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Abstract In this paper, we consider the long-time dynamics of solutions
for the nonclassical diffusion equation with time-dependent memory kernel
when nonlinear term adheres to critical growth, where the time-dependent
memory kernel is used to describe the aging process of viscoelastic conduc-
tive medium. Under the new theory framework, we first establish the well-
posedness and regularity of the solutions, and then we prove the existence and
regularity of the time-dependent global attractors in the time-dependent space
H1

0 (Ω)×L2
µt(R

+;H1
0 (Ω)) by use of the delicate integral estimation method and

decomposition technique.

Keywords Nonclassical diffusion equation, time-dependent memory kernel,
time-dependent global attractors, regularity.
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1. Introduction

Let Ω ⊂ R3 be a bounded domain with smooth boundary ∂Ω. The asymptotic
dynamics of the following nonclassical diffusion model with time-dependent memory
kernel

∂tu−∆∂tu−∆u−
∫ ∞

0

kt(s)∆u(t− s)ds+ f(u) = g, x ∈ Ω, t ∈ (τ,+∞), (1.1)

u(x, t)|∂Ω = 0, t ∈ (τ,+∞), u(x, τ) = uτ (x, t), x ∈ Ω, t ∈ (−∞, τ ], (1.2)

are investigated in this article.
Suppose that the time-dependent memory kernel function kt(s) is nonnegative,

convex and summable. And let

kt(s) =

∫ ∞
s

µt(y)dy, ∀s ∈ R+, t ∈ R.

†The corresponding author.
1College of Mathematics and Statistics, Northwest Normal University, Anning
East Road, 730070 Lanzhou, China

2Zhongshan Jianbin Vacational and Technical School, Wendongnan Street,
528415 Zhongshan, China
∗The authors were supported by National Natural Science Foundation of China
(12161079, 12461039, 11961059, 12061062).
Email: wangxuan@nwnu.edu.cn(X. Wang), 1872412053@qq.com(H. Yuan),
hanxiaoling9@163.com(X. Han), gaochenghua@nwnu.edu.cn(C. Gao)

http://www.jaac-online.com
http://dx.doi.org/10.11948/20230130


Attractor for nonclassical diffusion equation 2475

Evidently,
µt(s) = −∂skt(s).

Remark 1.1. We can construct the the memory kernel function µt(s) through the
function µ and ε. Let µ ∈ C1(R+) ∩ L1(R+) be a nonnegative and nonincreasing
function and so

∫∞
0
µ(s)ds = m. And suppose that ε ∈ C1(R;R+) satisfying

ε′(t) 6 0, ∀ t ∈ R,

and there exist a positive constant M , such that

sup
t∈R

(ε(t) + |ε′(t)|) 6M.

So, we can define

µt(s) =
1

ε2(t)
µ(

s

ε(t)
).

Furthermore, assume that the map

(t, s) 7→ µt(s) : R× R+ → R+

satisfies the following conditions:
(H1) For every fixed t ∈ R, the map s 7→ µt(s) is nonnegative, nonincreasing, abso-
lutely continuous and summable. The total mass of µt is defined by the formula

κ(t) =

∫ ∞
0

µt(s)ds

and satisfies
inf
t∈R

κ(t) > 0.

(H2) For every τ ∈ R, there exists a function Kτ : [τ,+∞) → R+ which is
continuous and summable on any interval [τ, T ], such that

µt(s) 6 Kτ (t)µτ (s), for every t > τ and every s > 0.

(H3) For almost every fixed s > 0, the map t 7→ µt(s) is differentiable for all t ∈
R. Besides,

(t, s) 7→ µt(s) ∈ L∞(K) and (t, s) 7→ ∂tµt(s) ∈ L∞(K)

for every compact set K ⊂ R× R+.
(H4) There exists a constant δ 6 2M

m , such that

∂tµt(s) + ∂sµt(s) + δκ(t)µt(s) 6 0, for every t ∈ R+ and almost every s > 0.

Remark 1.2. Evidently, the memory kernel function µt(s) in Remark 1.1 satisfies

(H1)-(H4), with Kτ (t) = ε2(τ)
ε2(t) .

Remark 1.3. Hereafter, we also give a classical and physically relevant example
that be gained by setting

µ(s) = e−ρs and k(s) =
1

ρ
e−ρs, ∀ s ∈ R+,



2476 X. Wang , H. Yuan, X. Han & C. Gao

where ρ is a positive constant. In such the case,

ε(t) =
π

4
− 1

2
arctan t,

µt(s) =
1

ε2(t)
e−

ρ
ε(t)

s

and

kt(s) =
1

ρε(t)
e−

ρ
ε(t)

s, ∀ s ∈ R+, ∀ t ∈ R.

Then, the memory kernel function µt(s) satisfies (H1)-(H4), with Kτ (t) = ε2(τ)
ε2(t) .

About that forcing term, assume that g ∈ L2(Ω). And let the nonlinearity
f ∈ C1(R) with f(0) = 0 and satisfy

|f ′(u)| 6 C(1 + |u|p−1), f ′(u) > −C1, ∀u ∈ R, (1.3)

where 1 6 p 6 5, C1 > 0, C is a positive constant. Besides, assume that f satisfies
the dissipation condition

lim inf
|u|→∞

f ′(u) > −λ1, (1.4)

here, λ1 > 0 is the first eigenvalue of the strictly positive Dirichlet operator A =
−∆ with domain D(A) = H2(Ω) ∩H1

0 (Ω) on (L2(Ω), 〈·, ·〉, ‖ · ‖). Obviously, (1.4)
implies the following relations: for some 0 < θ < 1 and a positive constant cf ,

〈F (u), 1〉 > −1

2
(1− θ)‖u‖21 − cf , (1.5)

〈f(u), u〉 > 〈F (u), 1〉 − 1

2
(1− θ)‖u‖21 − cf , (1.6)

where F (u) =
∫ u

0
f(s)ds.

The nonclassical diffusion model

∂tu−∆∂tu−∆u+ f(u) = g (1.7)

is widely used in the fields of heat conduction theory and fluid mechanics, which
describes a heat conduction process or a fluid diffusion process (see [1,4,19]). When
the conductive medium or fluid is a viscoelastic material, the corresponding model
is

∂tu−∆∂tu−∆u−
∫ ∞

0

k(s)∆u(t− s)ds+ f(u) = g. (1.8)

Furthermore, if the viscoelastic conductive medium or fluid also has aging charac-
teristics, then the corresponding model is (1.1). Because of the model of viscoelas-
ticity with memory (Especially the viscoelastic model with time-dependent memory
kernel) has profound application background and research prospect, the asymptotic
behavior of solutions for the equation has attracted extensive attention and research
interest of many scholars (see [6–8,10–12,23,27,29–31] and relevant references).

For the usual nonclassical diffusion equation (1.7), there are many research re-
sults on this model (see [25, 26, 28, 32, 33] and relevant references). In [28], the
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existence and continuity of the global attractor which are independent of the pa-
rameter µ of µ∆∂tu are considered and discussed. In [26], for both autonomous and
non-autonomous case, the existence and regularity of the attractor is proved when
the nonlinearity satisfies the critical exponent growth. Besides, for the nonclassical
diffusion equation with fading memory (1.8), we also have achieved a series of re-
search results on this model. In [29,30], for both autonomous and non-autonomous
case, the asymptotic regularity of solutions and the existence of attractor is obtained
when the nonlinearity satisfies the critical exponent growth by use of asymptotic
prior estimation and decomposition technique.

Compared with the above mentioned model (1.8), when the memory kernel func-
tion is dependent on the time variable t, the problem will become more complex
and interesting. From the perspective of application, viscoelastic heat conductive
medium or viscoelastic fluid has aging characteristics. This has aroused our strong
research interest, so the long-term dynamical behaviors of solutions for the vis-
coelasticity model (1.1) will be studied in our paper. In fact, the time-dependent
memory kernel will lead to some essential difficulties in analysis. Firstly, there will
be difficult in defining auxiliary variable ηt and its derivative function with respect
to time. Secondly, the classical estimation methods and differential inequalities for
the nonclassical diffusion equation with fading memory (when the memory kernel
function is independent of time variable t) are no longer applicable to the study of
(1.1). This will add many difficulties to the dissipative estimation and the compact-
ness verification of the solution process. Inspired by the idea in [6, 7, 18, 27], under
the new technical framework, we successfully overcome these essential difficulties
in the estimation and proof by use of the delicate integral estimation method and
decomposition technique. Finally, we establish the well-posedness and regularity of
solutions, and then prove the existence and regularity of the time-dependent global
attractor.

The structure of this paper is as follows. In Section 2, we introduce some
concepts and preliminary results; in Section 3, we achieve the well-posedness and
regularity of the solution; in Section 4, we prove the existence and regularity of the
time-dependent global attractor corresponding to the problem (1.1), (1.2).

For brevity, C or Ci denotes a positive constant in the following text.

2. Notations and preliminaries

As in [14], a new variable which denotes the past history of Eq. (1.1) is defined by

ηt(s) =


∫ s

0

u(t− r)dr, 0 < s 6 t− τ,

ητ (s− t+ τ) +

∫ t−τ

0

u(t− r)dr, s > t− τ.
(2.1)

Using µt(s) = −∂skt(s) and kt(∞) = 0, it is easy to see that the system (1.1),
(1.2) is equivalent to the system

∂tu−∆∂tu−∆u−
∫ ∞

0

µt(s)∆η
t(s)ds+ f(u) = g (2.2)
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with the initial-boundary conditions

u(x, t) = 0, x ∈ ∂Ω, t > τ,

ηt(x, s) = 0, (x, s) ∈ ∂Ω× R+, t > τ,

u(x, t) = uτ (x, t), x ∈ Ω, t 6 τ,

ητ (x, s) = ητ (x, s), (x, s) ∈ Ω× R+,

(2.3)

where u(·) satisfies the following condition: there exist two positive constants R
and % 6 δ, such that ∫ ∞

0

e−%s‖∇u(−s)‖2ds 6 R,

here, the constant δ is defined in the assumption (H4), and ‖ · ‖ denotes the norm
of L2(Ω).

