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SYMMETRY OF ROTATIONAL EQUATORIAL
INTERNAL WAVES*

Yanjuan Yang"! and Jin Zhao?

Abstract The aim of this paper is to study the symmetry of the equatorial
internal waves, which propagate above the thermocline and beneath the upper
flat boundary. For general vorticity distributions, we prove that a steady
periodic internal wave with a monotone profile between crests and troughs
must be symmetric. Moreover, for the flows with constant vorticity, we show
that the symmetric periodic internal waves must be traveling waves.

Keywords Symmetry, rotational equatorial internal waves, traveling waves,
maximum principles.
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1. Introduction

During the last two decades, rotational water waves have been studied extensively
started by the seminal paper [18], in which Constantin and Strauss used an appro-
priate hodograph change of variable to transform the problem into an equivalent
form of a quasilinear elliptic equation in a fixed rectangular domain, and then
applied the method of bifurcation theory to construct a global connected set of
traveling periodic solutions. Such a breakthrough was followed by a wide body
of work on rotational flows, establishing such properties as the symmetry of solu-
tions [2,12-14,22,33,42-44,47,48, 53], analyticity of the streamlines (including the
free surface and the interface) [6,15,26,42,49], and some essential properties be-
neath the free surface [8,10,19,29,39]. There are also many nice results extending
to other types of rotational flows, such as geophysical water waves involving Coriolis
forces [3-5,7,9,16,30], stratified water waves [1,45,48,52,53] and multi-layer water
waves [6, 32, 38].

Among those results mentioned above, the study on the symmetry for water
waves is an important topic both from the mathematical viewpoints and from the
physical viewpoints. For example, the symmetry of water waves implies some in-
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variance in the system and can also provide a deeper understanding of physical
laws. As far as we know, the symmetry for rotational flows to wave-current interac-
tions was first studied in [13], in which Constantin and Escher proved that a steady
periodic gravity water wave with a monotone profile between crests and troughs
must be symmetric by assuming the non-increasing vorticity function of the depth.
The approach in [13] is based on symmetrization and maximum principle [25]. Such
tools have been used to investigate a similar nature on solitary irrotational water
waves [21]. Such a result was improved by Constantin, Ehrnstrém, Wahlén in [12]
to study the symmetry of water waves with an arbitrary vorticity distribution. Af-
ter these works, the symmetry of water waves was studied in different settings. We
refer the reader to [14,22] for deep-water waves, [42] for solitary waves, [48] for
stratified waves and [2,31] for geophysical waves.

In this paper, we will continue this topic and study the symmetry for the model
of the equatorial thermocline. Such a model has been studied in [5,9] and the
governing equations can be written as

1
Uy + ULy + wu, + 2Qw = —— Py,
P

1
wy + uw, + ww, —2Qu =—-P, — g,
p

w=—n —un, on z=-n(x,t),
w=0 on z=-—d,

P=PF—glp+Ap)z on z=—n(z1),

where (u,w) is the velocity field, P is the pressure, P, is some constant, g is the
gravitational acceleration, p is the water density, 2 is the rotation speed of the
Earth, 2 = —d is the upper boundary of the domain and z = —n(z,t) is the
lower boundary corresponding to the equatorial thermocline. Compared with the
previous works, this model is more complicated due to the presence of the Coriolis
effect and the form of the pressure in (1.1). From the physical viewpoint, it is
important and interesting to study such a model, because the thermocline is a
sharp interface generated by the obvious density stratification in the equatorial
region that separates warm and deeper cold water, and its motion can be described
as a geophysical wave interacting with a current. See the discussions in [9,46].
The mathematical study of geophysical equatorial waves has been studied much
in the last decade and has made a series of progresses. In [9], Constantin presented
the model of wave-current interactions in the f-plane approximation for underlying
currents of positive constant vorticity. Starting with this pioneering paper, some
essential results have been achieved. We refer the reader to [11,28,30,50] for the
study of exact solutions and instability, [4,16,17,20,27,52] for the existence of steady
periodic solutions and the related properties of the periodic geophysical water flows
with vorticity. Following the ideas in [12], in Section 2 we prove that for an arbitrary
vorticity distribution, a steady periodic rotational equatorial internal wave with a
monotone thermocline profile between crests and troughs must be symmetric about
the trough. In Section 3, motivated by the recent papers [23,35-37], we show that a
spatially periodic solution to equatorial internal waves with constant vorticity, with
the property that the horizontal velocity component at thermocline, as well as the
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thermocline profile is symmetric, necessarily defines a traveling wave.

