cerami condition
((C)-condition in short). Moreover, put I = Φ−Ψ, we say that I : X → R satisfies
the (C)-condition cut off upper at τ for a fixed τ ∈ R ((C)τ -condition for short), if
any sequence {u

n
} ⊂ X satisfying

I(un) is bounded , Φ(un) < τ and ∥I ′
λ
(un)∥X∗ (1 + ∥un∥X

) → 0 as n → +∞,

contains a convergent subsequence.

Our abstract tool for proving the main results are the following some lemmas
that we recall here in a convenient form.

Lemma 2.1. ( [2, Corollary 2.6]) Let X be a real Banach space, Φ,Ψ : X → R
be two continuously Gâteaux differentiable functionals such that Φ is bounded from
below and Φ(0) = Ψ(0) = 0. Fix τ > 0 and assume that, for each

λ ∈ Λ
0
:= (0,

τ

sup
u∈Φ−1 ((−∞,τ))

Ψ(u)
)

the functional I
λ
:= Φ− λΨ satisfies (C)τ -condition for all λ ∈ Λ

0
. Then, for each

λ ∈ Λ
0
, there is an element u

0
in Φ

−1

((−∞, τ)) such that I
λ
(u

0
) ≤ I

λ
(u) for all

u ∈ Φ
−1

((−∞, τ)) and I ′
λ
(u0) = 0.

Lemma 2.2. ( [2, Corollary 2.9]) Let X be a real Banach space, Φ : X → R be
a continuously Gâteaux differentiable and Ψ : X → R be a continuously Gâteaux
differentiable functional whose Gâteaux derivative is compact such that inf

u∈X
Ψ(u) =

Φ(0) = Ψ(0) = 0. Assume that there exist a positive constant τ and an element
η
1
∈ X, with 0 < Φ(η

1
) < τ , such that

sup
u∈Φ−1 ((−∞,τ ])

Ψ(u)

τ
<

Ψ(η
1
)

Φ(η1)
(2.3)

holds and the functional I
λ
:= Φ− λΨ satisfies (C)τ -condition. Then, for each

λ ∈ Λ
τ
:=

(Φ(η
1
)

Ψ(η
1
)
,

τ

sup
u∈Φ−1 ((−∞,τ ])

Ψ(u)

)
,

the functional I
λ
has a nontrivial point u

λ
∈ Φ

−1

((0, τ)) such that I
λ
(u

λ
) ≤ I

λ
(u)

for all u ∈ Φ
−1

((0, τ)) with u
λ
being a critical point of I

λ
.

Lemma 2.3. ( [2, Corollary 2.7]) Let X be a real Banach space, Φ,Ψ : X → R
be two continuously Gâteaux differentiable functionals such that Φ is bounded from
below and Φ(0) = Ψ(0) = 0. Fix τ > 0 and assume that, for each

λ ∈ Λ
0
:= (0,

τ

sup
u∈Φ−1 ((−∞,τ))

Ψ(u)
)
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the functional I
λ
:= Φ−λΨ satisfies (C)-condition for all λ ∈ Λ

0
and it is unbounded

from below. Then, for each λ ∈ Λ
0
, the functional I

λ
admits two distinct critical

points.

Lemma 2.4. ( [2, Corollary 2.10]) Let X be a real Banach space, Φ : X →
R be a continuously Gâteaux differentiable and Ψ : X → R be a continuously
Gâteaux differentiable functional whose Gâteaux derivative is compact such that
inf
u∈X

Ψ(u) = Φ(0) = Ψ(0) = 0. Assume that there exist a constant τ > 0 and

an element η
1

∈ X with 0 < Φ(η
1
) < τ such that (2.3) holds and for each

λ ∈ Λ
τ
:=

(
Φ(η

1
)

Ψ(η
1
) ,

τ
sup

u∈Φ
−1

((−∞,τ])

Ψ(u)

)
, the functional I

λ
:= Φ − λΨ satisfies (C)-

condition and it is unbounded from below. Then, for each λ ∈ Λ
0
, the functional I

λ

admits two distinct critical points.

3. Variational setting and proof of the main results

For each u ∈ E, we define

I
λ
(u) = Φ(u)− λΨ(u), (3.1)

where

Φ(u) =

∫
RN

(
|∇u|p

p
+

µ(x)|∇u|q

q
+

V (x)|u|p

p
+

V (x)µ(x)|u|q

q
)dx,

Ψ(u) =

∫
RN

F (x, u)dx.

Then it follows that the functional Φ ∈ C
1

(E,R) and its Fréchet derivative is
⟨Φ′(u), v⟩ = ⟨L(u), v⟩. Under the assumptions on f , it is standard to check that Ψ

is well-defined and of class C
1

on E. Furthermore, we can deduce that I
λ
∈ C

1

(E,R)
and its Fréchet derivative is

⟨I ′
λ
(u), v⟩ = ⟨L(u), v⟩ − λ

∫
RN

f(x, u)vdx, ∀u, v ∈ E.

