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POLYNOMIOGRAPHS AND CONVERGENCE:
A COMPARATIVE STUDY OF ITERATION
PROCESSES UNDER KANANN-SUZUKI-(C)

CONDITION
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Abstract In this paper, we study generalized (C)-conditions, specifically the
Kannan-Suzuki-(C) condition (abbreviated as the (KSC)-condition). We em-
ploy the M-iteration process to investigate the convergence behavior of map-
pings satisfying the KSC-condition and demonstrate that this approach offers
improved convergence speed and computational efficiency compared to other
well-known iteration schemes in the literature. To illustrate the advantages
of the M-iteration process, we present new numerical examples that high-
light its effectiveness. Additionally, we validate our theoretical findings by
applying the method to fractional delay differential equations, showcasing its
applicability in solving complex mathematical models. Furthermore, we com-
pare the polynomiographs generated by the M-iteration process with those
produced by other well-known iteration methods, demonstrating superior vi-
sualization properties and computational performance. These results establish
the M-iteration process as a powerful tool for studying generalized contraction
conditions.
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1. Introduction

In many cases, it is well known that the theory of fixed points is a celebrated area of
research in nonlinear analysis, providing efficient and alternative tools for approx-
imating solutions to both linear and nonlinear problems [12, 36, 38]. In fixed-point
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theory, a sought-after solution to a linear or nonlinear problem is often expressed
as a fixed point of some mapping, whose domain is typically an appropriate subset
of a distance space (e.g., Hilbert or Banach space). It should be noted that any
fixed-point theorem not only establishes the existence of a fixed point but, when
possible, also proves its uniqueness for a given mapping in a specified domain. In the
existing literature, several researchers have extensively investigated the existence of
solutions for various classes of integral and differential equations by employing tech-
niques and methods from fixed-point theory. Furthermore, once the existence of a
solution for a nonlinear problem is established, attention naturally shifts to numer-
ical methods for approximating such solutions. In this context, we introduce the
concept of contractions: A mapping K defined on a subset U of a Banach space V
is called a contraction [6] if

||Kz−Ky|| ≤ a||z− y||, (1.1)

where a is a real number in the interval[0, 1), and z, y are any points in U. The
number a is sometimes called the contraction factor of K. Notice that a fixed point
of a self-map K : U → U is a point p ∈ U that satisfies the condition Kp = p. We
shall denote the set of fixed points of K by Fix(K). In 1922, Banach [6] proposed
a fundamental result on the existence of fixed points for contractions, stated as
follows:

Theorem 1.1. Suppose that K is a contraction on a closed subset U of a Banach
space, with a contraction factor a. Then K has a unique fixed point p, and the
sequence of Picard iterates, defined byzn+1 = Kzn, converges strongly to p for every
initial guess z1 ∈ U.

Theorem 1.1 is a fundamental result in analysis that establishes both the ex-
istence of a fixed point and, at the same time, provides an approximation process
for obtaining its value under mild conditions. Furthermore, it is now known that
for a nonexpansive map K, i.e., a map satisfying the condition ‖Kz − Ky‖ ≤
‖z − y‖, ∀z, y ∈ U, a fixed point of K may exist. However, the approximation
method suggested in Theorem 1.1 may no longer converge to this fixed point. It
is easy to see that the class of nonlinear nonexpansive maps is more general and
includes all contractions as a special case. Moreover, the study of nonexpansive
nonlinear maps has its origins in applications of computer science and other fields
of applied sciences.

In 1965, Browder [7] and Gohde [10] independently conducted pioneering stud-
ies on the existence of fixed points for nonexpansive mappings in certain classes of
Banach spaces. They established that every nonexpansive self-mapping defined on
a bounded, closed, convex subset of a uniformly convex Banach space (UCBS), a
special type of Banach space denoted by U admits at least one fixed point, though
uniqueness is not guaranteed in general. In the same year, Kirk [19] extended the
Browder-Gohde result to the setting of reflexive Banach spaces (RBS). To illus-
trate that the Picard iteration method may fail to converge to a fixed point for a
nonexpansive self-mapping, we present the following numerical example.