2. Symmetry of steady periodic waves

In this section, we prove the symmetry for equatorial thermocline water wave (1.1).
Given ¢ > 0, we consider two-dimensional steady periodic waves traveling at the
speed ¢, that is, all of u, v, P,n have the form (z — ¢t) and are periodic with period
27. In the new reference frame (x — ct, z) — (x, 2), we assume that

u<c for —nx)<z<—d (2.1)
throughout the fluid domain and define the stream function ¥(x, z) by
Yy =—w, Y,=u—c for —nr)<z<-—d

Due to the fourth and fifth equations in (1.1), we know that 1 is 27-periodic in z
and can be normalized by choosing 1 = 0 on the thermocline and then ¥ = py on

z = —d, where
—d
Po = / (u(x, z) — c)dz <0,
—n(=)

which is dependent of z.
Let v = u, —w, be the vorticity of the flow. Then Ay = v = u, —w,. By direct
calculations, we deduce that

(’LL - C)QZ}I + w"/}z = 07 (u - C)’VI +wy, = 0.
The condition u < ¢ ensures that there exists a C! vorticity function Y such that
v ="().

See the discussion in [18]. Let

P
M) = [ T(-s)ds 0p< .
0
Moreover, the following Bernoulli’s law holds, which states that the expression

_ i+l

E
2

P
=2 + (g — 2Qc)z + o +I'(—y)
is constant throughout the layer D, = {(z,z) € R?* : —n(z) < z < —d}. Thus
problem (1.1) can be reformulated in term of the stream function as its equivalent
form

Ay =T(y), for —n(z) <z < —d,
2 _ a — - —
V> —2(g+2Qc)z = Q, on 2 n(x), (2.9)
¢ = Oa on z= _n($)7
¥ = po, on z=—d,

where Q = 2(E — %) and g = g% is the reduced gravity.
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By using the hodograph transformation ¢ = , p = —(«, z) of Dubeil-Jacotin
[34], we can transform the unknown domain D, of one wavelength into the rectan-
gular domain

R = (—m,m) x (0,—po).
Let h(g,p) = z + d be a height function in the new (g, p)-variables with z = 2(q, p)
being regarded as a function of the new variables. Then

x 1 1
B

v, u—c¢ T 4, c—u

Moreover, problem (2.2) can be rewritten in terms of h as the following equivalent
system

hg =

(1+ hg)hpp — 2hqhphgp + hz%hqq - T(*p)hf} =0, 0<p<—po,
L+ B2 = 25+ 200)(h— d) + Q2 =0, p=0, (2.3)
h=0, p=—po,

with h being even and 27-periodic in the ¢ variable. Note that condition (2.1) is
replaced by h, > 0 throughout in the closed rectangle R and h(g,0) = —n(q) + d.

In order to prove the symmetry of steady periodic thermocline waves, we need
the following type of maximum principles.

Lemma 2.1. [24] Let D C R? be a rectangle and f € C?(D). Suppose that Lf =0
for some uniformly elliptic operator

2 2
L= Z ai;0s5 + Z b;0;,
i=1

i,j=1
with continuous coefficients in D. Then the following results hold:

(i) If ming f or maxy f is attained in the interior of D, then f is a constant in
D.

(ii) Let A be a point on the smooth part of the boundary 0D such that f(A) < f(X)
or f(A) > f(X) for all X € D. Then Vf(A) # (0,0).

(iii) Let A be a corner point on the boundary 0D such that f(A) < f(X) or
f(A) > f(X) for all X € D. Suppose further that a12(A) = 0 = ag1(A). Then
at least one of the first or second partial derivatives of f is non-vanishing at

A.

_Note that if D C R is a rectangle with the horizontal sides supported on R and
h,h € C?(D) are solutions to problem (2.3) with h, > 0 in R, then the operator

—T(—p)(hf, + hpﬁp + ﬁi)} Op + {Bpp(hq + ;Lq) - 2hpilpq 94

is uniformly elliptic operator with continuous coeflicients and satisfies 4 L(h— iL) =0
in D. Moreover, for a solution h € C2.,.(R) with h, > 0 throughout R and for any

per
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X € (—m,0], the function h(q,p) = h(2X\ — ¢,p) is also a solution of (2.3). Due to
the fact h, > 0 in R, we know that the coefficient of 9,0, in £ vanishes at a point
(¢,p) if and only if hy(g,p) = 0.

Now we are in a position to state and prove the main result of this section.

Theorem 2.1. The steady periodic internal waves of (1.1) without stagnation points
in the underlying flow and with a thermocline wave profile n being monotone between
troughs and crests are symmetric.

