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SYNCHRONIZATION OF A NOVEL
COMPLEX SYSTEM

Fuchen Zhang1,†, Song Chen1, Xiusu Chen2,1,

Jinde Cao3 and Fei Xu4

Abstract In this paper, we introduce a new hyperchaotic system which is
a four-dimensional system of nonlinear differential equations. This system
exhibits very rich chaotic dynamical behaviors. The dynamical characteris-
tics of this system are analysed theoretically and numerically, including the
dissipation, the quilibrium points and their stability, Lyapunov exponents,
the Lyapunov dimension of the attractors, the global exponential attractive
set. In order to achieve synchronization fast, global exponential synchroniza-
tion is adopted. Suitable linear and nonlinear controllers have been designed
to achieve global exponential synchronization between two identical chaotic
systems by using the Lyapunov stability theory and Dini derivative. The in-
novation of this paper is that firstly we get the globally exponential attractive
set of this system. Secondly, the result of globally exponential attractive set
of the chaotic system is applied to chaos synchronization. Thirdly, we can get
the precise lower bound of the coefficient of linear feedback controller k1, k2, k3
and k4. Finally, chaos synchronization is studied numerically. Numerical sim-
ulations are in excellent agreement with the theoretical study.

Keywords Hyperchaotic system, Dini derivative, stability theory, bifurca-
tion behavior, Hamilton energy function, global exponential synchronization.
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1. Introduction

Henri Poincaré, a distinguished scientist and mathematician [24], was the first per-
son to discover the unpredictability in his research on the three-body problem. Then
unpredictability was developed into chaos theory as we know it nowadays. In 1975,
Li and Yorke [13] coined the mathematical, physical concept of “chaos”, with the
relevant feature that a minimal variation in the initial conditions of a dynamical
system has strong consequences in its dynamics. However, Poincaré’s results were

†The corresponding author.
1Chongqing Key Laboratory of Statistical Intelligent Computing and Mon-
itoring, School of Mathematics and Statistics, Chongqing Technology and
Business University, Chongqing 400067, China

2School of Economics, Chongqing Finance and Economics College,
Longzhouwan, Ba’nan District, Chongqing 401320, China

3School of Mathematics, Southeast University, Nanjing 210096, China
4Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario
N2L 3C5, Canada
Email: zhangfuchen1983@163.com(F. Zhang),
chensong19992022@163.com(S. Chen), 1279776835@qq.com(X. Chen),
jdcao@seu.edu.cn(J. Cao), fxu.feixu@gmail.com(F. Xu)

http://www.jaac-online.com
http://dx.doi.org/10.11948/20240020


Synchronization of a novel complex 2509

neglected and did not receive the deserved attention. It was not until Edward N.
Lorenz [16], in 1963, discovered the first chaotic system when he worked on some
numerical experiments of meteorology, the scientific gateway to chaos research was
reopened. Since then, chaotic systems and chaos phenomena have attracted con-
tinuous attention from scientists. In 1976, the Rössler chaotic system was discov-
ered [25]. In 1986, the Chua circuit chaotic system was found by Leon Chua in a
physical experiment [3, 9]. In 1996, the Swedish physicist Stenflo [28] found a gen-
eralized Lorenz equations for acoustic-gravity waves in the atmosphere, namely, the
Lorenz-Stenflo system. In 1999, Chen and Ueta found another new chaotic system,
namely, Chen chaotic system [2]. In 2002, Lu and Chen reported a new chaotic
system which connected the Lorenz attractor and the Chen’s attractor [17]. In
2002, Lu et al. introduced the unified chaotic system [18]. Since then, more chaotic
systems have been discovered and studied [1,5,6,8,10–12,14,19,22,27,29,31,34,35].
Many papers are devoted to the study of the mechanism of chaos and the discovery
of the new chaotic systems [5, 6, 8, 10–12, 19, 22, 27, 29, 31, 34, 35]. Chaotic systems
and chaos phenomena have been found and studied in many fields, including mete-
orology, physics, engineering, economics, biology, astronomy, neural network, and
fluid mechanics [1, 5, 6, 8–12,19,22,27,29,31,34,35].