The following notations as those in Pata and Squassina [21] will be used. Let
A = −∆ with domain D(A) = H1

0 (Ω) ∩H2(Ω). For the family of compact nested
Hilbert spaces Vs = D(A

s
2 ), the inner products and norms in this family of spaces

are defined by the formula

〈u, v〉s = 〈A s
2u,A

s
2 v〉, ‖u‖s = ‖A s

2u‖, ∀s ∈ R, ∀u, v ∈ D(A
s
2 ),

where 〈·, ·〉 and ‖ · ‖ mean L2(Ω) inner product and norm, respectively. Then, H =
L2(Ω), V1 = H1

0 (Ω), V2 = H1
0 (Ω) ∩H2(Ω).

Obviously, we have compact embedding D(A
s1
2 ) ↪→↪→ D(A

s2
2 ) for any s1 > s2

and continuous embedding D(A
s
2 ) ↪→ L

2n
n−2s (Ω) for all s ∈ [0, n2 ).

For every fixed time t and every σ ∈ R, according to the assumptions about mem-
ory kernel µt(·), we denote the family of Hilbert spaces of functions by L2

µt(R
+;Vσ),

which are said to be time-dependent memory space

Mσ
t = L2

µt(R
+;Vσ) = {ξt : R+ → Vσ |

∫ ∞
0

µt(s)‖ξt(s)‖2σds < +∞},

endowed with the inner products and norms respectively,

〈ηt, ξt〉Mσ
t

=

∫ ∞
0

µt(s)〈ηt(s), ξt(s)〉σds,

‖ξt‖2Mσ
t

=

∫ ∞
0

µt(s)‖ξt(s)‖2σds.

Now let us introduce the family of Hilbert spaces

Hσt = Vσ ×Mσ
t ,

with the endowed norms

‖z‖2Hσt = ‖(u, ηt)‖2Hσt = ‖u‖2σ + ‖ηt‖2Mσ
t
.

In particular, Ht = H0
t .

In view of (H2), for every ηt ∈Mσ
τ and every t > τ ,

‖ηt‖2Mσ
t
6 Kτ (t)‖ηt‖2Mσ

τ
, (2.4)
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therefore, we have continuous embedding

Mσ
τ ↪→Mσ

t .

The linear operator Tt acting on Mσ
t is defined by

Ttηt = −∂sηt with domain D(Tt) = {ηt ∈Mσ
t |∂sηt ∈Mσ

t , η
t(0) = 0}.

Due to the assumption (H1), for every fixed t the function s 7→ µt(s) is differential
almost everywhere with ∂sµt(s) 6 0. Similar to [17], we have

〈Ttηt, ηt〉Mσ
t

=
1

2

∫ ∞
0

∂sµt(s)‖ηt(s)‖2σds 6 0, ∀ηt ∈ D(Tt). (2.5)

Evidently, Tt is a dissipative operator. In fact, it is easy to see that Tt is the
infinitesimal generator of the right-translation semigroup on Mσ

t . Especially,

Tτ ⊂ Tt (2.6)

and {Tt}t>τ are increasingly nested extensions of each other.
Owing to (2.1), we have

∂tη
t(s) = −∂sηt(s) + u(t) = Ttηt + u(t). (2.7)

Details of the proof can be found in Lemma 3.2.
The following abstract results will be used to testify the compactness and dissi-

pativity of the solution corresponding to the problem (2.2), (2.3).

Lemma 2.1 ( [5,24]). Let X,B and Y be three Banach spaces. For T > 0, if X ↪→↪→
B ↪→ Y , and

W = {u ∈ Lp([0, T ];X)|∂tu ∈ Lr([0, T ];Y )}, with r > 1, 1 6 p <∞,
W1 = {u ∈ L∞([0, T ];X)|∂tu ∈ Lr([0, T ];Y )}, with r > 1.

Then,
W ↪→↪→ Lp([0, T ];B), W1 ↪→↪→ C([0, T ];B).

Lemma 2.2 ( [3, 16, 22]). Assume that µ ∈ C1(R+) ∩ L1(R+)ŠÌ is a nonnegative
function, and satisfies: if there exists s0 ∈ R+ such that µ(s0) = 0, then µ(s) = 0
for all s > s0 holds. Moreover, let B0, B1, B2 be Banach spaces, here B0, B1 are
reflexive and satisfy

B0 ↪→↪→ B1 ↪→ B2.

If C ⊂ L2
µ(R+;B1) satisfies

(i) C is bounded in L2
µ(R;B0) ∩H1

µ(R+;B2);

(ii) sup
η∈C
‖η(s)‖2B1

6 h(s), ∀s ∈ R+, h(s) ∈ L1
µ(R+),

then C is relatively compact in L2
µ(R+;B1).

By distXt(A,B) we denote the Hausdorff semidistance from a set A ⊂ Xt to a
set B ⊂ Xt:

distXt(A,B) = sup
x∈A

distXt(x,B) = sup
x∈A

inf
y∈B
‖x− y‖Xt .
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Lemma 2.3 ( [34]). Let (M,d) be a metric space and U(t, τ) be a Lipschitz con-
tinuous dynamical process in M , i.e.,

d(U(t, τ)m1, U(t, τ)m2) 6 CeK(t−τ)d(m1,m2),

for appropriate constants C and K which are independent of mi, τ and t. Assume
further that there exist three subsets M1,M2,M3 ⊂M such that

distM (U(t, τ)M1, U(t, τ)M2) 6 L1e−ν1(t−τ),

distM (U(t, τ)M2, U(t, τ)M3) 6 L2e−ν2(t−τ),

for some ν1, ν2 > 0 and L1, L2 > 0. Then it follows that

distM (U(t, τ)M1, U(t, τ)M3) 6 Le−ν(t−τ),

where ν = ν1ν2
K+ν1+ν2

and L = CL1 + L2.

Lemma 2.4 ( [7]). (Gronwall-type lemma in integral form) Let τ ∈ R be fixed,
and also let Λ : [τ,+∞)→ R be a continuous function. Suppose that for some ε >
0 and every τ 6 a < b, the integral inequality

Λ(b) + 2ε

∫ b

a

Λ(y)dy 6 Λ(a) +

∫ b

a

q1(y)Λ(y)dy +

∫ b

a

q2(y)dy,

holds, where q1, q2 are locally nonnegative functions on [τ,+∞) satisfying∫ b

a

q1(y)dy 6 ε(b− a) + c1 and sup
t>τ

∫ t+1

t

q2(y)dy 6 c2,

for some c1, c2 > 0. Then,

Λ(t) 6 ec1(|Λ(τ)|e−ε(t−τ) +
c2eε

1− e−ε
), ∀ t > τ.

As described in [9, 13, 15, 20], we introduce the following concepts and abstract
results about time-dependent dynamical system, which are used to investigate the
long-time dynamics of solutions.

Definition 2.1. Let Xt be a family of normed spaces. A two-parameter family of
operators {U(t, τ) : Xτ → Xt, τ 6 t, τ ∈ R} is said to be a process, if for any τ ∈ R,

(i) U(τ, τ) = Id is the identity operator on Xτ ;

(ii) U(t, s)U(s, τ) = U(t, τ), ∀ τ 6 s 6 t.

Assume that Xt is a family of normed spaces. For every t ∈ R, the R-ball of Xt

is defined by:

Bt(R) = {z ∈ Xt|‖z‖Xt 6 R}.

Definition 2.2. A family C = {Ct}t∈R of bounded sets Ct ⊂ Xt is called uniformly
bounded, if there exists a constant R > 0 such that Ct ⊂ Bt(R), ∀ t ∈ R.
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Definition 2.3. A uniformly bounded family Bt = {Bt(R0)}t∈R is called a time-
dependent absorbing set for the process U(t, τ), if for every R > 0, there exist a
moment t0 = t0(R) 6 t and R0 > 0 such that

τ 6 t− t0 ⇒ U(t, τ)Bτ (R) ⊂ Bt(R0).

The process U(t, τ) is said to be dissipative as it possesses a a time-dependent
absorbing set.

Definition 2.4. The smallest family A = {At}t∈R is called a time-dependent at-
tractor for the process U(t, τ), if A satisfies the following properties:

(i) Each At is compact in Xt ;

(ii) A is pullback attracting, that is, it is uniformly bounded and the limit

lim
τ→−∞

distXt(U(t, τ)Cτ , At) = 0

holds for every uniformly bounded family C = {Ct}t∈R and every t ∈ R.

Theorem 2.1 ( [13,20]). If U(t, τ) is asymptotically compact, that is, the set

K = {K = {Kt}t∈R| Each Kt is compact in Xt, K is pullback attracting}

is not empty, then the time-dependent attractor A exists and coincides with A =
{At}t∈R. In particular, it is unique.

Definition 2.5. A function t→ Z(t) and Z(t) ∈ Xt is a complete bounded trajec-
tories (CBT) of the process U(t, τ), if and only if

(i) sup
t∈R
‖Z(t)‖Xt <∞;

(ii) Z(t) = U(t, τ)Z(τ),∀ τ 6 t, τ ∈ R.

Definition 2.6. A time-dependent attractor A = {At}t∈R is invariant, if for all
τ 6 t,

U(t, τ)Aτ = At.

Theorem 2.2 ( [9, 13, 15]). If the time-dependent attractor A = {At}t∈R of the
process U(t, τ) is invariant, then it coincides with the set of all CBT of the process
U(t, τ), that is,

A = {Z|t→ Z(t) ∈ Xt and Z(t) is CBT of the process U(t, τ)}.