Proof. If the thermocline is flat, then the result is trivial. Thus we only need
to consider the case that the thermocline wave is not flat. Since the system (2.3)
is symmetric in g-variable, we can assume that the horizontal position of the wave
crest is at ¢ = —m, while that of the wave trough is located in the interval [0, 7). For
a reflection parameter A € (—,0), the reflection of g about ) is given by ¢* = 2\ —¢
and the associated reflection function is

fla,p;A) = h(g,p) = h(2A = q,p), (g:p) € [A,2A + 7] X [0, —po],
which satisfies the boundary conditions
fAp;A) =0, for pe[0,—po],
flg,—po;A\) =0, for g€ [—mm].

(2.4)

In fact, the first property is immediate from the definition of f(q,p;\), and the
second follows from the boundary condition h = 0 on p = —py. Moreover, the
reflection function satisfies f(q,0;A) < 0 for A > —m close enough to —, since the
thermocline wave profile is non-increasing from crest to trough by the assumption.
Let
Ao =sup{\ € (—7,0] : f(g,0;\) <0 forall ¢e[\2X+m]}.

Then Ao is well-defined. Moreover, either Ay = 0 or A\g € (—m,0). In the case
Ao € (—7,0), we know that there exists ¢° € (A, 2A\o + 7] such that f(g%, 0; X\o) = 0.
Since f(q,0;X0) < 0 on [Ag, 2o + 7], at ¢° the graphs of the functions ¢ — h(q,0)
and g — h(2X\p — ¢,0) are tangent to each other. See Figure 1.

- A q0  2A+m z=-d b

z=1(X)

Figure 1. Symmetrization in the physical variables.

First we consider the case A\g = 0. The periodicity of h and the definition of A\
yield the additional boundary conditions

f(mp:xo) =0 for pe [0, —pol,
f(q,0;X0) <0 for ¢ e[0,7].

(2.5)
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Consider the rectangle D = (0,7) x (0, —pp). Since f € C?(D), by Lemma 2.1 (i),
there cannot exist an interior point (g, p) € D such that f(q,p; A\g) > O unless f =0
in D, in view of the boundary conditions (2.4) and (2.5). If f = 0, we have the
result. So we suppose on the contrary that

f(a,p;X0) <0, in D. (2.6)

By the condition (2.5), we obtain that all of f, f, and f,, vanish at the crest (r,0).
Since hy(£m,0) = 0, we have
fq(m,0; ) = 0.

Differentiating the second equation in (2.3) with respect to ¢, we have

2hghgq — 2(7 + 2Qc)hgh — 2[2( + 290) (h — d) + Q]hphpg

t(x
IO o125+ 200) (h — d) + Qlhyhy,
= O,

which forces that hg,(m,0) = 0, since [2(g + 2Qc¢)(h — d) + Q]h, never vanishes by
the condition h, > 0. Similarly, we have hg,(—m,0) = 0. Therefore, we obtain

Jap(m,0; A0) = 0.
Using the above results and the definition of f(q,p; Ao), we can see that
f=fo=1fp=1Fqq=fop=fop =0, atthecrest (m,0),
which contradicts (2.6) by Lemma 2.1 (iii). Thus f(¢,p;0) =0, that is
h(q,p) = h(—q,p) forall (q,p) € D,

which means that the wave is symmetric about the trough located at g = 0.
Next we consider the case \g € (—m,0). Let

f(q,p;M0) = h(q,p) — h(2Xo + 27 — q,p), (q,p) € [2X0 + 7, Ao + 7] X [0, —po].

Here we redefine D = (Ao, A\g + 7) x (0,—po) (see Figure 2), then it turns out
that the periodicity guarantees f € C?(D). Moreover, by the monotonicity of the
thermocline profile, we note that as long as 2\ + lies to the left of the wave trough,
f(g,0; A) <0 always holds for A < g < 2A+7. Therefore, 2)g + 7 lies to the right of
- or at least in line with - the wave trough. Consequently, h(q,p) is non-decreasing
for ¢ € (2X\o + 7, m) and thus

f(q,0; ) <0 forall g€ [Aog, Ao+ 7]
Obviously, one can verify that the following conditions hold:
f()‘Ovp; )‘0) = f()‘O + 7, D5 >‘0) = 07 for pe [0, _pO]a

f(q,=po; Ao) =0, for g€ [N, N0+ 7],
f(qaoa A0) < 07 for qEc [AOa)\O + 71-]-
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P=-Po

p=0

Figure 2. Symmetrization in the (g, p)-variables.

Using the similar discussion in the case Ag = 0 and applying Lemma 2.1 (i), we can
conclude that

f(g;p; M) <0 in D unless w vanishes identically.