Definition 1.1. ( [9]) Let V be a Banach space. V is called a uniformly convex
Banach space (UCBS) if for each ϑ ∈ (0, 2] there exists ψ > 0 such that s, x ∈ V .
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A space V is termed as uniformly convex Banach space if;

‖s‖ ≤ 1,

‖x‖ ≤ 1,

‖s− x‖ > ψ,

⇒
∥∥∥∥s+ x

2

∥∥∥∥ ≤ ϑ. (1.2)

Example 1.1. [20] Let us consider U = [0, 1], which is a closed, bounded, and
convex subset of the uniformly convex Banach space (UCBS) R. We define a map-
ping K on U by Kz = 1− z. It is easy to verify that K is a nonexpansive mapping
with a unique fixed point at z = 0.5.

In 2008, Suzuki [35] studied the class of nonexpansive mappings and established
the following generalization: A mapping K defined on a subset U of a Banach space
is called a Suzuki mapping (or a mapping satisfying condition (C)) if, for all z, y ∈ U,

1

2
‖z−Kz‖ ≤ ||z− y|| ⇒ ||Kz−Ky|| ≤ ||z− y||.

Suzuki proved the existence of fixed points for mapping satisfying condition (C).
Obviously, every nonexpansive mapping is a Suzuki mapping; however, the following
example demonstrates that the converse does not hold in general.

Example 1.2. [35] Let us consider U = [0, 3], which is closed and bounded convex
subset of UCBS R. We define a map K on U as

Kz =


z + 24

5
, if z ∈ [0, 6],

5, if z ∈ (6, 7].

The mapping presented in Example 1.2 is a Suzuki mapping but not a nonex-
pansive mapping.

Motivated by Suzuki [35], Karapinar [16] introduced a generalized condition (C)
for mappings. Specifically, a mapping K defined on a subset U of a Banach space
is said to satisfy the (KSC)-condition if

1

2
‖z−Kz‖ ≤ ‖z− y‖ ⇒ ‖Kz−Ky‖ ≤ 1

2
(‖z−Ky‖+ ‖y −Kz‖), ∀ z, y ∈ U.

Karapinar [16] investigated several properties of mappings with (KSC)-condition
and provided some fixed-point results for these mappings. Now, we give an example
to show that the (KSC)-condition is more general than the condition (C).

Example 1.3. Define a self-mapping K on the interval [−1, 1] as follows:

Kz =


− z

10
, if z ∈ [−1, 0),

−z, if z ∈ [0, 1]/
1

10
,

0, if z =
1

10
.

Solution: When z = 1
10 and y = 1, it is easy to verify that K does not satisfy

condition (C). Next, we aim to prove that K satisfies the (KSC)-condition. To do
so, we consider the following cases.
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1. For any z, y ∈ [−1, 0), we have Kz = − z
10 and Ky = − y

10 . Thus

1

2
(|z−Kz|+ |y −Ky|) =

1

2

(∣∣∣z +
z

10

∣∣∣+
∣∣∣y +

y

10

∣∣∣)
=

1

2

(∣∣∣∣11z

10

∣∣∣∣+

∣∣∣∣11y

10

∣∣∣∣)
=

11

20
(|z|+ |y|)

≥ 11

20
(|z− y|)

≥ 1

10
(|z− y|)

= |Kz−Ky|.

2. For any z, y ∈ [0, 1]/ 1
10 , we have Kz = −z and Ky = −y. Hence

1

2
(|z−Kz|+ |y −Ky|) =

1

2
(|z + z|+ |y + y|)

= |z|+ |y|
≥ |z− y|
= |Kz−Ky|.

3. For any z ∈ [−1, 0) and y ∈ [0, 1]/ 1
10 , we have Kz = −z

10 and Ky = −y. Thus

1

2
(|z−Kz|+ |y −Ky|) =

1

2

(∣∣∣z +
z

10

∣∣∣+ |y + y|
)

=
1

2

(∣∣∣∣11z

10

∣∣∣∣+ |2y|
)

≥ 1

2

(∣∣∣∣ 2z10

∣∣∣∣+ |2y|
)

=
(∣∣∣ z

10

∣∣∣+ |y|
)

≥ 1

2

(∣∣∣ z
10
− y
∣∣∣)

= |Kz−Ky|.