3. Well-posedness and regularity of solutions

In order to obtain the dissipative estimation and well posedness of the solution, we
need to prove the following preliminary results.

Lemma 3.1. Let u ∈ L∞([τ, T ];Vσ) and also let

Γ(u, ητ ) = 3(t− τ)2κ(τ)‖u‖2L∞([τ,T ];Vσ) + 2‖ητ‖2Mσ
τ
.
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Then, we have that ηt ∈Mσ
τ ⊂Mσ

t with

‖ηt‖2Mσ
τ
6 Γ(u, ητ ), ∀ t ∈ [τ, T ],

and
‖ηt‖2Mσ

t
6 Γ(u, ητ )Kτ (t) ∈ L1([τ, T ]).

Proof. Since µτ (·) is nonincreasing, we can obtain from (2.1)

‖ηt‖2Mσ
τ

=

∫ t−τ

0

µτ (s)‖
∫ s

0

u(t− r)dr‖2σds+

∫ ∞
t−τ

µτ (s)‖ητ (s− t+ τ)

+

∫ t−τ

0

u(t− r)dr‖2σds

6
∫ t−τ

0

µτ (s)s

∫ s

0

‖u(t− r)‖2σdrds+

∫ ∞
t−τ

µτ (s)‖ητ (s− t+ τ)

+

∫ t−τ

0

u(t− r)dr‖2σds

6
∫ t−τ

0

µτ (s)s2‖u‖2L∞([τ,T ];Vσ)ds+ 2

∫ ∞
0

µτ (s+ t− τ)‖ητ (s)‖2σds

+ 2(t− τ)2‖u‖2L∞([τ,T ];Vσ)

∫ ∞
0

µτ (s+ t− τ)ds

63(t− τ)2‖u‖2L∞([τ,T ];Vσ)

∫ ∞
0

µτ (s)ds+ 2

∫ ∞
0

µτ (s+ t− τ)‖ητ (s)‖2σds

63(t− τ)2κ(τ)‖u‖2L∞([τ,T ];Vσ) + 2

∫ ∞
0

µτ (s)‖ητ (s)‖2σds

=Γ(u, ητ ).

It follows from (H2) and (2.4) that the latter inequality also holds. The proof is
complete.

Lemma 3.2. Let u ∈ L∞([τ, T ];Vσ). If ητ ∈ D(Tτ ), then ηt ∈ D(Tτ ), for every
t ∈ [τ, T ], ηt ∈W 1,∞([τ, T ];Mσ

τ ) and the equality

∂tη
t = Tτηt + u(t)

holds in Mσ
τ .

Proof. Differentiating (2.1) with respect s and t in the weak sense, we have

∂sη
t(s) =

u(t− s), s 6 t− τ,

∂sητ (s− t+ τ), s > t− τ,
(3.1)

∂tη
t(s) =

u(t)− u(t− s), s 6 t− τ,

u(t)− ∂sητ (s− t+ τ), s > t− τ.
(3.2)

And by (2.1), we find that
ηt(0) = 0.



Attractor for nonclassical diffusion equation 2483

Moreover, since µτ (·) is nonincreasing and ητ ∈ D(Tτ ) ⊂Mσ
τ , we obtain

‖∂sηt‖2Mσ
τ

=

∫ t−τ

0

µτ (s)‖u(t− s)‖2σds+

∫ ∞
t−τ

µτ (s)‖∂sητ (s− t+ τ)‖2σds

6 κ(τ)‖u‖2L∞([τ,T ];Vσ) + ‖∂sητ‖2Mσ
τ
, (3.3)

thus, ∂sη
t ∈Mσ

τ , namely, ηt ∈ D(Tτ ).
Be similar to the above estimation, we have

ess sup
t∈[τ,T ]

‖∂tηt‖Mσ
τ
<∞.

Applying Lemma 3.1, we obtain that ηt ∈W 1,∞([τ, T ];Mσ
τ ).

By (3.1) and (3.2), we have the equality

∂tη
t = Tτηt + u(t)

holds in Mσ
τ .

Remark 3.1. Due to Mσ
τ ↪→Mσ

t and (2.6), for any fixed t, the differential equation

∂tη
t = Ttηt + u(t) (3.4)

holds in Mσ
t .

Remark 3.2. When ητ ∈ D(Tτ ), we can obtain from (2.4) and (3.3)

‖∂sηt‖2Mσ
t
6 Ξ(u, ητ )Kτ (t), ∀t ∈ [τ, T ], (3.5)

where Ξ(u, ητ ) = κ(τ)‖u‖2L∞([τ,T ];Vσ) + ‖∂sητ‖2Mσ
τ
.

Lemma 3.3. Suppose that u ∈ C([τ, T ];Vσ) and ητ ∈ C1(R+, Vσ) ∩D(Tτ ). Then,
the following inequality

‖ηb‖2Mσ
b
−
∫ b

a

∫ ∞
0

(∂tµt(s) + ∂sµt(s))‖ηt(s)‖2σdsdt 6 ‖ηa‖2Mσ
a

+ 2

∫ b

a

〈u(t), ηt〉Mσ
t

dt

(3.6)

holds for all τ 6 a 6 b 6 T .

Proof. For every ε > 0 small, let the cut-off function

φε(s) =



0, 0 6 s < ε,

s

ε
− 1, ε 6 s < 2ε,

1, 2ε 6 s <
1

ε
,

2− εs, 1

ε
6 s <

2

ε
,

0,
2

ε
6 s.

We denote
µεt (s) = φε(s)µt(s), yε(t, s) = µεt (s)‖ηt(s)‖2σ,
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hence, ∫ ∞
0

d

dt
yε(t, s)ds =

d

dt

∫ ∞
0

yε(t, s)ds. (3.7)

For every fixed t and for every s, we deduce that from Lemma 3.1

s 7→ yε(t, s) ∈ L1(R+),

t 7→ ‖ηt(s)‖2σ ∈ C1([τ, T ]).

Thus,
d

dt
yε(t, s) = ∂tµ

ε
t (s)‖ηt(s)‖2σ + 2µεt (s)〈∂tηt(s), ηt(s)〉σ.

From (2.1) and (3.2), we can get that

sup
t∈[τ,T ]

sup
s∈[ε, 2ε ]

(‖ηt‖σ + ‖∂tηt‖σ) <∞.

Bearing in mind (H3) on the compact set K = [τ, T ] × [ε, 2
ε ], we know that there

exists Cε > 0, such that

| d
dt
yε(t, s)| 6 Cεφε(s) 6 Cεχ[ε, 2ε ](s). (3.8)

Hence, it follows from (3.8) that∫ ∞
0

sup
t∈[τ,T ]

| d
dt
yε(t, s)|ds <∞. (3.9)

We define
Mσ,ε
t = L2

µεt
(R+;Vσ).

Multiplying (3.4) by 2ηt in Mσ,ε
t , we can obtain that

2〈∂tηt, ηt〉Mσ,ε
t

= 2〈Ttηt, ηt〉Mσ,ε
t

+ 2〈u(t), ηt〉Mσ,ε
t
.

Owing to (3.7), we deduce that

2〈∂tηt, ηt〉Mσ,ε
t

=

∫ ∞
0

µεt (s)
d

dt
‖ηt(s)‖2σds

=

∫ ∞
0

(
d

dt
(µεt (s)‖ηt(s)‖2σ)− ∂tµεt (s)‖ηt(s)‖2σ)ds

=
d

dt
‖ηt‖2Mσ,ε

t
−
∫ ∞

0

∂tµ
ε
t (s)‖ηt(s)‖2σds.

By (2.5), we find

2〈Ttηt, ηt〉Mσ,ε
t

=

∫ ∞
0

∂sµ
ε
t (s)‖ηt(s)‖2σds.

Consequently,

d

dt
‖ηt‖2Mσ,ε

t
=

∫ ∞
0

(∂tµ
ε
t (s) + ∂sµ

ε
t (s))‖ηt(s)‖2σds+ 2〈u(t), ηt〉Mσ,ε

t
. (3.10)
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By virtue of (3.7) and (3.8), it can be seen that the map t 7→ ‖ηt‖2
Mσ,ε
t

is absolutely

continuous. Thus, integrating (3.10) over [a, b] , we get

‖ηb‖2Mσ,ε
b
− ‖ηa‖2Mσ,ε

a
−
∫ b

a

∫ ∞
0

(∂tµ
ε
t (s) + ∂sµ

ε
t (s))‖ηt(s)‖2σdsdt

=2

∫ b

a

〈u(t), ηt〉Mσ,ε
t

dt. (3.11)

Next, let us show (3.11) pass to the limit (3.6) as ε→ 0.
For any fixed t, we have

0 6 ‖ηt‖2Mσ
t
− ‖ηt‖2Mσ,ε

t
6
∫ 2ε

0

µt(s)‖ηt(s)‖2σds+

∫ ∞
1
ε

µt(s)‖ηt(s)‖2σds→ 0.

Be similar to the above estimate, we obtain

〈u(t), ηt〉Mσ,ε
t
→ 〈u(t), ηt〉Mσ

t
.

Using (H1), (H2) and applying Lemma 3.1, we can obtain that

|〈u(t), ηt〉Mσ,ε
t
| 6

√
κ(t)‖u(t)‖σ‖ηt‖Mσ

t

6
√
κ(τ)‖u(t)‖σ

√
Kτ (t)‖ηt‖Mσ

τ
∈ L1([a, b]).

Thanks to Lebesgue dominated convergence theorem, we get∫ b

a

〈u(t), ηt〉Mσ,ε
t

dt→
∫ b

a

〈u(t), ηt〉Mσ
t

dt.

We set

qε(t, s) = −(∂tµ
ε
t (s) + ∂sµ

ε
t (s))‖ηt(s)‖2σ,

q(t, s) = −(∂tµt(s) + ∂sµt(s))‖ηt(s)‖2σ.