If £(q,p; o) < 0 in D, then at the point (¢°,0) the tangency condition ensures
f4(¢°,0) = 0, which means that

hq(q®,0) = —hg(2X0 — ¢°,0).

Moreover, since h(q°, 0) = h(2Xo—q°,0), the third equation in (2.3) forces h,(¢°,0) =
hy(2X0 — ¢°,0). Thus

V£(q°,0) = (0,0),
which contradicts Lemma 2.1 (ii). Consequently, we conclude that f = 0 in D.

Since h(q,0) is non-decreasing on [2\g + 7, 7] as we prove that 2Ag + 7 lies to the
right of the wave trough, we get that

h(q,0) = h(m,0), forall ¢ € [2Xg+ m,7].

Furthermore, h(g,0) is symmetric around A for ¢ € [—m,2)\g + 7]. Therefore, by
the periodicity, we know that h(q,p) is symmetric around ¢ = Ao, which must be
the location of the trough. O

3. Symmetric waves are traveling waves

Now we aim to show that the symmetric periodic thermocline waves are in fact
traveling waves by assuming that the flow admits constant vorticity, that is,

U, —wy =7 €R. (3.1)

We assume further that the waves are 2w-spatially periodic, that is, the functions
u, v, P, —n are 2w-periodic in the z-variable, and all of them are smooth. Thus, at
any instant of time, the fluid domain is given by

A=At)={(z,2) eR?: 0 <z < 27, —n(z,t) < 2 < —d}.
The stream function ¢ (z, z,t) is defined by
wz(xaz?t) :U;(J?,Z,t), ww(xazvt) = —w(m,z,t).

By the equation of the mass conservation u, + w, = 0, ¥ can be written as an
explicit form

(w,2)
Y(x, z,t) = / udz — wdz.
(

20,20)
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Obviously, Ay =« in the fluid domain A.
A solution (u,v, P,—n) is called a horizontally symmetric solution of problem
(1.1) if there exists a function x € C'(Ry) and for any ¢ such that

u(z, z,t) = u(2k(t) — z, 2, t),
w(z, z,t) = —w(2k(t) — , 2, 1),
P(z,z,t) = P(2k(t) — x, 2, t),
—n(z,t) = —n(2k(t) — z,t).

Lemma 3.1. Any horizontally symmetric solution of problem (1.1) constitutes a
traveling wave.

Proof. From the symmetric condition (3.2), we have

ug(z, 2,t) = ug(26(t) — , 2, t) + 26" ()uyp (26() — 2, 2, 1),
Ug(x, 2,t) = —uy (26(t) — x, 2, 1), (3.3)
uz(x, z,t) = u, (26(t) — x, 2, t),

which implies that
ur(26(t) — z, 2,t) = wp(w, 2, t) + 26" () ug(z, 2, t). (3.4)
Moreover, we have the relation about the pressure function that
P.(z,2,t) = =P (26(t) — x, 2, 1). (3.5)
It follows from the first equation in (1.1) that at the point (2k(¢t) — x, z,t), we have

u(26(t) — x, 2, t) + u(26(t) — x, 2, )u (2k(t) — x, 2, t)
+ w(26(t) — x, 2, t)u. (26(t) — z, 2, t) + 2Quw(2k(t) — x, 2, 1)
=— P,(26(t) — z, 2, t).

Using the relations (3.2) and (3.3), (3.4), (3.5), we find

u(, 2, t) + 26" (ug (z, 2, ) — u(z, 2, t)ug(z, 2,t)
—w(z, 2, t)u,(z, 2,t) — 2Qu(zx, 2,t) = Py(x, 2,t). (3.6)

Keeping in mind that at (z, z,t), it holds that
Uy + uly + wu, + 2Qw = — Py,
which combining with (3.6) can yield that
[u(w, z,t) — &' ()]us(z, 2, t) + w(x, 2, )u, (2, 2,t) + 2Quw(x, 2,t) = — Py (x, 2, t).
Analogously, we have
[w(z, z,t) — &' (t)]we(z, 2, 1) + w(x, 2, t)w, (2, 2,t) — 2Qu(z, 2,t) = —P,(z,2,t) — g.
From the fourth equation in (1.1), we obtain that

w(w, z,t) = —[u(z, z,t) — ' (¢)]n (2, t).
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Let tg be a fixed time and introduce the functions
a(z, 2) = u(x, z, 1), w(x,z) =w(x,z t), P(z,z) =Pz, 21), —i(z) = n(z,to).
Define ¢ = «/(tg), then

i — iy + Wi, + 200 = —P,,

==

— i, + W, — 2Qi = —P, — g,
W= —[t—clij, on z=-—1,
w=0 on z=-—d,

P="Py+g(1+Ap)i(xz) on z=—7.
Finally, define new functions as

ﬂA(m,z,t) = 11~(ac —c(t—tg),2), w(z,z,t)=w(x—-c(t—-1ty),z),

P(:E, th) = P(l’ - C(t - tO)a Z)v _ﬁ(xat) = ﬁ(l’ - C(t - tO))'
1.