4. For any z ∈ [−1, 0) and y = 1
10 , we have Kz = −z

10 and Ky = 0. Thus

1

2
(|z−Kz|+ |y −Ky|) =

1

2

(∣∣∣z +
z

10

∣∣∣+ |y − 0|
)

=
1

2

(∣∣∣∣11z

10

∣∣∣∣+ |y|
)

≥ 1

2

(∣∣∣∣11z

10

∣∣∣∣)
=

11

20
|z|

≥
∣∣∣ z
10

∣∣∣
= |Kz−Ky|.
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5. For any y ∈ [0, 1]/ 1
10 and z = 1

10 , we have Ky = −y and Kz = 0. Thus

1

2
(|z−Kz|+ |y −Ky|) =

1

2
(|z− 0|+ |y + y|)

=
1

2
(|z|+ |2y|)

≥ 1

2
(|2y|)

= |y|
= |Kz−Ky|.

From the above cases, we conclude that K satisfies the (KSC)-condition.

Numerous researchers have developed various iterative methods for approximat-
ing fixed points of different generalizations of nonexpansive mappings. The primary
motivation behind the extensive study of iterative approaches to fixed-point com-
putation stems from their widespread applications across multiple disciplines, in-
cluding root-finding, game theory, and image restoration. In such applications, the
need for efficient and rapidly converging methods is paramount. Let {αn}, {βn},
{γn} be sequences in (0, 1]. Following is the Mann [22] iteration process:{

z1 ∈ U,

zn+1 = (1− αn)zn + αnKzn.
(1.3)

Khan [17] suggested iteration process which converges faster than the Mann itera-
tion for contraction mappings in Banach spaces:

z1 ∈ U,

yn = (1− αn)zn + αnKzn,

zn+1 = Kyn.

(1.4)

Agarwal [2] introduced the following two-step iteration process:
z1 ∈ U,

yn = (1− βn)zn + βnKzn,

zn+1 = (1− αn)zn + αnKyn.

(1.5)

Noor [28] extended this approach by introducing a three-step iteration process:
z1 ∈ U,

zn = (1− γn)zn + γnKzn,

yn = (1− βn)zn + βnKzn,

zn+1 = (1− αn)zn + αnKyn.

(1.6)

Ullah and Arshad [37] further developed a three-step iteration, referred to as
the M-iteration process, defined as follows:

z1 ∈ U,

wn = (1− αn)zn + αnKzn,

yn = Kwn,

zn+1 = Kyn.

(1.7)
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The authors in [37] studied several convergence results of the M-iteration process
for mappings satisfying condition (C). In this paper, we extend their results by
investigating the weak and strong convergence of the M-iteration process under a
generalized condition (C). Our convergence analysis is further supported by new
numerical examples and comparisons with existing iterative methods from the lit-
erature. Additionally, we validate our findings through graphical representations
generated via polynomiography.

2. Preliminaries

The following results will pave the way toward the derivation of the main result.

Definition 2.1. Assume that V is a given Banach space and {zn} ⊆ V is any
bounded sequence. Let ∅ 6= U ⊆ V be any convex and closed set. In this case, the
asymptotic radius (AR, for short) associated with {zn} on the set U is given as

r(U, {zn}) = inf{lim sup
n→∞

‖zn − s‖ : s ∈ U}.

Similarly, the asymptotic center (AC, for short) associated with {zn} on the set U
is given as

A(U, {zn}) =

{
s ∈ U : lim sup

n→∞
‖zn − s‖ = r(U, {zn})

}
.

Definition 2.2. [29] A Banach space V is said to satisfy Opial’s condition if, for
any sequence {zn} ⊆ V that weakly converges to some s0 ∈ V , we have

lim sup
n→∞

‖zn − s0‖ < lim sup
n→∞

‖zn − e0‖, ∀e0 6= s0.

Hilbert spaces are known to satisfy Opial’s condition.

Definition 2.3. [34] Condition (I) for a self-map K on a subset U of a Banach
space V is defined as follows: There exists a function γ such that γ(0) = 0 and
γ(u) > 0 for all u > 0, satisfying

‖z−Kz‖ ≥ γ(dist(z, F ix(K))), ∀z ∈ U,

where the notation dist(z, F ix(K)) denotes the distance of the point z from the set
Fix(K), given by

dist(z, F ix(K)) = inf{‖z− y‖ : y ∈ Fix(K)}.

Lemma 2.1. [16] Suppose that V is a Banach space and ∅ 6= U ⊆ V . If K : U→ U
satisfies the (KSC)-condition and Fix(K) 6= ∅, then for any z ∈ U and any fixed
point p ∈ Fix(K), the following holds:

‖Kz− p‖ ≤ ‖z− p‖.