Definition 3.1. We say that a function u ∈ E is a weak solution of problem (P ) if

⟨L(u), v⟩ = λ

∫
RN

f(x, u)vdx

for all v ∈ E.

3.1. Proof of the Theorems 1.1-1.2

In this subsection, we will prove Theorems 1.1-1.2 by Lemma 2.1 and Lemma 2.2,
respectively. Firstly, let us prove Theorem 1.1.

Proof of the Theorem 1.1. Let X = E. Obviously, Φ is bounded from below
and Φ(0) = Ψ(0) = 0. Our aim is to apply Lemma 2.1. So, we need to show that
the following facts hold:

(A1) Ψ
′ is strongly continuous on E;
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(A2) Iλ
satisfies (C)τ -condition for all λ ∈ R.

Let us first check the relation (A1). Let {un
} ⊂ E be a sequence such that

u
n
⇀ u weakly in E as n → +∞.

Then taking the compact embedding (2.2) into account yields

un → u in L
γ

(RN ) and un → u a.e. x ∈ RN as n → +∞.

According to the convergence principle, we know that there exists w ∈ L
γ

(RN ) such
that |un(x)| ≤ w(x) for all n ∈ N and for almost all x ∈ RN . Furthermore, using
(f1), (3.6) and the Young inequality, we obtain that

|f(x, un(x))|
θ
1

θ
1
−1

≤C1

((
ρ1(x)

) θ1
θ
1
−1

+
(
σ1(x)

) θ1
θ
1
−1

|un(x)|
θ
1
)

≤C
1

((
ρ

1
(x)

) θ1
θ
1
−1

+ |σ
1
|

1
θ
1
−1

∞

(γ − θ
1

γ

(
σ

1
(x)

) γ
γ−θ

1

+
θ
1

γ
|u

n
(x)|

γ
)
,

|f(x, u(x))|
θ
1

θ1−1

≤C
1

((
ρ1(x)

) θ
1

θ1−1

+
(
σ

1
(x)

) θ
1

θ1−1

|u(x)|
θ1
)

≤C2

((
ρ1(x)

) θ1
θ
1
−1

+ |σ1 |
1

θ
1
−1

∞

(γ − θ
1

γ

(
σ1(x)

) γ
γ−θ

1

+
θ
1

γ
|u(x)|

γ
)
,

(3.2)

where C
1
, C

2
are constants. Then from (3.2) we conclude that∫
RN

|f(x, u
n
)− f(x, u)|

θ
1

θ
1
−1

dx

≤C
3

∫
RN

(
|f(x, u

n
)|

θ1
θ
1
−1

+ |f(x, u)|
θ1

θ
1
−1

)
dx

≤C4

[
|ρ1 |

θ1
θ
1
−1

θ
1

θ
1
−1

+ |σ1 |
1

θ
1
−1

∞

(γ − θ1
γ

|σ1 |
γ

γ−θ
1

γ
γ−θ1

+
θ
1

γ

(
|un |

γ

γ
+ |u|

γ

γ

))]
,

(3.3)

where C
3
, C

4
are constants. Recall that u

n
→ u in L

γ

(RN ) and noting that f
is Carathéodory function, we can easily get that f(x, u

n
) → f(x, u) as n → +∞

for almost all x ∈ RN . Then, by using this fact, (3.2) and Lebesgue’s dominated
convergence theorem, we achieve

∥Ψ′(u
n
)−Ψ′(u)∥

E∗ = sup
∥v∥

E
≤1

|⟨Ψ′(u
n
)−Ψ′(u), v⟩|

= sup
∥v∥

E
≤1

|
∫
RN

(f(x, u
n
)− f(x, u))vdx|

≤ sup
∥v∥

E
≤1

|f(x, un)− f(x, u)|
θ
1

θ1−1

|v|
θ
1

≤ sup
∥v∥

E
≤1

|f(x, u
n
)− f(x, u)|

θ1
θ
1
−1

C
θ1
∥v∥

E
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≤ C
θ1
|f(x, u

n
)− f(x, u)|

θ1
θ
1
−1

→ 0, as n → +∞,

where C
θ1

is the best constant for the embedding of E ↪→ L
θ
1 (RN ). Therefore,

we conclude that Ψ′(u
n
) → Ψ′(u) in E as n → +∞. Therefore, the relation (A1)

follows.
Let us now check the relation (A2). Let τ be a fixed positive number and let

{un} ⊂ E be a (C)τ -sequence, that is,

I
λ
(un) is bounded , Φ(un) < τ and ∥I ′

λ
(un)∥E∗ (1 + ∥un∥E

) → 0.