A chaotic system is a deterministic system that displays complex and unpre-
dictable behaviors. Because of the sensibility of the initial value, people used to
think that the chaotic systems could not be controlled and could not be synchro-
nized. In 1990, OGY method was proposed [21]. In the same year, the American
Navy Laboratory made a secure communication system via chaotic synchroniza-
tion. It changed the old idea, and people realized the feasibility of chaos control.
Chaos control generally has two purposes, one is to stabilize the chaotic system,
and the other is to track another chaotic system, that is, chaotic synchronization.
Synchronization can also be observed in nature, such as the synchronous flashing
phenomenon caused by a large number of fireflies gathering in trees, the migration
of birds in groups, and the synchronization between the physiological rhythm of
life system and the environmental rhythm. Synchronization also exists in physics
and chemistry. For example, when two pendulums have the same length, they will
tend to be synchronized with time even if the initial swinging directions are dif-
ferent, and synchronous vibration will also occur when two atoms interact at the
resonant frequency. Even the neurons in the human brain will have rhythmic syn-
chronization, so synchronization is closely related to real life. After the concept of
complete synchronization of chaotic systems was put forward by Louis Pecora and
Thomas Caroll in 1990 [23], people applied the theory of chaos synchronization to
more fields, such as acoustics, current, oscillator design, secure communication and
complex networks [4, 14,15,30,32,37,38].

The globally exponential attractive set is an important concept in the study of
chaotic dynamical systems. If we can conclude that a chaotic system has a globally
attractive set, one can confirm that there are no equilibrium, periodic solutions,
almost periodic motions, wandering motions or other chaotic attractors outside the
global attractive set. The strange attractors of a chaotic system are located in
the global attractive set only which greatly simplifies the dynamical analysis of a
chaotic system. Compared with a chaotic system, hyperchaotic systems generally
have more complex dynamical behaviors and the uncertainty of the hyperchaotic
system are greatly increased, which can greatly increase the confidentiality of infor-
mation. Therefore, using the hyperchaotic systems to realize chaos synchronization
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and secure communication has stronger security [4, 14,15,32,33,38].

2. Complex dynamics

2.1. System model and hyperchaotic attractor

The famous Lorenz chaotic system is as follows

dx

dt
= a(y − x),

dy

dt
= cx− xz − y,

dz

dt
= xy − bz,

(2.1)

where the parameters a, b, c are real constants of the Lorenz system.
In this section, we will introduce a new hyperchaotic system as follows on the

basis of the Lorenz system 

ẋ = a(y − x),

ẏ = bx− xz − cy + w,

ż = xy − dz,

ẇ = −ex− rw,

(2.2)

where the parameters a, b, c, d, e, r are real constants of system (2.2). When the
parameters a = 35, b = 20, c = 1, d = 3, e = 3, r = 1.5, the Lyapunov exponents
of the system (2.2) are λL1=0.3278, λL2=0.3249, λL3= − 1.5621, λL4= − 36.7166.
System (2.2) shows hyperchaotic behaviour for parameters a = 35, b = 20, c =
1, d = 3, e = 3, r = 1.5. When the initial value of system (2.2) is selected as
(x0, y0, z0, w0) = (0.5, 0.1, 0.5, 0.1) , then the three-dimensional hyperchaotic attrac-
tor of system (2.2) can be obtained, as shown in Figure 1.

Remark 2.1. For the circuit implementation of this hyperchaotic system and the
calculation of the field energy in the capacitors used in the corresponding circuits,
interested readers can refer to the references [15,38] for the detailed discussion.

2.2. Dissipation

Let us denote the vector field of system as

F (x, y, z, w) =


f1 (x, y, z, w)

f2 (x, y, z, w)

f3 (x, y, z, w)

f4 (x, y, z, w)

 =


a(y − x)

bx− xz − cy + w

xy − dz

−ex− rw

 .

System (2.2) is dissipative under the condition a+ c+ d+ r > 0, since we have

∇V =
∂f1 (x, y, z, w)

∂x
+
∂f2 (x, y, z, w)

∂y
+
∂f3 (x, y, z, w)

∂z
+
∂f4 (x, y, z, w)

∂w
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Figure 1. The hyperchaotic attractors of system (2.2) in the 3D space.

= − (a+ c+ d+ r) .