Lemma 2.2. [16] Suppose that V is a Banach space and ∅ 6= U ⊆ V . If K is a
self-map on U satisfying the (KSC)-condition, then for any z, y ∈ U, the following
inequality holds:

‖z−Ky‖ ≤ 5‖z−Kz‖+ ‖z− y‖.
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Lemma 2.3. [16] Let U ⊆ V be equipped with Opial’s property, and let K be a
self mapping on U satisfying (KSC)-condition. If {zn} converges weakly to z and
‖Kzn − zn‖ = 0, then Kz = z.

Lemma 2.4. [33] Assume 0 < j ≤ bn ≤ k < 1 for all n ≥ 1. Consider {zn} and
{yn} in a UCBS V that satisfy lim sup

n→∞
‖zn‖ ≤ c , lim sup

n→∞
‖yn‖ ≤ c and lim sup

n→∞
‖(1−

bn)yn + bnzn‖ = c for all c ≥ 0, then one has lim
n→∞

‖zn − yn‖ = 0.

3. Main results

We now present our main results.

Lemma 3.1. Let V be a UCBS and let ∅ 6= U ⊆ V be a closed and convex set.
Assume that a self-map K : U→ U satisfies condition (KSC) and that Fix(K) 6= ∅.
If {zn} is a sequence generated by the M-iteration process (1.7), then for each p ∈
Fix(K), the limit

lim
n→∞

‖zn − p‖

exists.

Proof. Let p ∈ Fix(K) be an arbitrary fixed point. By applying Lemma 2.1, we
obtain

‖wn − p‖ = ‖(1− αn)zn + αnKzn − p‖
≤ (1− αn)‖zn − p‖+ αn‖Kzn − p‖
≤ (1− αn)‖zn − p‖+ αn‖zn − p‖
= ‖zn − p‖.

(3.1)

Similarly, we obtain

‖yn − p‖ = ‖Kwn − p‖ ≤ ‖wn − p‖, (3.2)

and

‖zn+1 − p‖ = ‖Kyn − p‖ ≤ ‖yn − p‖. (3.3)

Consequently, we observe that

‖zn+1 − p‖ ≤ ‖yn − p‖ ≤ ‖wn − p‖ ≤ ‖zn − p‖.

From (3.1), (3.2) and (3.3), we can note that the sequence {‖zn − p‖} is non-
increasing and bounded below. Therefore, we conclude that

lim
n→∞

‖zn − p‖

exists for any choice of p ∈ Fix(K).
We now establish another elementary result as follows:

Theorem 3.1. Let V be a UCBS, and let ∅ 6= U ⊆ V be a closed and convex
subset. Assume that a self-map U → U satisfies (KSC)-condition. If {zn} is a
sequence generated by the M-iteration process, then then Fix(K) 6= ∅ if and only if
{zn} is bounded and satisfies lim

n→∞
‖Kzn − zn‖ = 0.



Polynomiographs and convergence: A comparative study 2535

Proof. Assume that Fix(K) 6= ∅. Therefore, for any p ∈ Fix(K), Lemma 3.1
suggests that {zn} is bounded and lim

n→∞
||zn − p|| exists. Assume that

lim
n→∞

||zn − p|| = e. (3.4)

We need to prove lim
n→∞

||zn −Kzn|| = 0. Now, from (3.1), we get

||wn − p|| ≤ ||zn − p||,
⇒ lim sup

n→∞
||wn − p|| ≤ lim sup

n→∞
||zn − p|| = e. (3.5)

Since p ∈ Fix(K) , we can apply Lemma 2.1 to get

||Kzn − p|| ≤ ||zn − p||,
⇒ lim sup

n→∞
||Kzn − p|| ≤ lim sup

n→∞
||zn − p||. (3.6)

Owing to Lemma 3.1, we have

||zn+1 − p|| ≤ ||wn − p||. (3.7)

Using (3.7) together with (3.5), we obtain

e ≤ lim inf
n→∞

||wn − p||. (3.8)

From (3.5) and (3.8), we obtain

lim
n→∞

||wn − p|| = e. (3.9)

Since
||wn − p|| = ||(1− αn)(zn − p) + αn(Kzn − p)||. (3.10)

Using (3.10) together with (3.9), we get

e = lim
n→∞

||(1− αn)(zn − p) + αn(Kzn − p)||. (3.11)

Considering (3.4), (3.6) and (3.11) along with Lemma 2.4, one gets

lim
n→∞

||zn −Kzn|| = 0.