By a calculation, it follows from (2.1) that

τ >Φ(u
n
)

=

∫
RN

[ |∇u
n
|p

p
+

µ(x)|∇u
n
|q

q
+

V (x)|u
n
|p

p
+

V (x)µ(x)|u
n
|q

q

]
dx

≥1

q
∥u

n
∥

ν

E
,

(3.4)

where ν is either p or q. Hence, we conclude that the sequence {un} ⊂ E is
bounded, then we may assume that there exists u ∈ E such that un ⇀ u weakly
in E. Furthermore, we know that Ψ′(u

n
) → Ψ′(u) as n → +∞ due to (A1). This

implies together with u
n
⇀ u weakly in E that

lim
n→+∞

⟨Ψ′(u
n
)−Ψ′(u), u

n
− u⟩ = 0. (3.5)

Note that

⟨L(un)− L(u), un − u⟩ =⟨I ′
λ
(un)− I ′

λ
(u), un − u⟩

+ λ⟨Ψ′(un)−Ψ′(u), un − u⟩.
(3.6)

Because the sequence {u
n
} is bounded, owing to definition of the Cerami sequence,

we have
lim

n→+∞
⟨I ′

λ
(u

n
)− I ′

λ
(u), u

n
− u⟩ = 0. (3.7)

Combining (3.5), (3.6) and (3.7) gives

lim
n→+∞

⟨L(un)− L(u), un − u⟩ = 0. (3.8)

Since L satisfies the (S+)-property, see [25, Lemma 9], we derive from (3.8) that

un → u in E as n → +∞.

This gives relation (A2).

Finally, in order to apply Lemma 2.1, by choosing τ = 1, for each u ∈ Φ
−1

× ((−∞, 1)), it follows from (3.4) that ∥u∥ν

E
≤ q, that is,

∥u∥
E
≤ max{q

1
p
, q

1
q } = q

1
p
. (3.9)
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By using (f1) and Sobolev embedding theorem, we deduce that

Ψ(u) =

∫
RN

F (x, u)dx

≤
∫
RN

(
ρ

1
(x)|u(x)|+ σ

1
(x)

θ
1

|u(x)|
θ
1
)
dx

≤|ρ
1
| p
p−1

|u|
p
+

1

θ1

|σ
1
| γ
γ−θ1

|u|
θ1

γ

≤Cp |ρ1 | p
p−1

∥u∥
E
+

C
θ1

γ

θ
1

|σ1 | γ
γ−θ

1

∥u∥
θ1

E
,

(3.10)

where Cp and Cγ are the best constants for the embeddings E ↪→ L
p

(RN ) and

E ↪→ L
γ

(RN ), respectively.
Denote

1

λ
0

= C
p
q

1
p |ρ

1
| p
p−1

+
q

θ1
p
C

θ1

γ

θ
1

|σ
1
| γ
γ−θ1

.

Then, by (3.9) and (3.10), we deduce that

sup
u∈Φ−1 ((−∞,1))

Ψ(u) ≤C
p
q

1
p |ρ

1
| p
p−1

+
q

θ
1
p
C

θ1

γ

θ
1

|σ
1
| γ
γ−θ1

=
1

λ
0

, (3.11)

and consequently (0, λ0) ⊂ Λ0 . Therefore, all the assumptions of Lemma 2.1 are
satisfied, so that, for each λ ∈ (0, λ

0
) ⊂ Λ

0
, the problem (P ) admits at least one

weak solution in E. This completes the proof of Theorem 1.1.
Finally, we are ready to prove Theorem 1.2.

Proof of the Theorem 1.2. Let X = E. Obviously, Φ is bounded from below
and inf

u∈E
Ψ(u) = Φ(0) = Ψ(0) = 0. Thanks to (A1), (A2) in the proof of Theorem

1.1, it suffices to verify the condition (2.3) in Lemma 2.2 hold. In order to do this,
let t

0
and r

0
be as in (f2) and consider the function η

1
: RN → R given as

η1(x) =


0, x ∈ RN\Br

0
(x0),

|t0 |, x ∈ B r0
2

(x
0
),

2|t
0
|

r0

(r0 − |x− x0 |), x ∈ Br
0
(x0)\B r0

2

(x0).

It is easy to see from the above definition of η
1
that 0 ≤ η

1
(x) ≤ |t

0
| for all x ∈ RN

and η
1
∈ E. Moreover, by the definition of Φ, it is clear that

Φ(η
1
) =

∫
RN

[ |∇η
1
|p

p
+

µ(x)|∇η
1
|q

q
+

V (x)|η
1
|p

p
+

V (x)µ(x)|η
1
|q

q

]
dx

≥1

p

∫
RN

(|∇η
1
|
p

+ |η
1
|
p

)dx

=
1

p

∫
Br0

(x
0
)

|∇η
1
|
p

dx+
1

p

∫
Br

0
2

(x0)

|η
1
|
p

dx
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≥
w

N
|t

0
|prN

0

p

(2p

rp

0

(
1− 1

2N

)
+

1

2N

)
>0,

where w
N

is the volume of B1(0) and

Φ(η
1
) =

∫
Br

0
(x

0
)