That is to say, ∇V < 0 holds when a+ c+ d+ r > 0. It shows that system (2.2)
is a dissipative system and it converges with the exponential rate e−(a+c+d+r).

2.3. Fixed points and their stability

The fixed points of system (2.2) are determined by solving the following equations

a(y − x) = 0,

bx− xz − cy + w = 0,

xy − dz = 0,

−ex− rw = 0.

(2.3)

Solving the above equation (2.3), the real equilibrium points of system (2.2) can
be obtained as the following cases:
(i) If d = 0, r 6= 0, , there is only one real fixed point S0 = (0, 0, 0, 0) .
(ii) If d 6= 0, r = 0, e 6= 0, there is only one real fixed point S0 = (0, 0, 0, 0) .
(iii) If d 6= 0, r = 0, e = 0, there are an infinite number of real fixed points.
(iv) If d = 0, r = 0, there are an infinite number of real fixed points.
(v) If d 6= 0, r 6= 0, then system (2.2) has only one real fixed point S0 = (0, 0, 0, 0)
when p = bd − cd − de

r ≤ 0. When p = bd − cd − de
r ≥ 0, system (2.2) has the

following three fixed points:

S0 = (0, 0, 0, 0) , S+ =

(
√
p
√
p
p

d
−
e
√
p

r

)
, S− =

(
−√p−√pp

d

e
√
p

r

)
.

In the following, we will study the stability of the fixed points of system (2.2)
with parameters a = 35, b = 20, c = 1, d = 3, e = 3, r = 1.5. Consider the parameters
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of system (2.2) when a = 35, b = 20, c = 1, d = 3, e = 3, r = 1.5, which satisfies
the second category above, so the system (2.2) has three fixed points. To study the
stability of S0 = (0, 0, 0, 0) , we will calculate the Jacobian matrix of system (2.2)
at S0 = (0, 0, 0, 0) as follows:

J |S0
=


−35 35 0 0

20 −1 0 1

0 0 −3 0

−3 0 0 −1.5

 .

The eigenvalues of matrix J |S0
are calculated as λ1=−49.4831, λ2=13.3356, λ3=

− 1.3525, and λ4=− 3 by using Matlab software. Since there exists positive eigen-
value of matrix J |S0

, so S0 = (0, 0, 0, 0) is an unstable fixed point of system (2.2).
The stability analysis of S+ and S− by using the same method yields that S+ and
S− are both unstable fixed point of system (2.2).

2.4. Lyapunov exponents and Lyapunov dimension of the sys-
tem

When the parameters are chosen as a = 35, b = 20, c = 1, d = 3, e = 3, r = 1.5,
with the initial value (x0, y0, z0, w0) = (0.5, 0.1, 0.5, 0.1) , the Lyapunov exponents of
system (2.2) are calculated as λL1

=0.3278, λL2
=0.3249, λL3

=− 1.5621 and λL4
=−

36.7166, respectively. And the Lyapunov dimension of the attractors of system (2.2)
is calculated as [19,24,31]

DL = j +

j∑
i=1

λLi∣∣λLj+1

∣∣ ,
such that j is the largest integer that guarantees the inequality

j∑
i=1

λLi > 0. And

the Lyapunov dimension of system (2.2) in this case is

DL = 2 +
λL1

+ λL2

|λL3 |
= 2.4178.

The Lyapunov dimension of system (2.2) is a fractional number which ensures
the presence of a strange attractor. The Lyapunov exponent of system (2.2) is
shown in Figure 2.

Remark 2.2. While positive Lyapunov exponent is widely used as indication of
chaos, but it is extremely difficult to prove this and in general this is not true. Rigor-
ous consideration requires verification of additional properties of considered system
(such as regularity, ergodicity), because of so-called Perron effects of Lyapunov ex-
ponents sign reversal (see the excellent papers [8, 12] for a detailed discussion of
chaos in nonlinear dynamical systems).

2.5. Effects of changes for system parameters

When parameters b = 20, c = 1, d = 3, e = 3, r = 1.5 of system (2.2) are fixed, the
value of parameter a is changed with the initial value (x0, y0, z0, w0) = (0.5, 0.1, 0.5,
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Figure 2. The Lyapunov exponent chart of system (2.2).