By use of (H4), we have

qε(t, s) = −(φε(s)∂tµt(s) + φε(s)∂sµt(s) + φ′ε(s)µt(s))‖ηt(s)‖2σ

> δκ(t)µt(s)‖ηt(s)‖2σ −
1

ε
χ[ε,2ε](s)µt(s)‖ηt(s)‖2σ

> −δκ(t)µt(s)‖ηt(s)‖2σ −
1

ε
χ[ε,2ε](s)µt(s)‖ηt(s)‖2σ

∈ L1([a, b]× R+).

In addition,

‖ηt(s)‖2σ 6 (

∫ s

0

‖∂sηt(y)‖σdy)2 6 s

∫ s

0

‖∂sηt(y)‖2σdy.

Since µt(·) is nonincreasing, we obtain

µt(s)‖ηt(s)‖2σ 6 s

∫ s

0

µt(y)‖∂sηt(y)‖2σdy 6 s‖∂sηt‖2Mσ
t
6 Ξ(u, ητ )sKτ (t).
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And we can presume that ε 6 1, so

s

ε
χ[ε,2ε](s) 6 2χ[0,2](s).

Combining with the two estimate, we have

1

ε
χ[ε,2ε](s)µt(s)‖ηt(s)‖2σ 6 2Ξ(u, ητ )χ[0,2](s)Kτ (t) ∈ L1([a, b]× R+).

Consequently, we find a positive function

ψ(t, s) = δκ(t)µt(s)‖ηt(s)‖2σ + 2Ξ(u, ητ )χ[0,2](s)Kτ (t) ∈ L1([a, b]× R+),

satisfying
qε(t, s) > −ψ(t, s).

According to Fatou Lemma and using qε(t, s) → q(t, s) almost everywhere, we
deduce that ∫ b

a

∫ ∞
0

q(t, s)dsdt 6 lim inf
ε→0

∫ b

a

∫ ∞
0

qε(t, s)dsdt.

Finally, we conclude that (3.6) holds.

Theorem 3.1. For all τ 6 a 6 b 6 T , the following estimate

‖ηb‖2Mσ
b

+ δ

∫ b

a

κ(t)‖ηt(s)‖2Mσ
t

dsdt

6‖ηb‖2Mσ
b
−
∫ b

a

∫ ∞
0

(∂tµt(s) + ∂sµt(s))‖ηt(s)‖2σdsdt

6‖ηa‖2Mσ
a

+ 2

∫ b

a

〈u(t), ηt〉Mσ
t

dt (3.12)

holds.

Proof. Take two sequences

{ηnτ } ⊂ C1(R+;Vσ) ∩D(Tτ ) and {un} ⊂ C([τ, T ];Vσ),

such that
ηnτ → ητ , un → u.

We set

ηtn(s) =


∫ s

0

un(t− r)dr, 0 < s 6 t− τ,

ηnτ (s− t+ τ) +

∫ t−τ

0

un(t− r)dr, s > t− τ.

Thanks to Lemma 3.3 and the assumption (H4), we deduce that

‖ηnb ‖2Mσ
b

+ δ

∫ b

a

κ(t)‖ηtn(s)‖2Mσ
t

dt 6 ‖ηna‖2Mσ
a

+ 2

∫ b

a

〈un(t), ηtn〉
Mσt

dt. (3.13)

We will show that the sequences is passing to the limit in the above inequality.
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Bearing in mind Lemma 3.1, we obtain

‖ηtn − ηt‖2Mσ
t
6 Γ(un − u, ηnτ − ητ )Kτ (t).

Hence, the pointwise convergence

ηtn → ηt in Mσ
t , ∀t ∈ [a, b]

holds. And

‖ηtn‖2Mσ
t
→ ‖ηt‖2Mσ

t
, κ(t)‖ηtn‖2Mσ

t
→ κ(t)‖ηt‖2Mσ

t
, ∀t ∈ [a, b].

By Lemma 3.1, we know that

κ(t)‖ηtn‖2Mσ
t
6 κ(τ)Γ(un, ηnτ )(Kτ (t))2 ∈ L1([a, b]),

where we have used (H2) and κ(t) 6 Kτ (t)κ(τ). According to the dominated
convergence theorem, we have∫ b

a

κ(t)‖ηtn(s)‖2Mσ
t

dt→
∫ b

a

κ(t)‖ηt(s)‖2Mσ
t

dt.

It can be easily shown that

〈un(t), ηtn〉Mσ
t
→ 〈u(t), ηt〉Mσ

t
, for almost every t ∈ [a, b].

Using κ(t) 6 Kτ (t)κ(τ), we find

|〈un(t), ηtn〉Mσ
t
| 6

√
κ(t)‖un(t)‖σ‖ηtn‖Mσ

t
6 CKτ (t) ∈ L1([a, b]),

here, C = sup
n

(
√
κ(τ)Γ(un, ηtn)‖un‖C([τ,T ];Vσ)). By the dominated convergence the-

orem, we have ∫ b

a

〈un(t), ηtn〉Mσ
t

dt→
∫ b

a

〈u(t), ηt〉Mσ
t

dt.

This completes proof.

Definition 3.1. Let g ∈ L2(Ω) and also let T > τ ∈ R. A binary z(t) = (u(t), ηt)
is said to be a
• strong solution of the problem (2.2), (2.3) on the interval [τ, T ], if

(i) (u, ηt) ∈ L∞([τ, T ];H2
t );

(ii) The function ηt satisfies the formula (2.1);

(iii) For every φ ∈ V1 and almost every t ∈ [τ, T ],

〈∂tu, φ〉+ 〈∂tu, φ〉1 + 〈u, φ〉1 +

∫ ∞
0

µt(s)〈ηt(s), φ〉1ds+ 〈f(u), φ〉 = 〈g, φ〉, (3.14)

• weak solution of the problem (2.2), (2.3) on an interval [τ, T ],

(i) if there exists a sequence of regular data (unτ , η
n
τ ) ∈ H2

τ such that

(unτ , η
n
τ )→ (uτ , ητ ) in H1

τ , (u, ηt) ∈ L∞([τ, T ];H1
t ), and

un → u in C([τ, T ];V1),

where, (unτ , η
n
τ ) is the sequence of the strong solution of the problem (2.2),

(2.3) with initial data znτ = (unτ , η
n
τ ) ∈ H2

τ ;
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(ii) The function ηt satisfies the formula (2.1);

(iii) For every φ ∈ V1 and almost every t ∈ [τ, T ], Eq. (2.2) satisfies (3.14).

Theorem 3.2. (Well-posedness and regularity) Let T > τ be arbitrary and (1.3),
(1.4) hold. If g ∈ L2(Ω) and the assumptions (H1)-(H4) are valid. Then,

(i) for any (uτ , ητ ) ∈ H1
τ , the problem (2.2), (2.3) admits a weak solution (u, ηt)

satisfying

sup
t>τ
‖z(t)‖2H1

t
+

∫ t

τ

‖u(r)‖21dr +

∫ t

τ

κ(r)‖ηr‖2M1
r
dr +

∫ t

τ

‖∂tu(r)‖21dr 6 Q,

here, Q = max{Q1, Q2}. In addition, if there exists a sequence of regular data
(unτ , η

n
τ ) ∈ H2

τ such that

(unτ , η
n
τ )→ (uτ , ητ ) in H1

τ ,

then un → u in C([τ, T ];V1);

(ii) for any (uτ , ητ ) ∈ H2
τ , the problem (2.2), (2.3) admits a strong solution (u, ηt)

satisfying

sup
t>τ
‖z(t)‖2H2

t
+

∫ t

τ

‖u(r)‖22dr +

∫ t

τ

κ(r)‖ηr‖2M2
r
dr 6 Q3;

(iii) moreover, the solutions of the problem (2.2), (2.3) depend on initial data con-
tinuously. That is

‖z1(t)− z2(t)‖2H1
t
6 CeC(R,λ1)(t−τ)‖z1(τ)− z2(τ)‖2H1

τ
, z1τ , z2τ ∈ H1

τ , t ∈ [τ, T ],

or

‖z1(t)− z2(t)‖2H2
t
6 CeC(R,λ1)(t−τ)‖z1(τ)− z2(τ)‖2H2

τ
, z1τ , z2τ ∈ H2

τ , t ∈ [τ, T ],

where z1(t), z2(t) are two weak solutions of the problem (2.2), (2.3) with ini-
tial data z1τ = (u1τ , η1τ ), z2τ = (u2τ , η2τ ), respectively.

Proof. Multiplying (2.2) by u, we have

d

dt
(‖u‖2 + ‖u‖21) + 2‖u‖21 + 2〈u, ηt〉M1

t
+ 2〈f(u), u〉 − 2〈g, u〉 = 0. (3.15)

In view of (1.4), we obtain

−2〈f(u), u〉 6 2(1− θ)‖u‖21 + 4cf ,

here θ ∈ (0, 1). And it is easy to see that

2〈g, u〉 6 θ‖u‖21 +
1

λ1θ
‖g‖2.

We define

N(t) = ‖u‖2 + ‖u‖21.
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Then

d

dt
N(t) + θ‖u‖21 + 2〈u, ηt〉M1

t
6

1

λ1θ
‖g‖2 + 4cf := Q0. (3.16)

Integrating (3.16) over [τ, t], we get

N(t) + θ

∫ t

τ

‖u(r)‖21dr + 2

∫ t

τ

〈u, ηr〉M1
r
dr 6 N(τ) +Q0(t− τ), ∀t > τ. (3.17)

Applying Theorem 3.1, we know

N(t) + ‖ηt‖2M1
t

+ θ

∫ t

τ

‖u(r)‖21dr −
∫ t

τ

∫ ∞
0

(∂tµt(s) + ∂sµt(s))‖ηr(s)‖21dsdr

6N(τ) + ‖ητ‖2M1
τ

+Q0(t− τ), ∀t > τ.