[ |∇η
1
|p

p
+

µ(x)|∇η
1
|q

q
+

V (x)|η
1
|p

p
+

V (x)µ(x)|η
1
|q

q

]
dx

≤
C

µ,V

p

∫
Br

0
(x0 )

(|∇η
1
|
p

+ |∇η
1
|
q

+ |η
1
|
p

+ |η
1
|
q

)dx

≤
C

µ,V

p
w

N
r
N

0
(|t0 |

p

+ |t0 |
q

)[(1− 2
−N

)2
q

(r
−p

0
+ r

−q

0
) + 1]

<1,

(3.12)

where C
µ,V

= max
{
1, sup

x∈Br
0
(x

0
)

µ(x), sup
x∈Br0

(x
0
)

V (x), sup
x∈Br0

(x
0
)

V (x)µ(x)
}
.

According to condition (f2), we have

Ψ(η
1
) =

∫
RN

F (x, η
1
)dx

=

∫
Br

0
2

(x0 )

F (x, η1)dx+

∫
B

r
0
(x

0
)\Br

0
2

(x0 )

F (x, η1)dx

≥
∫

Br
0
2

(x
0
)

F (x, η
1
)dx

≥w
N

(r0

2

)N

inf
x∈B r

0
2

(x
0
)

F (x, |t0 |).

(3.13)

Hence, the combination of (3.12)-(3.13) implies

Ψ(η
1
)

Φ(η1)
≥

p inf
x∈B r0

2

(x0 )
F (x, |t0 |)

2NC
µ,V

(|t
0
|p + |t

0
|q )[(1− 2−N )2q (r−p

0
+ r−q

0
) + 1]

.
(3.14)

Combining (3.9) with (3.10), for each u ∈ Φ
−1(

(−∞, 1]
)
, we obtain that

sup
u∈Φ−1 ((−∞,1])

Ψ(u) ≤C
p
q

1
p |ρ

1
| p
p−1

+
q

θ1
p
C

θ1

γ

θ
1

|σ
1
| γ
γ−θ1

. (3.15)

Then, by condition (f2) and (3.14), we deduce that

sup
u∈Φ−1 ((−∞,1])

Ψ(u) <
Ψ(η1)

Φ(η
1
)
. (3.16)

Consequently, all the assumptions of Lemma 2.3 with τ = 1 are satisfied. Moreover,

by definitions of Λ1 and Λ
1
, we can easily see that ( 1

Λ2
, 1
Λ1

) ⊂ (
Φ(η

1
)

Ψ(η1 )
, 1

sup
Φ(u)≤1

Ψ(u) ).
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Hence, we conclude that for each λ ∈ ( 1
Λ2

, 1
Λ1

), the problem (P ) has at least one

nontrivial solution u
λ
, which satisfies that

0 < Φ(u
λ
) < 1. (3.17)

It remains to show that problem (P ) also has at least one nontrivial solution

when λ = 1
Λ

1
. It follows from (3.17) that I

λ
(u

λ
) ≤ I

λ
(u) for all u ∈ Φ

−1

((0, 1)).

Then there exists a sequence {u
n
} ⊂ Φ

−1

((0, 1)) such that

un → 0 in E and I
λ
(u

λ
) ≤ I

λ
(un).

Taking into account the continuity of I
λ
, we achieve that

I
λ
(u

λ
) ≤ 0, ∀λ ∈ (

1

Λ2

,
1

Λ1

). (3.18)

Now, let us fix λ∗ ∈ ( 1
Λ

2
, 1
Λ

1
). Then we deduce that there exists a sequence

{λn} ⊂ (λ∗,
1
Λ

1
) such that lim

n→+∞
λn = 1

Λ
1
. Furthermore, there exists a correspond-

ing sequence {u
λn

} with

0 < Φ(u
λn

) < 1 and u
λn

is a weak solution of problem (P ).

This fact together with the Definition 3.1 imply that

⟨L(u
λn

), v⟩ = λ
n

∫
RN

f(x, u
λn

)vdx = ⟨λ
n
Ψ′(u

λn
), v⟩ (3.19)

for all v ∈ E. Since {u
λn

} is bounded in E, we can find a subsequence, still denoted

by {u
λn

}, and u∗ ∈ E such that u
λn

⇀ u∗ in E. Using the argument of (A1) in
Theorem 1.1, we know that

lim
n→+∞

λnΨ
′(u

λn
) =

1

Λ1

Ψ′(u∗).

From this and (3.19) with v = u
λn

− u∗, we get

lim sup
n→+∞

⟨L(u
λn

), u
λn

− u∗⟩ = lim
n→+∞

⟨λ
n
Ψ′(u

λn
), u

λn
− u∗⟩ = 0.

Recall that L is of type (S+) and u
λn

⇀ u∗ in E, it follows that u
λn

→ u∗ in E.