0.1). For a ∈ [0, 100] , the Lyapunov exponents of system (2.2) with respect to
parameter a can be obtained, as shown in Figure 3. The bifurcation diagram of
the state variable x of system (2.2) with respect to the parameter a is presented in
Figure 4.

Figure 3 reveals that the Lyapunov exponent of system (2.2) is less than 0 for a ∈
[0, 4.8] and the solutions of system (2.2) approach fixed points. When a ∈ (4.8, 44],
the maximum Lyapunov exponent of system (2.2) consistently exceeds 0, indicating
the presence of chaotic attractors. However, in certain small intervals, there exist
points corresponding to two positive Lyapunov exponents, indicating the presence of
hyperchaotic attractors in system (2.2). For a ∈ (44, 100], all Lyapunov exponents
of system (2.2) are less than 0 and the solutions of system (2.2) approach fixed
points. We fix the parameters of system (2.2) as a = 35, c = 1, d = 3, e = 3, r = 1.5
with (x0, y0, z0, w0) = (0.5, 0.1, 0.5, 0.1) and change the value of parameter b. When
b ∈ [0, 100], the Lyapunov exponents of system (2.2) with respect to parameter a
can be obtained, as shown in Figure 5. In addition, Figure 6 displays the bifurcation
diagram of the state variable x in system (2.2) with respect to parameter b.

It can be observed from Figure 5 that when b ∈ [[0, 2.6), (4, 17.2]], the Lyapunov
exponent of system (2.2) is less than 0 and the solutions of system (2.2) approach
fixed points. When b ∈ [2.6, 4], the maximum Lyapunov exponent of system (2.2)
is equal to 0, while the other three Lyapunov exponents are all less than 0, and
system (2.2) displays periodic solutions. When b ∈ (17.2, 100], system (2.2) exhibits
two Lyapunov exponents greater than 0 indicating the presence of hyperchaotic
attractors. The Lyapunov exponent diagram of system (2.2) with b ∈ [0, 100] can
be observed in Figure 5.

Remark 2.3. Lyapunov exponent represents the exponential convergence or di-
vergence rate between adjacent trajectories in the phase space, which reflects the
intensity of chaos in the system. A positive Lyapunov exponent is a necessary con-
dition for the system to show chaotic state [15]. By analyzing Figure 3, Figure 4,
Figure 5 and Figure 6, it can be clearly seen that when the Lyapunov exponent cor-
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Figure 3. Lyapunov exponents diagram of system with a ∈ [0, 100].

Figure 4. Bifurcation diagram of state variable x versus a.

responding to a certain parameter of the system is positive, there will be countless
signal points in the bifurcation diagram of a certain state variable of the system
about this parameter, which shows that the system is in a chaotic state at this time.

2.6. Hamilton energy function

The Hamilton energy plays a crucial role in the stability of the dynamical system.
This section is devoted to the computation of the Hamilton energy of hyperchaotic
system (2.2) based on the Helmholtz theorem [7,20,26,36]. According to the litera-
tures [7,20,26,36], the Hamilton energy function H (x, y, z, w) of system (2.2) must
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Figure 5. Lyapunov exponents diagram of system (2.2) with b ∈ [0, 100].

Figure 6. Bifurcation diagram of state variable x with respect to parameter b.

satisfy the following conditions:

dX

dt
= F (X) = Fc (X) + Fd (X) , X = (x, y, z, w) ,

(∇H)
T
Fc (X) = 0,

(∇H)
T
Fd (X) =

dH (x, y, z, w)

dt
,

(2.4)

where H (X) is the Hamilton energy function, ∇H (x, y, z, w)=
(
∂H
∂x ,

∂H
∂y ,

∂H
∂z ,

∂H
∂w

)T
is the gradient vector of a smooth energy function, the symbol “T” represents
the transpose of a matrix, Fc (∗) is a conservative field containing all rotations,
and Fd (∗) is a dissipative field including divergence. Accounting for the physical
properties of Fc (∗) and Fd (∗), the vector field can be regulated by a matrix, as



2516 F. Zhang, S. Chen, X. Chen, J. Cao & F. Xu

shown in the following equation:
dX

dt
= [J (X) +R (X)]∇H,

dH

dt
= (∇H)

T
[J (X) +R (X)]∇H,

(∇H)
T
J (X)∇H = (∇H)

T
Fc (X) ,

(2.5)

where J (X) represents a skew symmetric matrix and R (X) represents a symmetric
matrix.