Conversely, we shall assume that {zn} is essentially bounded with the property
lim
n→∞

||zn − Kzn|| = 0 and prove that Fix(K) 6= ∅. To do this, we consider any

p ∈ A(U, {zn}). By Lemma 2.2, we have

r(Kp, {zn}) = lim sup
n→∞

||zn −Kp||

≤ 5 lim sup
n→∞

‖zn −Kzn‖+ lim sup
n→∞

‖zn − p‖

= lim sup
n→∞

||zn − p||

= r(p, {zn}).

Thus Kp ∈ A(U, {zn}). As V is a UCBS, the set A(U, {zn}) contains only one point,
hence Kp = p. This implies that p ∈ Fix(K) i.e., Fix(K) 6= ∅.

We first suggest a weak convergence result. This result is mainly based on
Opial’s property.
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Theorem 3.2. Let V be a UCBS and ∅ 6= U ⊆ V be closed and convex. Assume that
self-map K : U → U satisfies (KSC)-condition and Fix(K) is non-empty. If {zn}
denotes a sequence of M-iteration process (1.7) and V satisfies Opial’s condition,
then {zn} converges weakly to a fixed point of K.

Proof. Notice that V is reflexive due to the convexity of V . Now, according to
Theorem 3.1, {zn} is bounded. It follows that there is a point, namely, z0 ∈ U such
that a subsequence, namely, {znm

} of {zn} weakly converges to it. From Theorem
3.1, it is clear that lim

m→∞
||znm

− Kznm
|| = 0. Using Lemma 2.3, z0 ∈ Fix(K).

We want to prove that the point u0 is the only weak limit of {zn}, on contrary we
suppose that z0 is not a weak limit for {zn} i.e., there exists another subsequence,
namely, {zns

} of {zn} with a weak limit, namely, z′0 6= z0. From Theorem 3.1, it
is annotated that lim

s→∞
||zns −Kzns || = 0. Using Opial’s condition of V along with

Lemma 3.1, we get

lim
n→∞

||zn − z0|| = lim
m→∞

||znm
− z0||

< lim
m→∞

||znm
− z′0||

= lim
n→∞

||zn − z′0||

= lim
s→∞

||zns
− z′0||

< lim
s→∞

||zns
− z0||

= lim
n→∞

||zn − z0||.

As a whole, we obtain lim
n→∞

||zn − z0|| < lim
n→∞

||zn − z0||, which is a contradiction.

This finishes the proof.

The following theorem is based on the notion of compactness:

Theorem 3.3. Let V be a UCBS and ∅ 6= U ⊆ V be closed and compact. Assume
that a self-map K defined on U satisfies (KSC)-condition and Fix(K) 6= ∅. If
{zn} denotes a sequence of M-iteration process (1.7) and U is compact, then {zn}
converges strongly to a fixed point of K.

Proof. As assumed, the set U is closed and compact, the sequence of iterates
{zn} is contained in the set U and has a subsequence {znm

} of {zn} that converges
strongly to p ∈ U. So, in the view of Theorem 3.1, we get lim

nm→∞
||znm

− p|| = 0.

Hence using these facts together with Lemma 2.2, we have

‖znm −Kp‖ ≤ 5‖znm −Kznm‖+ ‖znm − p‖. (3.12)

By Theorem 3.1, lim
nm→∞

||znk
−Kznk

|| = 0 and also lim
nm→∞

||znm
− p|| = 0. Accord-

ingly the equation (3.12) provides lim
nm→∞

znm = Kp. It follows that {znm} converges

to p and Kp. Thus, we have Kp = p. Appealing Lemma 3.1, one gets the existence
of lim

n→∞
||zn − p||. Hence, our sequence of iterates {zn} converges to a fixed point of

K.
For the next result, we need the following proposition:

Proposition 3.1. [8] Let U be a nonempty closed subset of a Banach space.
Let {zn} be a Fejer-monotone sequence with respect to U. Then, {zn} converges
(strongly) to the point of U if and only if lim

n→∞
dist(zn,U) = 0.
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Theorem 3.4. Let V be a UCBS and ∅ 6= U ⊆ V be closed and convex. Assume
that a self-map K of U is with (KSC)-condition and Fix(K) 6= ∅. If {zn} de-
notes a sequence of M-iteration process (1.7) and lim infn→∞ dist(zn, F ix(K)) = 0.
Eventually, the sequence {zn} converges strongly to a fixed point of K.