Again by (3.19), we deduce that

⟨L(u∗), v⟩ =
1

Λ
1

⟨Ψ′(u∗)v⟩ =
1

Λ
1

∫
RN

f(x, u∗)vdx, ∀v ∈ E.

Namely, u∗ is a weak solution of problem (P ) with λ = 1
Λ

1
. Finally, we want to

show that u∗ is nontrivial. To this end, arguing by contradiction, suppose that
u∗ = 0. Recall that

I
λ
(u

λ
) ≤ I

λ
(u),∀u ∈ Φ

−1

((0, 1)),∀λ ∈ (
1

Λ
2

,
1

Λ
1

).
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Then by (3.17) we derive

I
λn

(u
λn

) ≤ I
λn

(u
λ∗
) and I

λ∗
(u

λ∗
) ≤ I

λ∗
(u

λn
), ∀n ∈ N,

which, taking into account the fact that λ∗ < λn for all n ∈ N , yields

Ψ(u
λn

) ≥ Ψ(u
λ∗
), ∀n ∈ N. (3.20)

Thus, passing to the limit for n → +∞ in (3.20), we get

0 = Ψ(u∗) ≥ Ψ(u
λ∗
),

and since 0 < Φ(u
λ∗
) < 1, we obtain that

I
λ∗
(u

λ∗
) = Φ(u

λ∗
)− λ∗Ψ(u

λ∗
) > 0

and this contradicts (3.18). Therefore, we conclude that u∗ ̸= 0 which is required.
The proof of Theorem 1.2 is thus complete.

3.2. Proof of the Theorems 1.3-1.4

In this subsection, we guarantee the existence of at least two weak solutions to
problem (P ). To do this, we employ the Lemma 2.3 and Lemma 2.4 as the primary
tools. Firstly, let us prove Theorem 1.3.

Proof of the Theorem 1.3. Let X = E. Obviously, Φ is bounded from below
and Φ(0) = Ψ(0) = 0. Now, we will show that all conditions of Lemma 2.3 are
satisfied. Firstly, in order to complete the proof of Theorem 1.3, it suffices to prove
the following two Claims.

Claim 1. I
λ
satisfies the (C)-condition for any λ > 0.

Let {u
n
} ⊂ E be a (C)-sequence for I

λ
, namely,

I
λ
(u

n
) is bounded and ∥I ′

λ
(u

n
)∥

E∗ (1 + ∥u
n
∥
E
) → 0. (3.21)

We first show that {u
n
} is bounded in E. Suppose to the contrary that there exists

a subsequence, still denoted by {un} such that lim
n→+∞

∥un∥E
= +∞. Of course, we

can assume that ∥u
n
∥

E
> 1 for any n ∈ N .

For any n ∈ N , let v
n
=

un

∥un∥
E
, then v

n
∈ E and ∥v

n
∥

E
= 1. Thus, there exists

v ∈ E such that, up to a subsequence, we conclude that vn ⇀ v in E, and thanks
to (2.2), one has

v
n
→ v in L

θ2 (RN ) and v
n
(x) → v(x) a.e in RN as n → +∞. (3.22)

Next, we will split two cases.

Case 1. v ̸= 0.

Denote Ω̸
=

= {x ∈ RN : v(x) ̸= 0}. Obviously, Ω̸
=

has positive Lebesgue
measure. Thus, according to (3.22), we get

|un(x)| → +∞ as n → +∞, for a.e. x ∈ Ω ̸= . (3.23)
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Furthermore, by (3.22) and (f4), we have

lim
n→+∞

F (x, un(x))

∥u
n
∥q

E

= lim
n→+∞

F (x, un(x))

|u
n
(x)|q

|v
n
|
q

= +∞ for a.e. x ∈ Ω ̸=. (3.24)

Moreover, by virtue of condition (f4), there exists t0 > 0 such that

F (x, t) > |t|
q

, ∀x ∈ RN , ∀|t| > t
0
.

Again by condition (f3), there exists a constant C
5
> 0 such that

|F (x, t)| ≤ C5 , ∀(x, t) ∈ RN × [−t0 , t0 ].

Consequently, we can show that there is a constant C
6
> 0 such that

F (x, t) ≥ −C6 , ∀(x, t) ∈ RN × R.