We set

N (t) = N(t) + ‖ηt‖2M1
t
.

Then

‖z(t)‖2H1
t
6 N (t) 6 (1 +

1

λ1
)‖z(t)‖2H1

t
. (3.18)

Therefore,

N (t) + θ

∫ t

τ

‖u(r)‖21dr −
∫ t

τ

∫ ∞
0

(∂tµt(s) + ∂sµt(s))‖ηr(s)‖21dsdr

6N (τ) +Q0(t− τ). (3.19)

Namely,

sup
t>τ
‖z(t)‖2H1

t
+

∫ t

τ

‖u(r)‖21dr +

∫ t

τ

κ(r)‖ηr‖2M1
r
dr

6C(R, T, ‖g‖, θ, δ, λ1, cf )

:=Q1. (3.20)

Taking the multiplier ∂tu in (2.2) yields

‖∂tu‖2 + ‖∂tu‖21 = −〈u, ∂tu〉1 −
∫ ∞

0

µt(s)〈ηt(s), ∂tu〉1ds− 〈f(u), ∂tu〉+ 〈g, ∂tu〉.

In view of (1.3), we have

|〈f(u), ∂tu〉| 6 ‖f(u)‖
L

1+ 1
p
‖∂tu‖Lp+1 6 C(1 + ‖u(t)‖p1)‖∂tu‖1.

And we can obtain from (H1) that

| −
∫ ∞

0

µt(s)〈ηt(s), ∂tu〉1ds| 6 ‖∂tu‖1
∫ ∞

0

µt(s)‖ηt(s)‖1ds

6 ‖∂tu‖1(

∫ ∞
0

µt(s)ds)
1
2 (

∫ ∞
0

µt(s)‖ηt(s)‖21ds)
1
2
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6 ‖∂tu‖1
√
κ(t)‖ηt‖M1

t
.

Then

‖∂tu‖21 6 C(‖u(t)‖1 + 1 + ‖u(t)‖p1 +
√
κ(t)‖ηt‖M1

t
+
‖g‖
λ1

1
2

)‖∂tu‖1

6 C(1 +Q
1
2
0 +Q

p
2
0 +

√
κ(t)‖ηt‖M1

t
+
‖g‖
λ1

1
2

)‖∂tu‖1

6
1

2
‖∂tu‖21 + C(R, T, ‖g‖, θ, δ, λ1, cf )(1 + κ(t)‖ηt‖2M1

t
)

=
1

2
‖∂tu‖21 +Q1(1 + κ(t)‖ηt‖2M1

t
), ∀t ∈ [τ, T ]. (3.21)

Therefore, ∫ t

τ

‖∂tu(s)‖21ds 6 2Q1(1 +

∫ t

τ

κ(s)‖ηs‖2M1
s
ds) 6 Q2. (3.22)

Multiplying (2.2) by −∆u, we have

d

dt
(‖u‖21 + ‖u‖22) + 2‖u‖22 + 2〈u, ηt〉M2

t
+ 2〈f(u),−∆u〉 − 2〈g,−∆u〉 = 0. (3.23)

By virtue of (1.3), we obtain

−2〈f(u),−∆u〉 = −2

∫
Ω

f ′(u)|∇u|2dx 6 2C1‖u‖21. (3.24)

Obviously,
2〈g,−∆u〉 6 ‖u‖22 + ‖g‖2.

Define
N1(t) = ‖u‖21 + ‖u‖22.

Then

d

dt
N1(t) + ‖u‖22 + 2〈u, ηt〉M2

t
6 2C1‖u‖21 + ‖g‖2. (3.25)

Integrating (3.25) over [τ, t], we have

N1(t) +

∫ t

τ

‖u‖22dr + 2

∫ t

τ

〈u, ηr〉M2
r
dr

6N1(τ) + 2C1

∫ t

τ

‖u(r)‖21dr + ‖g‖2(t− τ). (3.26)

Thanks to Theorem 3.1, we find

N1(t) +

∫ t

τ

‖u‖22dr + ‖ηt‖2M2
t

+ δ

∫ t

τ

κ(r)‖ηr‖2M2
r
dr

6N1(τ) + ‖ητ‖2M2
τ

+ 2C1

∫ t

τ

‖u(r)‖21dr + ‖g‖2(t− τ), ∀t > τ. (3.27)



Attractor for nonclassical diffusion equation 2491

We set

N1(t) = N1(t) + ‖ηt‖2M2
t
.

Then

‖z(t)‖2H2
t
6 N1(t) 6 (1 +

1

λ1
)‖z(t)‖2H2

t
.

Thus,

N1(t) +

∫ t

τ

‖u‖22dr + δ

∫ t

τ

κ(r)‖ηr‖2M2
r
dr

6N1(τ) + 2C1

∫ t

τ

‖u(s)‖21ds+ ‖g‖2(t− τ), ∀t > τ. (3.28)

Applying Gronwall inequality, we conclude that

sup
t>τ
‖z(t)‖2H2

t
+

∫ t

τ

‖u‖22dr +

∫ t

τ

κ(r)‖ηr‖2M2
r
dr

6C(‖z(τ)‖H2
τ
, T, ‖g‖, θ, δ, λ1, C1, cf )

:=Q3. (3.29)

Let {wn} be an orthonormal basis of L2(Ω) which is also orthogonal in V1 and
−∆wj = λjw

j , j = 1, 2, · · · . And let {ζn} be an orthonormal basis of L2
µt(R

+;V1)

which is also orthogonal in L2
µt(R

+;V1) and −∆ζj = λjζ
j , j = 1, 2, · · · . For every

n ∈ N, the finite-dimensional subspaces are defined by:

Hn = span{w1, · · · , wn} ⊂ V1, Mn = span{ζ1, · · · , ζn} ⊂ L2
µt(R

+;V1).

Pn : V1 → Hn is denoted by the orthogonal projection onto Hn; Qn : L2
µt(R

+;V1)→
Mn is denoted by the orthogonal projection onto Mn.

The initial datum zτ = (uτ , ητ ) is approximated with a sequence {znτ = (unτ , η
n
τ )}

⊂ H2
τ , where

unτ = Pnuτ → uτ in V1, (3.30)

ηnτ = Qnητ → ητ in M1
τ . (3.31)

For every n ∈ N, let zn = (un, ηtn) be the approximation solutions of the problem
(2.2), (2.3). Where, un = Σnj=1T

n
j (t)wj , Tnj ∈ C1([τ, T ]) and ηtn = Σnj=1Λnj (t)ζj ,

Λnj ∈ C1([τ, T ]). So, for every test function ψ ∈ Hn and every t ∈ [τ, T ], zn =
(un, ηtn) solves the following system:

〈∂tun, ψ〉+ 〈∂tun, ψ〉1 + 〈un, ψ〉1 +

∫ ∞
0

µt(s)〈ηtn(s), ψ〉1ds+ 〈f(un), ψ〉 = 〈g, ψ〉,

(3.32)

and

ηtn(s) =


∫ s

0

un(t− r)dr, 0 < s 6 t− τ,

ηnτ (s− t+ τ) +

∫ t−τ

0

un(t− r)dr, s > t− τ.
(3.33)
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Assume that ψ ∈ Hm is fixed. Then for every n > m, we have (3.32) holds.
Multiplying (3.32) by an arbitrary ϕ ∈ C∞0 ([τ, T ]) and integrating (3.32) over [τ, T ],
we find ∫ T

τ

ϕ〈∂tun(r), ψ〉dr +

∫ T

τ

ϕ〈∂tun(r), ψ〉1dr +

∫ T

τ

ϕ〈un(r), ψ〉1dr

+

∫ T

τ

ϕ

∫ ∞
0

µr(s)〈ηrn(s), ψ〉1dsdr +

∫ T

τ

ϕ〈f(un), ψ〉dr

=

∫ T

τ

ϕ〈g, ψ〉dr. (3.34)

Evidently, for the sequence {zn}, the estimates (3.20), (3.22) and (3.29) are valid.
Then,

∂tu
n is bounded in L2([τ, T ];V1),

un is bounded in L∞([τ, T ];V2),

un is bounded in L2([τ, T ];V2),

ηtn is bounded in L∞([τ, T ];M2
t ).

Since ‖f(un)‖
L

1+ 1
p
6 C(1 + ‖un‖p1) 6 C, we deduce that

f(un) is bounded in L1+ 1
p (Ω).

For the Galerkin approximation solutions zn = (un, ηtn), we know that there
exists a binary z = (u, ηt) such that (subsequence if necessary)

∂tu
n → ∂tu weakly in L2([τ, T ];V1), (3.35)

un → u weakly∗ in L∞([τ, T ];V2), (3.36)

un → u weakly in L2([τ, T ];V2), (3.37)

ηtn → qt weakly∗ in L∞([τ, T ];M2
t ), (3.38)

f(un)→ f(u) weakly in L1+ 1
p (Ω). (3.39)

Applying Lemma 2.1, we can obtain from (3.35) and (3.36)

un → u in C([τ, T ];V1), (3.40)

and the pointwise convergence

un(x, t)→ u(x, t) a.e. in Ω× [τ, T ].

According to the continuity of f ,

f(un(x, t))→ f(u(x, t)) a.e. in Ω× [τ, T ]

is also valid.
Using (3.35) and (3.37), we easily obtain the convergence of the first term to the

third term at the left end of (3.34). We will deal with the remaining two terms.
Due to ψ ∈ Hn ⊂ V1, it is easy to see that ψ ∈ PnLp+1(Ω). Thus, (3.39) ensures

〈f(un)− f(u), ψ〉dr → 0
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holds. Owing to the boundedness of f(un) and f(u) in L1+ 1
p (Ω), applying domi-

nated convergence theorem, we deduce that∫ T

τ

ϕ〈f(un)− f(u), ψ〉dr → 0.