According to the above formula, system (2.2) can be rewritten as the following
formula

Ẋ =


ẋ

ẏ

ż

ẇ



=


ay − ax

bx− xz − cy + w

xy − dz

−ex− rw


=Fc (X) + Fd (X)

=


0 1 1 0

−1 0 0 1

−1 0 0 1

0 −1 −1 0




−bx

ay

z

w

+


a11 0 0 0

0 a22 0 0

0 0 a33 0

0 0 0 a44




−bx

ay

z

w


=J (X)∇H +R (X)∇H,

where

a11 =
ax+ z

bx
, a22 =

−xz − cy
ay

, a33 =
xy − dz − bx− w

z
, a44 =

−ex+ ay + z − rw
w

.

Thus, the Hamilton energy function of system (2.2) can be obtained as follows:

H (x, y, z, w) = −bx
2

2
+ a

y2

2
+
z2

2
+
w2

2
.

3. Globally exponential attractive set

Theorem 3.1. Let X (t) = (x (t) , y (t) , z (t) , w (t)) , G = (a+b)2d2

4d−2 . If V (X (t)) >
G, V (X (t0)) > G, we have the following estimate of the exponential inequality with
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respect to the globally exponential attractive set of system (2.2)

[V (X(t))−G] ≤ [V (X (t0))−G] e−(t−t0).

In particular,

Ω= {X |V (X) ≤ G} =

{
(x, y, z, w)

∣∣∣∣∣x2 + y2 + (z − a− b)2 + w2 ≤ (a+ b)
2
d2

4d− 2

}

is the globally exponential attractive set of system (2.2).

Proof. Construct the Lyapunov-like function

V (X) = V (x, y, z, w) =
1

2
[x2 + y2 + (z − a− b)2 + w2].

Let

F (x, y, z, w) =

(
1

2
− a
)
x2 +

(
1

2
− c
)
y2 +

(
1

2
− d
)
z2 +

(
1

2
− r
)
w2

+ yw − exw + (a+ b)(d− 1)z +
(a+ b)

2

2
.

And

dV (X)

dt

∣∣∣∣
(2.2)

=x
dx

dt
+ y

dy

dt
+ (z − a− b) dz

dt
+ w

dw

dt
=x[a(y − x)] + y (bx− xz − cy + w) + (z − a− b) (xy − dz) + w(−ex− rw)

=− ax2 − cy2 − dz2 − rw2 + yw + (a+ b)dz − exw

=− V (X(t)) +

(
1

2
− a
)
x2 +

(
1

2
− c
)
y2 +

(
1

2
− d
)
z2 +

(
1

2
− r
)
w2

+ yw − exw + (a+ b)(d− 1)z +
(a+ b)

2

2
=− V (X(t)) + F (X).

Let 

∂F

∂x
= (1− 2a)x− ew = 0,

∂F

∂y
= (1− 2c)y + w = 0,

∂F

∂z
= (1− 2d) z + (a+ b) (d− 1) = 0,

∂F

∂w
= (1− 2r)w − ex+ y = 0.

(3.1)

We can get the solution of the equation (3.1) as

x = x∗ = 0, y = y∗ = 0, z = z∗ =
(a+ b)(d− 1)

2d− 1
, w = w∗ = 0.
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To find the maximum value of the function F (x, y, z, w) , the Hessian matrix of
F (x, y, z, w) at P0 = (x∗, y∗, z∗, w∗) can be obtained as

HF (P0) =



∂2F

∂x2
∂2F

∂x∂y

∂2F

∂x∂z

∂2F

∂x∂w

∂2F

∂y∂x

∂2F

∂y2
∂2F

∂y∂z

∂2F

∂y∂w

∂2F

∂z∂x

∂2F

∂z∂y

∂2F

∂z2
∂2F

∂z∂w

∂2F

∂w∂x

∂2F

∂w∂y

∂2F

∂w∂z

∂2F

∂w2



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
P (x,y,z,w)=P0

=


1− 2a 0 0 −e

0 1− 2c 0 1

0 0 1− 2d 0

−e 1 0 1− 2r

 .