So
F (x, un(x)) + C6

∥u
n
∥q

E

≥ 0, ∀x ∈ RN , ∀n ∈ N. (3.25)

By the definition of I
λ
, we have

I
λ
(u

n
) =

∫
RN

(
|∇u

n
|p

p
+

µ(x)|∇u
n
|q

q
+

V (x)|u
n
|p

p
+

V (x)µ(x)|u
n
|q

q
)dx

− λ

∫
RN

F (x, un)dx

≥
∥un∥

p

E

q
− λ

∫
RN

F (x, un)dx

and so, by (3.21), we obtain∫
RN

F (x, u
n
)dx ≥ 1

qλ
∥u

n
∥
q

E
− 1

λ
I
λ
(u

n
) → +∞, as n → +∞. (3.26)

It is also clear that

I
λ
(un) ≤

1

p
∥un∥

q

E
− λ

∫
RN

F (x, un)dx,

which implies that

∥un∥
q

E
≥ pλ

∫
RN

F (x, un)dx+ pI
λ
(un). (3.27)

Hence, using (3.21), (3.24), (3.25), (3.26) and Fatou lemma, we obtain

+∞ =

∫
Ω̸

=

lim
n→∞

F (x, un(x))

|u
n
(x)|q

|vn(x)|
q

dx+

∫
Ω̸

=

lim
n→∞

C6

∥u
n
∥q

E

dx

=

∫
Ω̸

=

lim
n→∞

(F (x, u
n
(x))

|un(x)|
q |v

n
(x)|

q

+
C

6

∥un∥
q

E

)
dx

≤ lim inf
n→∞

∫
Ω̸

=

(F (x, u
n
(x))

|u
n
(x)|q

|v
n
(x)|

q

+
C

6

∥u
n
∥q

E

)
dx
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≤ lim inf
n→∞

∫
RN

(F (x, un(x))

|un(x)|q
|vn(x)|q +

C6

∥un∥q

E

)
dx

= lim inf
n→∞

∫
RN

F (x, u
n
(x))

|un(x)|
q |vn(x)|

q

dx+ lim sup
n→∞

∫
RN

C6

∥un∥
q

E

dx

= lim inf
n→∞

∫
RN

F (x, un(x))

∥u
n
∥q

E

dx

≤ lim inf
n→∞

∫
RN

F (x, u
n
(x))

pλ
∫
RN F (x, u

n
)dx+ pI

λ
(u

n
)
dx

= lim inf
n→∞

∫
RN F (x, u

n
(x))dx

pλ
∫
RN F (x, u

n
)dx+ pI

λ
(u

n
)

=
1

pλ
, (3.28)

this is impossible.

Case 2. v = 0.

Let k ≥ 1 and set wn = (qk)
1
q
v
n
for any n ∈ N . Then we know that

v
n
⇀ v in E and w

n
→ 0 in L

θ
2 (RN ) as n → +∞. (3.29)

Furthermore, from (f3), (3.29) and dominated convergence theorem, we have that

lim
n→∞

∫
RN

F (x,wn(x))dx = 0. (3.30)

It is easy to check that I
λ
(tu

n
) is continuous in t ∈ [0, 1]. Then for each n there

exists tn ∈ [0, 1], n = 1, 2, · · · , such that

I
λ
(t

n
u

n
) = max

t∈[0,1]
I
λ
(tu

n
). (3.31)

Due to ∥u
n
∥

E
→ +∞ as n → +∞, then there exists n

0
∈ N such that 0 < (qk)

1
q

∥un∥
E

≤
1 for any n ≥ n0. Then according to (3.30) and (3.31), we get

I
λ
(t

n
u

n
) ≥I

λ
(w

n
)

=
q

1
q

p
k

p
q

∫
RN

(|∇v
n
|
p

+ V (x)|v
n
|
p

)dx

+ k

∫
RN

µ(x)(|∇vn |
q

+ V (x)|vn |
q

)dx− λ

∫
RN

F (x,wn)dx

≥q
1
q

p
k

p
q

∫
RN

(|∇v
n
|
p

+ V (x)|v
n
|
p

)dx

+ k
p
q

∫
RN

µ(x)(|∇vn |
q

+ V (x)|vn |
q

)dx− λ

∫
RN

F (x,wn)dx

≥min{q
1
q

p
, 1}k

p
q − λ

∫
RN

F (x,w
n
)dx

≥1

2
min{q

1
q

p
, 1}k

p
q
, (3.32)
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for any n large enough. By the arbitrariness of k > 1, we conclude that

lim
n→∞

I
λ
(t

n
u

n
) = +∞. (3.33)

Recall that I
λ
(0) = 0 and |I

λ
(u

n
)| ≤ C

7
. Combining these two facts, it is easy

to check that t
n
∈ (0, 1), and so, it follows from (3.31) that ⟨φ′

λ
(t

n
u

n
), t

n
u

n
⟩ = 0.

Thus, according to condition (f5) and (3.21), we deduce that

qI
λ
(tu

n
) ≤qI

λ
(t

n
u

n
)

=qI
λ
(t

n
u

n
)− ⟨I ′

λ
(t

n
u

n
), t

n
u

n
⟩

=(
q

p
− 1)

∫
RN

(|∇t
n
u

n
|
p

+ V (x)|t
n
u

n
|
p

)dx

− λ

∫
RN

qF (x, tnun)dx+ λ

∫
RN

f(x, tnun)tnundx+ on(1)

=(
q

p
− 1)

∫
RN

(|∇t
n
u

n
|
p

+ V (x)|t
n
u

n
|
p

)dx+ λ

∫
RN

F(x, t
n
u

n
)dx

≤(
q

p
− 1)

∫
RN

(|∇u
n
|
p

+ V (x)|u
n
|
p

)dx+ λ

∫
RN

(F(x, u
n
))dx

=qI
λ
(un)− ⟨I ′

λ
(un), un⟩

≤C8 , as n → +∞,

(3.34)

which is a contradiction to (3.33).
Therefore, we assert that the sequence {un} is bounded in E. Thus, there exists

u ∈ E such that, up to a subsequence,

u
n
⇀ u weakly in E as n → +∞, u

n
→ u in L

θ2 (RN ) as n → +∞.