Let us show the convergence of
∫ T
τ
ϕ
∫∞

0
µr(s)〈ηrn(s), ψ〉1dsdr. To this end, we

set
η̄τ = ηnτ − ητ , ūτ = unτ − uτ ,

and for every t ∈ [τ, T ],

η̄t = ηtn − ηt, ū(t) = un(t)− u(t).

Taking account of (H2) and using

η̄t(s) =


∫ s

0

ū(t− ζ)dζ, 0 < s 6 t− τ,

η̄τ (s− t+ τ) +

∫ t−τ

0

ū(t− ζ)dζ, s > t− τ,

we have

‖η̄t‖2M1
t

6Kτ (t)‖η̄t‖2M1
τ

=C(T )(

∫ t−τ

0

µτ (s)‖
∫ s

0

ū(t− ζ)dζ‖21ds

+

∫ ∞
t−τ

µτ (s)‖η̄τ (s− t+ τ) +

∫ t−τ

0

ū(t− ζ)dζ‖21ds)

6C(T )(3(T − τ)2‖ū‖2C([τ,T ];V1)

∫ ∞
0

µτ (s)ds+ 2

∫ ∞
0

µτ (s+ t− τ)‖η̄τ (s)‖21ds)

6C(T )(3(T − τ)2‖ū‖2C([τ,T ];V1)κ(τ) + 2‖η̄τ‖2M1
τ
)

→0, ∀ t ∈ [τ, T ].

Due to the uniqueness of the limit, we obtain that qt = ηt.
Obviously,∫ ∞

0

µt(s)〈η̄t(s), ψ〉1ds

=

∫ t−τ

0

µt(s)〈
∫ s

0

ūn(t− ζ)dζ, ψ〉1ds+

∫ ∞
t−τ

µt(s)〈η̄τ (s− t+ τ), ψ〉1ds

+

∫ ∞
t−τ

µt(s)〈
∫ t−τ

0

ū(t− ζ)dζ, ψ〉1ds

=

∫ t−τ

0

µt(s)s

∫ s

0

〈ū(t− ζ), ψ〉1dζds+

∫ ∞
0

µt(s+ t− τ)〈η̄τ (s), ψ〉1ds

+

∫ ∞
t−τ

µt(s)s

∫ t

τ

〈ū(ζ), ψ〉1dζds.
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Using (H2) once again, we get∫ t−τ

0

µt(s)s

∫ s

0

〈ū(t− ζ), ψ〉1dζds

6
∫ t−τ

0

µt(s)s

∫ s

0

‖ū(t− ζ)‖1‖ψ‖1dζds

6 ‖ū‖C([τ,T ];V1)‖ψ‖1(T − τ)2Kτ (t)κ(τ)→ 0, a.e. t ∈ [τ, T ],∫ ∞
t−τ

µt(s)s

∫ t

τ

〈ū(ζ), ψ〉1dζds

6
∫ ∞
t−τ

µt(s)s

∫ t

τ

‖ū(ζ)‖1‖ψ‖1dζds

6 ‖ū‖C([τ,T ];V1)‖ψ‖1(T − τ)2Kτ (t)κ(τ)→ 0, a.e. t ∈ [τ, T ],∫ ∞
0

µt(s+ t− τ)〈η̄τ (s), ψ〉1ds 6 ‖ψ‖1Kτ (t)
√
κ(τ)‖η̄τ‖M1

τ
→ 0, a.e. t ∈ [τ, T ].

Consequently,

lim
n→∞

∫ ∞
0

µt(s)〈η̄t(s), ψ〉1ds = 0, a.e. t ∈ [τ, T ].

And ∣∣∣∣∫ ∞
0

µt(s)〈η̄t(s), ψ〉1ds

∣∣∣∣ 6 ∫ ∞
0

µt(s)‖η̄t(s)‖1‖ψ‖1ds

6 ‖ψ‖1
√
Kτ (t)κ(τ)‖η̄t‖M1

t
∈ L1([τ, T ]).

Apply the Lebesgue dominated convergence theorem, we get

lim
n→∞

∫ T

τ

ϕ

∫ ∞
0

µr(s)〈η̄r(s), ψ〉1dsdr = 0.

Finally, we obtain that z = (u, ηt) is a weak solution of the problem (2.2), (2.3).
Similarly, the existence of the strong solution of the problem (2.2), (2.3) can be
proved.

Now, let us show the continuous dependence of the solutions on initial values.
Assume that

z1(t) = (u1(t), ηt1), z2(t) = (u2(t), ηt2)

are two weak solutions of the problem (2.2), (2.3) on [τ, T ]. Then the difference z̃(t) =
z1(t)− z2(t) = (ũ(t), η̃t) satisfies

∂tũ+A∂tũ+Aũ+

∫ ∞
0

µt(s)Aη̃
t(s)ds = −f(u1) + f(u2), (3.41)

where

η̃t(s) =


∫ s

0

ũ(t− r)dr, s 6 t− τ,

η̃τ (s− t+ τ) +

∫ t−τ

0

ũ(t− r)dr, s > t− τ.
(3.42)
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Multiplying (3.41) by ũ, we have

d

dt
F (t) + 2

∫ ∞
0

µt(s)〈η̃t(s), ũ(t)〉1ds

=− 2‖ũ‖21 − 2〈f(u1)− f(u2), ũ(t)〉

6− 2

λ1
‖ũ‖2 + C(1 + ‖u1‖p−1

Lp+1 + ‖u2‖p−1
Lp+1)‖ũ‖2Lp+1

6− 2

λ1
‖ũ‖2 + C(1 + ‖u1‖p−1

1 + ‖u2‖p−1
1 )‖ũ‖21

6C(R, λ1)F (t), t ∈ [τ, T ],

where F (t) = (‖ũ‖2 + ‖ũ‖21). Integrating the above estimate over [τ, t], we find

F (t) + 2

∫ t

τ

〈ū(y), η̃y〉M1
y
dy 6 F (τ) + C(R, λ1)

∫ t

τ

F (y)dy, t ∈ [τ, T ]. (3.43)

According to Theorem 3.1, we know that

‖η̃t‖2M1
t

+ δ

∫ t

τ

κ(y)‖η̃y(s)‖2M1
y
dy 6 ‖η̃τ‖2M1

τ
+ 2

∫ t

τ

〈ũ, η̄y〉M1
y
dy. (3.44)

Setting F(t) = F (t) + ‖η̃t‖2
M1
t
, we have

‖z̃(t)‖2H1
t
6 F(t) 6 C‖z̃(t)‖2H1

t
.

Combining (3.43) with (3.44), we get

F(t) 6 F(τ) + C(R, λ1)

∫ t

τ

F(y)dy.

Applying Gronwall inequality, we obtain

‖z̃(t)‖2H1
t
6 CeC(R,λ1)(t−τ)‖z̃(τ)‖2H1

τ
, t ∈ [τ, T ].

At the same time, we have proved the uniqueness of the weak solutions of the
problem (2.2), (2.3). Besides, similar to the above estimates, we can also show the
continuous dependence on initial data (i.e. the uniqueness) of the strong solutions
of the problem (2.2), (2.3).

Thanks to Theorem 3.2, a process U(t, τ) corresponding to the problem (2.2),
(2.3) can be defined by:

z(t) = U(t, τ)z(τ) : H1
τ → H1

t ,

which is continuous from H1
τ to H1

t .

4. Existence and regularity of time-dependent global
attractor

4.1. The existence of time-dependent absorbing set in H1
t

Theorem 4.1. (Dissipativity) Suppose that g ∈ L2(Ω). If (1.3), (1.4) and (H1)-
(H4) hold, and there exists a sequence of regular data (unτ , η

n
τ ) ∈ H2

τ such that

(unτ , η
n
τ )→ (uτ , ητ ) ∈ Bτ (R) ⊂ H1

τ ,
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then there exists R0 > 0, such that the process U(t, τ) corresponding to the problem
(2.2), (2.3) possesses a time-dependent absorbing set in H1

t , namely, the family
Bt = {Bt(R0)}t∈R.

Proof. Using Poincaré inequality and (H4), we can obtain from (3.17)

N (t) +
θλ1

2

∫ t

τ

‖u(r)‖2dr +
θ

2

∫ t

τ

‖u(r)‖21dr + δ

∫ t

τ

κ(r)‖ηr(s)‖2M1
t
dsdr

6N (τ) +Q1(t− τ). (4.1)

Namely,

N (t) + 2ε

∫ t

τ

N (r)dr 6 N (τ) + ε

∫ t

τ

N (r)dr +Q1(t− τ),

here, ε = min{ 1
2θλ1,

1
2θ, δ inf

r∈[τ,t]
κ(r)}. Applying Lemma 2.4, we deduce that

N (t) 6 N (τ)e−ε(t−τ) +
Q1eε

1− e−ε
.

Moreover,

‖z(t)‖2H1
t
6 N (t) 6 (1 +

1

λ1
)‖z(τ)‖2H1

τ
e−ε(t−τ) +

R2
0

2
, (4.2)

where R2
0 = 2 Q1eε

1−e−ε . Then for every R > 0, there exist a moment t0 = t0(R) =

1
ε ln

2(1+ 1
λ1

)R2

R2
0

6 t and R0 > 0 such that

τ 6 t− t0 ⇒ U(t, τ)Bτ (R) ⊂ Bt(R0).

The proof is complete.

4.2. The existence of time-dependent global attractor in H1
t

Next, we will testify the asymptotic compactness of the solution process U(t, τ)
corresponding to the problem (2.2), (2.3). To this end, we need to make some
decompositions about nonlinear term, solution and solution process.