According to the extreme value theory of multivariate functions, F (x, y, z, w)
can obtain a maximum value at P0 when the matrix HF (P0) is a negative definite
matrix. When the parameters of system (2.2) satisfy the following condition (3.2),
the matrix is a negative definite matrix. When the parameters of system (2.2) satisfy
the following condition (3.2), the matrix HF (P0) is a negative definite matrix.

a >
1

2
,

c >
1

2
,

d >
1

2
,

r > − [(1− 2a) + e2(1− 2c)]

2(1− 2a)(1− 2c)
+

1

2
.

(3.2)

Since F (x, y, z, w) is quadratic and its local maximum is the global maximum,
so

sup
X∈R4

F (X) = F (X)|x=x∗,y=y∗,z=z∗,w=w∗
=

(a+ b)
2
d2

4d− 2
= G. (3.3)

Therefore,

dV (X(t))

dt

∣∣∣∣
(2.2)

≤ −V (X(t)) +G, (3.4)

can be derived from the above calculation. From the exponential inequality (3.4),
we can get

[V (X(t))−G] ≤ [V (X (t0))−G] e−(t−t0). (3.5)

So, we can get
lim

t→+∞
V (X(t)) ≤ G,
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which indicate that

Ω= {X |V (X) ≤ G} =

{
(x, y, z, w)

∣∣∣∣∣x2 + y2 + (z − a− b)2 + w2 ≤ (a+ b)
2
d2

4d− 2

}

is the globally exponential attractive set of system (2.2).

4. Synchronization of hyperchaotic attractors

In the following, we firstly apply the linear and nonlinear control method to achieve
global exponential synchronization with two identical hyperchaotic attractors of
system (2.2).

Assume the drive system is

ẋ1 = −ax1 + ay1,

ẏ1 = bx1 − x1z1 − cy1 + w1,

ż1 = x1y1 − dz1,

ẇ1 = −ex1 − rw1.

(4.1)

And the response system is

ẋ2 = −ax2 + ay2 − u1,

ẏ2 = bx2 − x2z2 − cy2 + w2 − u2,

ż2 = x2y2 − dz2 − u3,

ẇ2 = −ex2 − rw2 − u4.

(4.2)

Let ex = x2 − x1, ey = y2 − y1, ez = z2 − z1, ew = w2 − w1, then the error
dynamical system can be obtained

ėx = −aex + aey − u1 (ex, ey, ez, ew) ,

ėy = bex − x2z2 + x1z1 − cey + ew − u2 (ex, ey, ez, ew) ,

ėz = x2y2 − x1y1 − dez − u3 (ex, ey, ez, ew) ,

ėw = −eex − rew − u4 (ex, ey, ez, ew) ,

(4.3)

where ui = ui (ex, ey, ez, ew) is the controller which satisfies ui(0, 0, 0, 0) = 0 , (i =
1, 2, 3, 4).

Theorem 4.1. The linear feedback control law

u1 = k1ex, u2 = k2ey, u3 = k3ez, u4 = k4ew, ki ≥ 0 (i = 1, 2, 3, 4)

can always be chosen such that the zero solution of system (4.3) is globally expo-
nential stable, so that systems (4.1) and (4.2) achieve globally exponential synchro-
nization.



2520 F. Zhang, S. Chen, X. Chen, J. Cao & F. Xu

Proof. Define the radial unbounded vector Lyapunov function

V (X) = (|ex| , |ey| , |ez| , |ew|)T

for the system (4.3) and then its Dini derivative along the trajectory of system (4.3)
is 

D+ |ex| ≤ − (a+ k1) |ex|+ a |ey| ,

D+ |ey| ≤ (b+ |z1|) |ex| − (c+ k2) |ey|+ |x2| |ez|+ |ew| ,

D+ |ez| ≤ |y1| |ex|+ |x2| |ey| − (d+ k3) |ez| ,

D+ |ew| ≤ −e |ex| − (r + k4) |ew| .