Proof. Since ||zn+1−p||≤||zn−p|| for any fixed point p, it follows that lim
n→∞

dist(zn,

F ix(K)) exists. The given condition now gives that lim
n→∞

dist(zn, F ix(K)) = 0. But

the fixed point set is closed here and {zn} is Fejer-monotone by Lemma 2.2. Even-
tually, Proposition 3.1 gives that {zn} is strongly convergent to a fixed point of K.

Theorem 3.5. Let V be a UCBS and ∅ 6= U ⊆ V is closed and convex. If K be
a self-mapping defined on U satisfying (KSC)-condition with Fix(K) 6= ∅, then M-
iteration process (1.7) converges strongly to a fixed point of K as long as K satisfies
the condition (I).

Proof. To prove this result, we shall apply Theorem 3.4. From Theorem 3.1, one
has lim infn→∞ ||Kzn − zn|| = 0. The given condition (I) associated with the map
K, gives lim infn→∞ d(zn, F ix(K)) = 0. Accordingly, all the conditions of Theorem
3.4 are proved, we have {zn} is strongly convergent to a fixed point of K.

4. Numerical example

Now, we prove that {zn} generated by the M-iteration process converges faster than
some other well-known iterative processes.

Example 4.1. Define a mapping K on [7, 9] as follows:

Kz =


z + 42

7
, if z ∈ [7, 9),

6, if z = 9.

It can be seen that K fails to satisfy condition (C) at z = 8 and y = 9. For the
(KSC)-condition, we proceed as follows:

Case I. When z, y ∈ [7, 9), we have Kz = z+42
7 , Ky = y+42

7

1

2
(‖z−Kz‖+ ‖y −Ky‖) =

1

2

(
‖z− z + 42

7
‖+ ‖y − y + 42

7
‖
)

=
1

2

(
‖6z− 42

7
‖+ ‖6y − 42

7
‖
)

=
1

2

(
6

7
‖(z− 7)‖+

6

7
‖(y − 7)‖

)
= 3

(
1

7
(‖(z− 7)‖+ ‖(y − 7)‖)

)
≥ 3

(
1

7
(‖(z− 7 + y − 7)‖)

)
= 3

(
1

7
(‖(z + y − 14)‖)

)
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≥
(

1

7
(‖(z− y)‖)

)
= ‖Kz−Ky‖.

Case II. When z, y = 9, we have Kz = 6, Ky = 6

1

2
(‖z−Kz‖+ ‖y −Ky‖) =

1

2
(‖6− 6‖) ≥ ‖Kz−Ky‖.

Case III. When z ∈ [7, 9), y = 9, we have Kz = z+42
7 , Ky = 6

1

2
(‖z−Kz‖+ ‖y −Ky‖) =

1

2

(
‖z− z + 42

7
‖+ ‖9− 6‖

)
≥ 1

2
(‖9− 6‖)

=
3

2

>
z

7
∀ z ∈ [7, 9]

= ‖Kz−Ky‖.

Case IV. When y ∈ [7, 9), z = 9, then we have Ky = y+42
7 , Kz = 6

1

2
(‖z−Kz‖+ ‖y −Ky‖) =

1

2

(
‖9− 6‖+ ‖y − y + 42

7
‖
)

≥ 1

2
‖9− 6‖

=
3

2

>
y

7
∀ y ∈ [7, 9]

= ‖Kz−Ky‖.

In the numerical example, we set αn = 0.75, βn = 0.65, γn = 0.65, and the
initial value z1 = 8 for all the considered iteration schemes, i.e., M, Khan, Agarwal,
and Noor iterations. The stopping criterion is defined as ||xn−xn+1|| < 10−7. The
results are presented in Table 1 and Figure 2.