About the nonlinearity f , inspired by [2], we decompose it as follows:

f(s) = f0(s) + f1(s),

where f0, f1 ∈ C1(R) and satisfy:

|f ′0(u)| 6 C(1 + |u|p−1), ∀u ∈ R, 1 6 p 6 5, (4.3)

f0(u)u > 0, ∀u ∈ R, (4.4)

|f ′1(u)| 6 C(1 + |u|γ), ∀u ∈ R, 1 6 γ < 4, (4.5)

lim inf
|u|→∞

f ′1(u) > −λ1. (4.6)

Influenced by the idea in [26], the solution z(t) = (u(t), ηt) of the problem (2.2),
(2.3) is decomposed as follows:

z(t) = z1(t) + z2(t), with u(t) = v(t) + w(t) and ηt = ζt + ξt,
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here z1(t) = (v(t), ζt) and z2(t) = (w(t), ξt) solve the following equations:

∂tv +A∂tv +Av +

∫ ∞
0

µt(s)Aζ
t(s)ds+ f0(v) = 0,

∂tζ
t + ∂sζ

t = v(t),

v(x, t)|∂Ω = 0, v(x, τ) = uτ (x, t),

ζt(x, s)|∂Ω = 0, ζτ (x, s) = ητ (x, s),

(4.7)

where,

ζt(s) =


∫ s

0

v(t− r)dr, 0 < s 6 t− τ,

ζτ (s− t+ τ) +

∫ t−τ

0

v(t− r)dr, s > t− τ,

and 

∂tw +A∂tw +Aw +

∫ ∞
0

µt(s)Aξ
t(s)ds+ f(u)− f0(v) = g,

∂tξ
t + ∂sξ

t = w(t),

w(x, t)|∂Ω = 0, w(x, τ) = 0,

ξt(x, s)|∂Ω = 0, ξτ (x, s) = 0,

(4.8)

where,

ξt(s) =


∫ s

0

w(t− r)dr, 0 < s 6 t− τ,∫ t−τ

0

w(t− r)dr, s > t− τ.

Analogue to the proof of Theorem 3.2, the existence and uniqueness of the
solution of Eqs. (4.7) and (4.8) can be obtained. Further, it is easy to know that
the solution processes U1(t, τ) and U2(t, τ) corresponding to Eqs. (4.7) and (4.8)
can be defined. For simplicity, we set

U(t, τ)zτ = U1(t, τ)z1(τ) + U2(t, τ)z2(τ) = z1(t) + z2(t),

where z1(τ) = z(τ), z2(τ) = 0.
Similar to Theorem 4.1, the following result can be gained.

Lemma 4.1. Assume that f0 satisfies (4.3), (4.4). If there exists a sequence of
regular data (unτ , η

n
τ ) ∈ H2

τ such that

(unτ , η
n
τ )→ (uτ , ητ ) ∈ Bτ (R) ⊂ H1

τ ,

and (H1)-(H4) hold, then the solutions of (4.7) satisfy the estimate:

‖z1(t)‖2H1
t
6 C(R)e−ε1(t−τ). (4.9)

Proof. Multiplying the first equation in (4.7) by v and integrating over Ω, we find

d

dt
(‖v‖2 + ‖v‖21) + 2‖v‖21 + 2〈v, ζt〉M1

t
+ 2〈f0(v), v〉 = 0. (4.10)
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We define
F (t) = ‖v‖2 + ‖v‖21.

In consideration of (4.4), we deduce that

d

dt
F (t) + 2‖v‖21 + 2〈v, ζt〉M1

t
6 0. (4.11)

Integrating (4.11) over [τ, t], we have

F (t) + 2

∫ t

τ

‖v(r)‖21dr + 2

∫ t

τ

〈v, ζr〉M1
r
dr 6 F (τ), ∀ t > τ. (4.12)

Thanks to Theorem 3.1, we get

F (t) + ‖ζt‖2M1
t

+ 2

∫ t

τ

‖v(r)‖21dr + δ

∫ t

τ

κ(r)‖ζr(s)‖2M1
t
dr

6F (τ) + ‖ζτ‖2M1
τ
, ∀ t > τ.

We set

F(t) = F (t) + ‖ζt‖2M1
t
.

Then

‖z1(t)‖2H1
t
6 F(t) 6 (1 +

1

λ1
)‖z1(t)‖2H1

t
. (4.13)

Consequently,

F(t) + 2

∫ t

τ

‖v(r)‖21dr + δ

∫ t

τ

κ(r)‖ζr(s)‖2M1
t
dr 6 F(τ). (4.14)

That is,

F(t) + 2ε1

∫ t

τ

F(r)dr 6 F(τ) + ε1

∫ t

τ

F(r)dr,

here, ε1 = min{λ1, 1, δ inf
r∈[τ,t]

κ(r)}. Applying Lemma 2.4, we obtain that

F(t) 6 F(τ)e−ε1(t−τ).

Furthermore,

‖z1(t)‖2H1
t
6 F(t) 6 (1 +

1

λ1
)‖z(τ)‖2H1

τ
e−ε1(t−τ) 6 C(R, λ1)e−ε1(t−τ), (4.15)

where ‖z(τ)‖H1
τ
6 R. This completes the proof.

Lemma 4.2. Assume that the nonlinearity f satisfy (1.3), (1.4) and (4.3)-(4.6). If
g ∈ L2(Ω) and (H1)-(H4) hold, and there exists a sequence of regular data (unτ , η

n
τ ) ∈

H2
τ such that

(unτ , η
n
τ )→ (uτ , ητ ) ∈ Bτ (R) ⊂ H1

τ ,

then for each time T > 0, there exists a positive constant I = I(‖g‖, ‖zτ‖H1
τ
, T, λ1),

such that the solutions of (4.8) satisfy:

‖U2(T + τ, τ)z2(τ)‖2
H

4
3
T+τ

= ‖z2(T + τ)‖2
H

4
3
T+τ

6 I. (4.16)
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Proof. Multiplying the first equation in (4.8) by A
1
3w, we have

d

dt
G(t) + 2‖w(t)‖24

3
+ 2〈ξt, w(t)〉

M
4
3
t

=2〈g,A 1
3w〉 − 2〈f1(v), A

1
3w〉 − 2〈f(u)− f(v), A

1
3w〉, (4.17)

where G(t) = ‖w(t)‖21
3

+ ‖w(t)‖24
3

. It is easy to know that

2|〈g,A 1
3w〉| 6 1

4
‖w‖24

3
+

4‖g‖2

λ
2
3
1

. (4.18)

We can obtain from (4.5) and (1.3)

− 2〈f1(v), A
1
3w〉

6C
∫

Ω

(1 + |v|γ)|A 1
3w|dx

6C(

∫
Ω

(1 + |v|
18γ
13 )dx)

13
18 (

∫
Ω

|A 1
3w| 185 dx)

5
18

6C(1 + ‖v‖γL6)‖A 1
3w‖

L
18
5

6C(R, λ1)‖w‖ 4
3

6
1

4
‖w‖24

3
+ C (4.19)

and

− 2〈f(u)− f(v), A
1
3w〉

6C
∫

Ω

(1 + |u|p−1 + |v|p−1)|w||A 1
3w|dx

6C(‖u‖p−1

L
3(p−1)

2

+ ‖v‖p−1

L
3(p−1)

2

)‖w‖L18‖A 1
3w‖

L
18
5

6C(‖u‖p−1
1 + ‖v‖p−1

1 )‖w‖L18‖A 1
3w‖

L
18
5

6c0‖w‖24
3
, (4.20)

where c0 = c0(Q,R, λ1), and we have used the embedding V 4
3
↪→ L18, V 2

3
↪→ L

18
5 ,

V1 ↪→ L6.
Thus, inserting (4.18)-(4.20) into (4.17), we get

d

dt
G(t) + 2〈ξt, w(t)〉

M
4
3
t

6 (c0 −
3

2
)‖w(t)‖24

3
+ C. (4.21)

Integrating over [τ, T + τ ], we have

G(T + τ) + 2

∫ T+τ

τ

〈ξr, w(r)〉
M

4
3
r

dr

6G(τ) + (c0 −
3

2
)

∫ T+τ

τ

‖w(r)‖24
3
dr + CT. (4.22)
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Define

G(t) = ‖w(t)‖21
3

+ ‖w(t)‖24
3

+ ‖ξt‖2
M

4
3
t

.

Applying Theorem 3.1, we get that

G(T + τ) + δ

∫ T+τ

τ

κ(r)‖ξr(s)‖2
M

4
3
r

dr

6G(τ) + (c0 −
3

2
)

∫ T+τ

τ

‖w(r)‖24
3
dr + CT. (4.23)

That is

G(T + τ) 6 G(τ) + c1

∫ T+τ

τ

G(r)dr + CT. (4.24)

By Gronwall inequality, we conclude that

G(T + τ) 6 ec1T (G(τ) + CT ) = CT ec1T .

Similarly,

‖z2(T + τ)‖2
H

4
3
T+τ

6 G(T + τ) 6 CT ec1T = I.

We complete the proof.
Moreover, for any ξτ ∈ L2

µτ (R+;V1), Cauchy problem (see [3, 16,22])∂tξ
t = −∂sξt + w, t > τ,

ξτ = ξτ ,
(4.25)

has a unique solution ξt ∈ C([τ,+∞);Lµτ (R+;V1)) and explicit expression:

ξt(s) =


∫ s

0

w(t− r)dr, 0 < s 6 t− τ,∫ t−τ

0

w(t− r)dr, s > t− τ.
(4.26)

We denote by Bt the time-dependent absorbing set obtained by Theorem 4.1.
Then, we set

KT = ΠU2(T, τ)Bτ ,

here, Π : V1 × Lµt(R+;V1)→ Lµt(R+;V1) is a projection operator.