The above inequality can be written as the following matrix


D+ |ex|

D+ |ey|

D+ |ez|

D+ |ew|

 ≤

−a− k1 a 0 0

b+ |z1| −c− k2 |x2| 1

|y1| |x2| −d− k3 0

−e 0 0 −r − k4




|ex|

|ey|

|ez|

|ew|

 = B •


|ex|

|ey|

|ez|

|ew|

 .

Let Bi(i = 1, 2, 3, 4) be the i-order principal minor determinant of matrix B,
and if matrix B is a negative definite matrix, the following condition (4.4) should
be satisfied.



B1 = −a− k1 < 0,

B2 =

∣∣∣∣∣∣−a− k1 a

b+ |z1| −c− k2

∣∣∣∣∣∣ > 0,

B3 =

∣∣∣∣∣∣∣∣∣
−a− k1 a 0

b+ |z1| −c− k2 |x2|

|y1| |x2| −d− k3

∣∣∣∣∣∣∣∣∣ < 0,

B4 = |B| > 0.

(4.4)

Combined with Theorem 3.1., it can be seen that when the parameters a, b, c, d,
e, r satisfies condition (4.4), so there is the exponential estimate of (4.1) and (4.2)

1

2
[xi

2 + yi
2 + (zi − a− b)2 + wi

2] ≤ G, i = 1, 2.

Therefore, substituting the maximum max |xi| =
√

2G,max |yi| =
√

2G,max |zi|
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=
√

2G+ a+ b, i = 1, 2, into (4.4), we can obtain

k1 ≥ −a,

k2 >
a(|z1|+ b)

a+ k1
− c,

k3 >
(a+ k1)|x2|2 + a |y1| |x2|

|B2|
− d,

k4 >
ea(d+ k3)

−B3
− r.

(4.5)

Therefore, when ki(i = 1, 2, 3, 4) satisfy the condition (4.5), the matrix B can
be guaranteed to be a negative definite matrix. Moreover, it can be seen from (4.5)
that there exist ki(i = 1, 2, 3, 4) such that (4.5) holds. Hence, we have

D+(|ex| , |ey| , |ez| , |ew|)T ≤ B(|ex| , |ey| , |ez| , |ew|)T. (4.6)

Consider the comparing equation

d

dt
(α1, α2, α3, α4)

T
= B(α1, α2, α3, α4)

T
.

From the above differential inequality (4.6), we can obtain

(α1(t), α2(t), α3(t), α4(t))
T

= eB(t−t0)(α1(t0), α2(t0), α3(t0), α4(t0))
T
, t ≥ t0.

Since the matrix B is a negative definite matrix, there exist M ≥ 1 and α > 0
such that ∣∣∣eB(t−t0)

∣∣∣ ≤Me−α(t−t0), t ≥ t0.

And since

(|ex (t0)| , |ey (t0)| , |ez (t0)| |ew (t0)|)T = (α1 (t0) , α2 (t0) , α3 (t0) , α4 (t0))
T
, t ≥ t0.

So, we have ∥∥∥(|ex (t)| , |ey (t)| , |ez (t)| |ew (t)|)T
∥∥∥

≤
∥∥∥(α1 (t) , α2 (t) , α3 (t) , α4 (t))

T
∥∥∥

≤
∥∥∥(α1 (t0) , α2 (t0) , α3 (t0) , α4 (t0))

T
∥∥∥ •Me−α(t−t0).

(4.7)

Since (0, 0, 0, 0) is the zero solution of the error system (4.3), and (4.7) can show
that the zero solution of the error system (4.3) can achieve globally exponential
stability when t → +∞, so that system (4.1) and system (4.2) achieve globally
exponential synchronization.

Remark 4.1. For synchronization approach, it is important to estimate the range
or average value for the controllers by changing the coupling intensity k1, k2, k3 and
k4. We have obtained the precise lower bound of the coefficient of linear feedback
controller k1, k2, k3 and k4 in the above theorem.



2522 F. Zhang, S. Chen, X. Chen, J. Cao & F. Xu

Theorem 4.2. For the error system (4.3), when the nonlinear feedback controller
is designed as 

u1 = l1ex,

u2 = (b− z1)ex − x2ez + l2ey,

u3 = y1ex + x2ey + l3ez,

u4 = l4ey,

(4.8)

by choosing the appropriate control parameters l1, l2, l3, l4, then the zero solution
of the error system (4.3) can be made globally exponential stable, so that the drive
system (4.1) and the response system (4.2) can achieve globally exponential syn-
chronization.