The numerical results in Table 1 illustrate the performance of the M-iteration
process in comparison with the Khan, Agarwal, Noor, and Mann iterative schemes.
The primary objective is to analyze the convergence behavior of each method and
determine the efficiency of the M-iteration process in estimating the fixed point
of K. From the table, we observe that after the first iteration, the M-iteration
(7.0072886) provides a closer approximation to the fixed point (i.e., 7) than the
other methods. Specifically, it converges to the fixed point at the 4th iteration,
while the Khan and Agarwal methods require additional iterations to reach the
same accuracy. In contrast, the Noor and Mann methods exhibit relatively slower
convergence, requiring 12 and 14 iterations, respectively, to reach the fixed point.

In Table 2, we present the results obtained for various starting points z1 with
fixed parameter values: αn = 0.75, βn = 0.65, γn = 0.65, ε = 10−7. From these
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Table 1. Numerical results produced by M, Khan Agarwal and Noor iterative schemes for K of the
Example 4.1.

n M Khan Agarwal Noor Mann

iteration iteration iteration iteration iteration

1 8 8 8 8 8

2 7.0072886 7.0510200 7.0831632 7.2919060 7.3571430

3 7.0000531 7.0026030 7.0069161 7.0852090 7.1275510

4 7 7.0001330 7.0005751 7.0248730 7.0455540

5 7 7.0000070 7.0000480 7.0072605 7.0162690

6 7 7 7.0000040 7.0021190 7.0058100

7 6 7 7 7.0006186 7.0020750

8 7 7 7 7.0001810 7.0007410

9 7 7 7 7.0000530 7.0002650

10 7 7 7 7.0000150 7.0000950

11 7 7 7 7.0000040 7.0000340

12 7 7 7 7.0000010 7.0000120

13 7 7 7 7 7.0000040

14 7 7 7 7 7.0000020

14 7 7 7 7 7.0000010

15 7 7 7 7 7
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Figure 1. Convergence behavior of M (1.7), Khan (1.4), Agarwal (1.5), Noor (1.6), and Mann (1.3)
iteration processes corresponding to Table 1.

results, we observe that for the initial starting point z1 = 7.3, the M-iteration process
approximates the fixed point in just 2 iterations. For different starting points, the
number of iterations required by the M-iteration process varies between 2 and 3.
The Khan iteration requires 3 iterations to reach the fixed point when z1 = 7.3,
and while the number of iterations fluctuates slightly for different starting points,
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Figure 2. Graphical analysis of iterates of iteration processes corresponding to Table 1.

Table 2. Impact of the starting point z1 on the number of performed iterations for different iteration
processes.

z1 M Khan Agarwal Noor Mann

iteration iteration iteration iteration iteration

7.3 2 3 4 8 9

7.6 2 4 4 8 10

7.9 2 4 4 8 10

8.2 3 4 5 9 10

8.5 3 4 5 9 11

8.8 3 4 5 9 11

it remains stable for values between 7.6 and 8.8. The Agarwal iteration requires 4
iterations when z1 but varies between 4 and 5 iterations for different starting points.
The Noor and Mann iteration processes require 8 and 9 iterations, respectively, to
find the fixed point when z1 = 7.3. Notably, the Mann iteration process requires
significantly more iterations compared to the other methods.

5. Comparison via polynomiography

Polynomiography is both a visual analysis technique for root-finding methods and
a digital art form, introduced by mathematician and computer scientist Bahman
Kalantari [15]. It focuses on the visualization of complex polynomials, often employ-
ing iterative algorithms and mathematical principles. The term polynomiography
is derived from polynomial and graph, emphasizing its graphical representation of
polynomial functions. Polynomiographic methods are widely utilized for comparing
and analyzing various iterative processes (see, for example, [11, 25–27, 30, 39, 42]).
This approach enables the graphical representation of convergence behavior in it-
erative root-finding methods. The roots of polynomials are approximated through
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0 5 10 15 20

Figure 3. Color map used in the examples.

iteration functions, and polynomiography operates by employing an infinite number
of such functions. A well-known example of a root-finding algorithm used in this
context is Newton’s method (also known as the Newton-Raphson method).

In this section, we embed the well-known Newton’s iterative process [3] within
the M-iteration framework, along with some classical iterative methods from the
literature, to generate various basins of attraction. Let p(tn) be a complex poly-
nomial. Note that for any initial value t0 ∈ C, Newton’s iterative process is given
by:

tn+1 = tn −
p(tn)

p′(tn)
for (n = 0, 1, 2, 3...).