Then (i, @, P, —7) satisfies the first two equations in (1.1) and

(ﬂ(ﬂf, 2, tO))v 1,[1(.73, 2, tO)a P(I, 2, t0)7 _f](x, tO))
=(u(x, z,to), w(z, z,to), P(x, z,t0), —n(x, to)).

By the uniqueness of the solution of the Euler equations, we conclude that

(4,0, P,—17) = (u,w, P,—n) for all z, z,t.

Therefore, the solution (u,w, P, —n) constitutes a traveling wave. O]

For some discussions on traveling wave solutions of nonlinear equations, we refer
the reader to [40,41,51]. Now we are in a position to state and prove the main result
of this section.

Theorem 3.1. Let (u,w,P,—n) be a 2mw-periodic solution in x-variable to prob-
lem (1.1) exhibiting constant vorticity v € R and with the property that both the
thermocline z = —n and the horizontal velocity u(x,—n,t) on the thermocline are
symmetric about x = k(t) at any t € R*:

777(1'7 t) = 777(2’4:(75) -, t)a u(m, *77(%15)7 t) - U(QR(t) -z, 777(%, t)’ t)' (37)
Then the solution (u,w, P,—n) defines a traveling wave.

Proof. By Lemma 3.1, we only need to prove that u,w, P satisfy (3.2). Let us
define a function as

\If(l', Z’t) = 1/)(% Zat) - 10(2“(’5) -, Zat)v

which is 27-periodic in z-variable and harmonic by (3.1). Moreover, ¥(z, —d,t) =0
because ¥, (z, —d,t) = 0 due to the fifth equation in (1.1). We will prove that ¥ is
identically zero in D. If both the maximum and the minimum could be attained at
the flat interface where ¥ = 0, then U is obvious to be identically zero. Otherwise,
without loss of generality, we assume that the minimum of V¥ is attained at z = —n.
Then at the minimum point we obtain

d

=, 0),0) = 5[, —n(e,),0) — 9n(t) — 2, —n(,0),0)]
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= *U)(LB, 777(1'7 t)a t) - w(2’$(t) -, 777(1'7 t)a t)
— [, —n(,£),8) = u(2x(t) — 7, —n(x,t),8)| .
=0.
By the assumption (3.7), we infer that
w(z, —n(z,t),t) = —w(26(t) — z, —n(z,1),1) (3.8)

at the minimum. Applying Lemma 2.1 (ii), we know that the outward normal
derivative at a minimum would be strictly negative, that is

ov ov 9v
77 = (5 a:) <0
where 7 = (—7,, —1). This is equivalent to

(w(x, _77('77’ t)v t) + w(QK(t) -7, —77(% t)v 75))777;
+u(26(t) — x, —n(x, t),t) — u(z, —n(z,t),t) <0,

which is a contradiction in view of (3.7) and (3.8). Therefore, we infer that ¥ = 0
in D and thus ¢(z,2,t) = ¢¥(2k(t) — z, 2,t) for all (z,2z) € D. Hence throughout
the fluid, we have that

u(z, z,t) = u(26(t) — z,2,t), w(z,z,t) =—w(2k(t) —x, 2,1t). (3.9)

Define

P(x,z,t) = P(x, z,t) — P(2k(t) — z, 2, 1),
which is harmonic by the first three equations in (1.1) and (3.9). It follows from
the fifth equation in (1.1) and the second equation in (1.1) that
P.(x,—d,t) = 2Qu — g.

Obviously, from (3.9), we have

P.(z,—d,t) =0,

which is the derivative of z in the normal direction at z = —d. Applying Lemma
2.1 (ii) again, we know that neither a maximum nor a minimum can be attained at
z = —d. Therefore, both the maximum and the minimum must be attained at the
thermocline. By the assumption (3.7), we can easily verify that

P = P(a,—n,t) - P(24(t) — 2, —n,1)

= (Po + pgn(z,t)) — (Po + pgn(2k(t) — z,t))
=0,

on the thermocline z = —n(z,t), which allows us to deduce that P =0. Thus
P(x, z,t) = P(26(t) — x, 2, 1)

throughout the fluid. Up to now, we have proved all symmetry conditions and thus
(u, w, P, —n) defines a traveling wave. O
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