Lemma 4.3. Let z2(t) = (w(t), ξt) be a solution of the problem (4.8). Suppose
that the nonlinearity satisfies (1.3), (1.4) and (4.3)-(4.6). If g ∈ L2(Ω) and the
assumptions (H1)-(H4) hold, then for every given T > τ , there exists a positive
constant I1 = I1(‖Bτ‖H1

τ
), such that

(i) KT is bounded in L2
µτ (R+;V 4

3
) ∩H1

µτ (R+;V1);

(ii) sup
ηT∈KT

‖ξT (s)‖21 6 I1.
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Proof. In view of (4.26), we deduce that

∂sξ
t(s) =

w(t− s), 0 < s 6 t− τ,

0, s > t− τ.
(4.27)

And thanks to Lemma 4.2, it can be shown that (i) holds.
Next, it is easy to know that

‖ξT (s)‖1 6


∫ s

0

‖w(T − r)‖1dr 6
∫ T−τ

0

‖w(T − r)‖1dr, 0 < s 6 T − τ,∫ T−τ

0

‖w(T − r)‖1dr, s > T − τ,
(4.28)

holds. From (4.16), (ii) is proved.

Lemma 4.4. Let the assumptions of Lemma 4.3 hold. Then for every given T > τ ,
U2(T, τ)Bτ is relatively compact in H1

T .

Proof. Indeed, applying Lemma 2.2 we know that KT is relatively compact in
Lµτ (R+;V1). And using the assumption (H2) once again, we obtain that KT is
relatively compact in Lµt(R+;V1). Furthermore, from the compact embedding:
V 4

3
↪→↪→ V1, we conclude that

U2(T, τ)Bτ is relatively compact in H1
T .

The proof is complete.

Theorem 4.2. Let U(t, τ) be the solution process of the problem (2.2), (2.3). Sup-
pose that the nonlinear term f satisfies (1.3), (1.4) and (4.3)-(4.6). If g ∈ L2(Ω)
and (H1)-(H4) hold, then the process U(t, τ) possesses a time-dependent attractor
A = {At}t∈R in H1

t . In addition, the attractor A is invariant, namely,

U(t, τ)Aτ = At, ∀t > τ.

Proof. Let Bt = {Bt(R0)}t∈R be the time-dependent absorbing set obtained from
Theorem 4.1. From Lemma 4.1 and Lemma 4.2, for a sufficiently large positive
constant R1, it is easy to know that

the family B
1
3
t = {B

1
3
t (R1)}t∈R is pullback attracting,

here B
1
3
t (R1) = {ξ|‖ξ‖

H
4
3
t

6 R1}.

In fact, combining (4.9) with (4.16), we deduce that

distH1
t
(U(t, τ)Bτ , B

1
3
t ) 6 distH1

t
(U1(t, τ)Bτ + U2(t, τ)Bτ , B

1
3
t )

= distH1
t
(U1(t, τ)Bτ , B

1
3
t )

6 C(‖Bτ‖H1
τ
)e−ε1(t−τ),

here, ε1 = min{λ1, 1, δ inf
r∈[τ,t]

κ(r)}.
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If there exists a sequence of regular data (unτ , η
n
τ ) ∈ H2

τ such that

(unτ , η
n
τ )→ (uτ , ητ ) ∈ Bτ (R) ⊂ H1

τ ,

then for the bounded (in H1
τ ) set Bτ = {Bτ (R)}τ∈R corresponding to initial data

(uτ , ητ ), by Theorem 4.1, there exists a t0 = t0(R) such that

τ 6 t− t0 ⇒ U(t, τ)Bτ (R) ⊂ Bt(R0).

Thus,

distH1
t
(U(t, τ)Bτ ,Bt) 6 $eε1t0e−ε1(t−τ),

where $ = sup
06t−τ6t0

‖U(t, τ)Bτ‖H1
t
.

Applying Lemma 2.3 and Theorem 3.2, we can obtain that

distH1
t
(U(t, τ)Bτ , B

1
3
t ) 6 C(‖Bτ‖H1

τ
)e−ε(t−τ).

Combining with Lemma 4.4, we have the process U(t, τ) corresponding to the prob-
lem (2.2), (2.3) is asymptotically compact in H1

t . Therefore, applying Theorem 2.1,
Theorem 2.2 and Theorem 3.2, we can show the existence and invariance of the
time-dependent attractor A = {At}t∈R in H1

t , that is

U(t, τ)Aτ = At,

and
A = {Z|t→ Z(t) ∈ H1

t and Z(t) is CBT of the process U(t, τ)}.

We complete the proof.

4.3. Regularity of the time-dependent attractors

Subsequently, we will prove that the time-dependent attractor A is bounded in H2
t

and the bound is independent of t.
To this end, we make a decomposition of the solution z(t) of the problem (2.2),

(2.3):
U(t, τ)zτ = z(t) = z1(t) + z2(t) = U3(t, τ)z1τ + U4(t, τ)z2τ ,

where z1(t) and z2(t) solve the following equations respectively,

∂tv +A∂tv +Av +

∫ ∞
0

µt(s)Aζ
t(s)ds = 0,

∂tζ
t + ∂sζ

t = v(t),

v(x, t)|∂Ω = 0, v(x, τ) = uτ (x, t),

ζt(x, s)|∂Ω = 0, ζτ (x, s) = ητ (x, s),

(4.29)

where,

ζt(s) =


∫ s

0

v(t− r)dr, 0 < s 6 t− τ,

ζτ (s− t+ τ) +

∫ t−τ

0

v(t− r)dr, s > t− τ,
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and 

∂tw +A∂tw +Aw +

∫ ∞
0

µt(s)Aξ
t(s)ds+ f(u) = g,

∂tξ
t + ∂sξ

t = w(t),

w(x, t)|∂Ω = 0, w(x, τ) = 0,

ξt(x, s)|∂Ω = 0, ξτ (x, s) = 0,

(4.30)

where,

ξt(s) =


∫ s

0

w(t− r)dr, 0 < s 6 t− τ,∫ t−τ

0

w(t− r)dr, s > t− τ.

Be similar to the proof of Lemma 4.1, we can obtain easily that

‖U3(t, τ)z1τ ‖H1
t
6 Ce−ε(t−τ). (4.31)

Theorem 4.3. Let z2(t) be the solution of (4.30) with initial data z2(τ) ∈ Aτ
satisfying ‖z2(τ)‖H1

τ
= 0. And also let g ∈ L2(Ω). If the presumptions (1.3), (1.4)

and (H1)-(H4) hold, then {At}t∈R is bounded in H2
t and the bound is independent

of t.

Proof. Taking the scalar product of (4.30) with −∆w, we find

d

dt
G1(t) + 2‖w(t)‖22 + 2〈ξt, w(t)〉M2

t
+ 2〈f(u),−∆w〉 = 2〈g,−∆w〉, (4.32)

where G1(t) = ‖w(t)‖21 + ‖w(t)‖22.
It is easy to know that

2〈g,−∆w〉 6 2‖g‖2 +
1

2
‖w‖22.

Due to the invariance of A, we obtain

‖U(t, τ)z(τ)‖
H

4
3
t

6 C.

From (1.3), we can get that

−2〈f(u),−∆w〉| 6 C

∫
Ω

(1 + |u|p−1)|∇u||∇w|dx

6 C(1 + ‖u‖p−1

L
9(p−1)

4

)‖∇u‖
L

18
7
‖∇w‖L6

6 C(1 + ‖u‖p−1
4
3

)‖u‖ 4
3
‖w‖2

6
1

2
‖w‖22 + C,

where, we have used the embedding V 4
3
↪→ L18 ↪→ L

9(p−1)
4 , V 1

3
↪→ L

18
7 and V1 ↪→ L6.

Combining the above estimates, we obtain

d

dt
G1(t) + ‖w‖22 + 2〈ξt, w(t)〉M2

t
6 C. (4.33)
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Integrating (4.33) over [τ, t], we have

G1(t) +

∫ t

τ

‖w(r)‖22dr + 2

∫ t

τ

〈ξr, w(r)〉M2
r
dr 6 G1(τ) + C(t− τ).

Thanks to Theorem 3.1, we get

G1(t) +

∫ t

τ

‖w(r)‖22dr + δ

∫ t

τ

κ(r)‖ξr(s)‖2M2
r
dr 6 G1(τ) + C(t− τ), (4.34)

where,
G1(t) = ‖w(t)‖21 + ‖w(t)‖22 + ‖ξt‖2M2

t
.

Namely,

G1(t) + 2ε2

∫ t

τ

G1(r)dr 6 G1(τ) + ε2

∫ t

τ

G1(r)dr + C(t− τ), (4.35)

here, ε2 = min{λ1

2 ,
1
2 , δ inf

r∈[τ,t]
κ(r)}.

Applying Lemma 2.4, we deduce that

G1(t) 6 G1(τ)e−ε2(t−τ) +
Ceε2

1− e−ε2
.

Since

‖z2(t)‖2H2
t
6 G1(t) 6 (1 +

1

λ1
)‖z2(t)‖2H2

t
, (4.36)

we get that

‖z2(t)‖2H2
t
6 (1 +

1

λ1
)‖z2(τ)‖2H2

τ
e−ε2(t−τ) +

Ceε2

1− e−ε2

=
Ceε2

1− e−ε2

6 I1. (4.37)

Then, ‖U4(t, τ)z2τ ‖H2
t

is uniformly bounded with respect to t.
We set

K2
t = {z|‖z(t)‖H2

t
6 I1}.

We can obtain from (4.31) and (4.37) that

lim
τ→−∞

distH1
t
(U(t, τ)Aτ ,K

2
t ) = 0, ∀t ∈ R.

Due to the invariance of the time-dependent attractor A, we obtain

distH1
t
(At,K

2
t ) = 0, ∀t ∈ R.

Hence, At ⊂ K2
t = K2

t . Finally, we conclude that {At}t∈R is bounded in H2
t and

the bound is independent of t.
This finishes the proof.
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