Proof. If the nonlinear feedback control is shown in (4.8), the error system be-
comes 

ėx = (−a− l1)ex + aey,

ėy = (−c− l2)ey + ew,

ėz = (−d− l3)ez,

ėw = −eex + (−r − l2)ew.

(4.9)

Construct the following Lyapunov function

V1 = e2x + e2y + e2z + e2w.

The derivative of V1 with respect to the time t along the trajectory of the system
(4.3) is

dV1
dt

= 2ex · ėx + 2ey · ėy + 2ez · ėz + 2ew · ėw

=


ex

ey

ez

ew



T
−2a− 2l1 2a 0 0

0 −2c− 2l2 0 1

0 0 −2d− 2l3 0

−e 0 0 −2r − 2l4




ex

ey

ez

ew



=


ex

ey

ez

ew



T

C


ex

ey

ez

ew

 .

When the feedback control parameters satisfy

l1 > −a, l2 > −c, l3 > −d, l4 >
ea

(a+ l1)(c+ l2)
− r, (4.10)
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the matrix C can be guaranteed to be a negative definite matrix, so that dV1

dt is
negative definite. There exists the largest negative eigenvalue λmax(C) of negative
definite matrix C so that the following equation holds

dV1
dt
≤ λmax(C) · (ex2 + ey

2 + ez
2 + ew

2)=λmax(C) · V1.

Hence,

ex
2 + ey

2 + ez
2 + ew

2=V1(X(t)) ≤ V1(X(t0))eλmax(C)(t−t0), t > t0.

And since λmax(C) < 0, so V1(X(t)) → 0 when t → +∞. So, the zero solution
of the error system (4.9) is globally exponentially stable which indicates that the
systems (4.1) and (4.2) can achieve globally exponential synchronization.

5. Numerical simulations

In this section, we will give numerical simulation of global exponential synchroniza-
tion for a = 35, b = 20, c = 1, d = 3, e = 3, r = 1.5. The initial conditions of the
drive system and the response system at t0 = 0 are chosen as

(x1(0), y1(0), z1(0), w1(0)) = (0.2, 6, 0.4, 8),(x2(0), y2(0), z2(0), w2(0))

= (5, 0.3, 7, 0.5).

Let us choose k1 = 38, k2 = 72, k4 = 5, k3 = 5160, l1 = −33, l2 = 1, l3 =
−1, l4 = 1, then the conditions for the above theorems can be satisfied. The linear
synchronization error is shown in Figure 7. and the nonlinear synchronization error
is shown in Figure 8.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t/s

-8

-6

-4

-2

0

2

4

6

8

e1

e2

e3

e4

Figure 7. Synchronization error of linear feedback control is illustrated when k1 = 38, k2 = 72, k3 =
5160, k4 = 5.
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Figure 8. Synchronization error of nonlinear feedback control is illustrated when l1 = −33, l2 = 1, l3 =
−1, l4 = 1.

From Figure 7 and Figure 8, we can see that the oscillations of the drive system
and the response system rapidly become totally indistinguishable which indicate
that synchronization is achieved very quickly. The above simulation results show
that the two feedback control methods can both make systems (4.1) and (4.2)
achieve global exponential synchronization very quickly, which confirms that two
control methods are very effective.

6. Conclusions

As everyone knows, the Lorenz system is a simplified chaotic model to describe
the Rayleigh-Bénard convection with a variety of examples seen throughout nature.
The study of nonlinear dynamics of the new chaotic system contributes to a bet-
ter understanding of nonlinear dynamics and chaos theory. In this paper, we have
constructed and analyzed a new hyperchaotic system which is a four-dimensional
system of nonlinear differential equations. Dynamical properties are analyzed the-
oretically and numerically, including the dissipation, the equilibrium points and
their stability, Lyapunov exponents, the Lyapunov dimension of the attractors, the
global exponential attractive set, global exponential synchronization. Numerical
simulations are also given in order to verify the feasibility of the theoretical results
of this paper. It is hoped that the results reported in this paper contribute to a
better understanding of nonlinear dynamics and chaos theory.
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