Applying Hölder’s inequality and condition (f3), we have∫
RN

|f(x, un)− f(x, u)||un − u|dx

≤
∫
RN

(|f(x, u
n
)|+ |f(x, u)|)|u

n
− u|dx

≤
∫
RN

[(ρ
2
(x) + σ

2
(x)|u

n
|
θ
2
−1

) + (ρ
2
(x) + σ

2
(x)|u|

θ
2
−1

)]|u
n
− u|dx

≤ 2

∫
RN

ρ2(x)|un − u|dx+

∫
RN

σ2(x)|un |
θ
2
−1

|un − u|dx

+

∫
RN

σ
2
(x)|u|

θ
2
−1

|u
n
− u|dx

≤ 2|ρ
2
|

θ
2

θ
2
−1

|u
n
− u|

θ2
+ |σ

2
|∞ |u

n
− u|

θ2
(
∣∣|u

n
|
θ
2
−1 ∣∣

θ
2

θ
2
−1

+
∣∣|u|θ2−1∣∣

θ2
θ
2
−1

)

= 2|ρ2 | θ
2

θ2−1

|un − u|
θ
2
+ |σ2 |∞ |un − u|

θ
2
(|un |

θ
2
−1

θ
2

+ |u|
θ
2
−1

θ
2

)

→ 0, as n → ∞. (3.35)

It is similar to the proof of (A1) in the Proof of Theorem 1.1, we can show that
the functionals Ψ′ also is weakly strongly continuous on E. This implies that
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⟨Ψ′(u
n
)−Ψ′(u), u

n
− u⟩ = 0 as n → ∞. Moreover, by the definition of the Cerami

sequence and the fact that the sequence {u
n
} is bounded, we get

lim
n→+∞

⟨I ′
λ
(u

n
)− I ′

λ
(u), u

n
− u⟩ = 0. (3.36)

Note that

⟨L(u
n
)− L(u), u

n
− u⟩ =⟨I ′

λ
(u

n
)− I ′

λ
(u), u

n
− u⟩

+ λ⟨Ψ′(u
n
)−Ψ′(u), u

n
− u⟩.

(3.37)

Then by (3.36) and (3.37), we have

lim
n→+∞

⟨L(un)− L(u), un − u⟩ = 0. (3.38)

Since L satisfies the (S+)-property, by (3.38) we deduce that

u
n
→ u in E as n → +∞.

This completes the proof of Claim 1.

Claim 2. I
λ
is unbounded from below.

First we note that by (f3) and (f4) we have for any M > 0, there exists C
M

> 0
such that, for all x ∈ RN and all t ∈ R, there hold

F (x, t) ≥ M |t|
q

− C
M
. (3.39)

Take ξ ∈ C
∞

0
(RN ) with ξ > 0, from (3.39) we deduce that

I
λ
(tξ) =

1

p

∫
RN

(|∇tξ|
p

+ V (x)|tξ|
p

)dx

+
1

q

∫
RN

µ(x)(|∇tξ|
q

+ V (x)|tξ|
q

)dx− λ

∫
RN

F (x, tξ)dx

≤ t
q

p

∫
RN

(|∇ξ|
p

+ µ(x)|∇ξ|
q

+ V (x)|ξ|
p

+ V (x)µ(x)|ξ|
q

)dx

− λ

∫
supp(ξ)

F (x, tξ)dx

≤ t
q

p

∫
RN

(|∇ξ|
p

+ µ(x)|∇ξ|
q

+ V (x)|ξ|
p

+ V (x)µ(x)|ξ|
q

)dx

− λ

∫
supp(ξ)

M |tξ|
q

dx+ λC
M
|supp(ξ)|,

(3.40)

for sufficiently large t > 1.
Taking M large enough such that

∫
RN (|∇ξ|p +µ(x)|∇ξ|q +V (x)|ξ|p +µ(x)V (x)

× |ξ|q )dx− λM
∫
supp(ξ)

|ξ|qdx < 0. Then, inequality (3.40) implies that

lim
t→+∞

I
λ
(tξ) = −∞.

The proof of Claim 2 is complete.



Quasilinear double phase problems on the entire space 2457

Finally, our goal is to find two distinct weak solutions for the problem (P ) by

applying Lemma 2.3. To this aim, by choosing τ = 1, for each u ∈ Φ
−1

((−∞, 1)),
it follows from (3.4) that ∥u∥ν

E
≤ q, that is,

∥u∥
E
≤ max{q

1
p
, q

1
q } = q

1
p
. (3.41)

Moreover, by (f1) and Sobolev embedding theorem, we obtain that

Ψ(u) =

∫
RN

F (x, u)dx

≤
∫
RN

(
ρ

2
(x)|u(x)|+ σ

2
(x)

θ2

|u(x)|
θ
2
)
dx

≤|ρ2 | θ
2

θ2−1

|u|
θ
2
+

1

θ2

|σ2 |∞ |u|
θ
2

θ2

≤C
θ
2
|ρ

2
| p
p−1

∥u∥
E
+

C
θ2

θ
2

θ
2

|σ
2
| γ
γ−θ2

∥u∥
θ2

E
,

(3.42)

where C
θ2

is the best constant for the embeddings E ↪→ L
θ
2 (RN ).

Denote

1

λ
0

= C
θ2
|ρ

2
| p
p−1

q
1
p
+

C
θ2

θ
2

θ
2

|σ
2
| γ
γ−θ2

q

θ
2
p
.

Combining this with (3.42), we see that

sup
u∈Φ−1 ((−∞,1))

Ψ(u) ≤C
θ
2
|ρ2 | p

p−1

q
1
p
+

C
θ
2

θ2

θ2

|σ2 | γ
γ−θ

2

q
θ2
p

=
1

λ0

. (3.43)

It is easy to see that (0, λ0) ⊂ Λ0 . Therefore, all the conditions in Lemma 2.3 are
satisfied. Thus, for each λ ∈ (0, λ0) ⊂ Λ0 , the problem (P ) admits at least two
weak solution in E. Then the proof of Theorem 1.3 is completed.

Finally, we are ready to prove Theorem 1.4.

Proof of the Theorem 1.4. LetX = E. Obviously, inf
u∈E

Ψ(u) = Φ(0) = Ψ(0) = 0.

In view of Claim 1 and Claim 2 in the proof of Theorem 1.3, we know that I
λ
∈

C
1

(E,R) satisfies the (C)-condition and it is unbounded from below. It remains to
verify the condition (2.3) of Lemma 2.2. In order to do this, let t

0
and r

0
be as in

(f6) and consider the function η2 : RN → R given as

η2(x) =


0, x ∈ RN\B

r
0
(x

0
),

|t
0
|, x ∈ B r

0
2

(x
0
),

2|t
0
|

r0

(r0 − |x− x0 |), x ∈ Br
0
(x0)\B r0

2

(x0).

Then it follows from (f6) and the same arguments as in Theorem 1.2,

0 < Φ(η2) ≤
1

p
C

µ,V
w

N
r
N

0
(|t0 |

p

+ |t0 |
q

)[(1− 2
−N

)2
q

(r
−p

0
+ r

−q

0
) + 1] < 1 (3.44)
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and

Ψ(η2)

Φ(η2)
≥

p inf
x∈B r0

2

(x
0
)
F (x, |t0 |)

2NC
µ,V

(|t
0
|p + |t

0
|q )[(1− 2−N )2q (r−p

0
+ r−q

0
) + 1]

.
(3.45)

Using (3.9) and (3.10), for each u ∈ Φ
−1(

(−∞, 1]
)
, we deduce that

sup
u∈Φ−1 ((−∞,1])

Ψ(u) ≤C
θ2
|ρ

2
| p
p−1

q
1
p
+

C
θ2

θ
2

θ
2

|σ
2
| γ
γ−θ2

q
θ2
p
. (3.46)

Hence, by (f6), (3.45) and (3.46), we get

sup
u∈Φ−1 ((−∞,1])

Ψ(u) <
Ψ(η

2
)

Φ(η2)
. (3.47)

and consequently, ( 1
Λ2

, 1
Λ1

) ⊂ (
Φ(η

2)

Ψ(η
2
) ,

1
sup

Φ(u)≤1

Ψ(u) ). Therefore, all the assumptions of

Lemma 2.4 with τ = 1 are satisfied. Thus, we assert that for each λ ∈ ( 1
Λ

2

, 1
Λ

1

),

the problem (P ) has at least two nontrivial solution. Arguing then as in the proof
of Theorem 1.2, we can obtain that problem (P ) admits a nontrivial solution u

Λ
1

when λ = 1
Λ

1

, and satisfies

I ′
1

Λ
1

(uΛ
1
) = 0 and I 1

Λ1

(uΛ1
) ≤ I 1

Λ1

(v), ∀v ∈ Φ
−1

((−∞, 1)).

Noting that I 1
Λ
1

is unbounded from below and it is not strictly global. Hence,

there is another nontrivial solution u
Λ
1
with u

Λ
1
̸= u

Λ
1
by applying Mountain Pass

Theorem. This completes the proof of Theorem 1.4.
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