Here, p′(tn) denotes the first derivative of p(tn). Newton’s iterative process can now
be reformulated as a fixed-point iteration as follows:

tn+1 = N(tn). (5.1)

If the iterative process given in (5.1) converges to a fixed point t of N , then we
have:

t = N(t) = t− p(t)

p′(t)
. (5.2)

If p(t)
p′(t) = 0, then p(t) = 0. Equation (5.2) implies that t = N(t), which means

that t is a root of p(t). The set of all initial points t0 that converge to the same
root forms a basin of attraction. Instead of using the Picard iteration, we can apply
other iterative processes, such as the Mann iteration introduced earlier or those
defined in Sec. 1 for different values of αn, βn, and γn. We choose a grid of length
B = [−8.0, 8.0]2 and set N = 20, where N represents the number of iterations.
By applying Newton’s operator within the M, Mann, Khan, Agarwal, and Noor
iterative processes, we generate a complex sequence {tn}, starting from each grid
point t0. Suppose t0 is the initial guess; if the sequence {tn} converges to a root
with an accuracy of 0.001, we assign a specific color to t0. If {tn} does not converge
to any root, we assign it a green color. The set of allt0 that converge to the same
root forms a basin of attraction. We use the colormap presented in Figure 3.

To generate polynomiographs, we use the algorithm presented as a pseudocode
in Algorithm 1.

In the considered example, polynomiographs were generated for the polynomial
p(t) = t4 − 1 using three different sets of iteration parameter values: (i) α = 0.03,
β = 0.03, γ = 0.03, (ii) α = 0.4, β = 0.4, γ = 0.4, (iii) α = 0.7, β = 0.7, γ = 0.7.

The generated polynomiographs are shown in Figs. 4–6. The obtained Average
Number of Iterations (ANI) values from the polynomiographs are shown in Table 3.
The Average Number of Iterations (ANI) is a key metric for evaluating the efficiency
of iteration processes in reaching convergence. It represents the mean number of
iterations required for a iteration process to approximate a root within a given
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Algorithm 1: Generation of a polynomiograpgh.

Input: p ∈ C[Z], deg p ≥ 2 – polynomial; I – iteration process; A ⊂ C –
area; N – the maximum number of iterations; ε – accuracy; colours
– colour map.

Output: Polynomiograph for the complex-valued polynomial p within the
area A.

1 for t0 ∈ A do
2 n = 0
3 while |p(tn)| > ε and n < N do
4 tn+1 = I(tn, p)
5 n = n+ 1

6 Map n to a colour from the colour map colours and colour t0

(a) Agarwal (b) Khan (c) Mann

(d) Noor (e) M

Figure 4. Polynomiographs generated by various iteration processes with parameters α = β = γ = 0.03.

tolerance. A lower ANI value indicates faster convergence, meaning the iterative
process reaches a solution in fewer steps.

For low parameter values (Figure 4), we observe that two of the iterative pro-
cesses fail to converge to any of the four roots of the polynomial p(t). This is
indicated by a uniform green color, which corresponds to the maximum iteration
limit of 20. For the remaining three iterative processes, we notice different conver-
gence speeds. Based on visual analysis, the fastest convergence is achieved by the
M-iteration process, followed by the Khan and Agarwal iterative processes. These
observations are confirmed by the ANI values in Table 3, where the lowest ANI
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(a) Mann (b) Khan (c) Agarwal

(d) Noor (e) M

Figure 5. Polynomiographs generated by various iteration processes with parameters α = β = γ = 0.4.

Table 3. ANI values calculated from polynomiographs presented in Figures 4, 5 and 6.

Iteration α = β = γ = 0.03 α = β = γ = 0.4 α = β = γ = 0.7

M 3.122 2.566 2.418

Khan 5.553 4.08 3.594

Noor 20 16.4 7.432

Agarwal 6.028 4.923 4.066

Mann 20 17.4 9.292

value of 3.122 is obtained by the M-iteration process, followed by Khan (5.553) and
Agarwal (6.028). Similarly, in Figure 5, the lowest ANI value (2.556) is again ob-
served for the M-iteration process, demonstrating its strong convergence compared
to Khan (4.08), Agarwal (16.4), Noor (16.4), and Mann (17.4). In Figure 6, the
M-iteration process once again proves to be the most efficient, with the lowest ANI
value (2.418) compared to Khan (3.594), Agarwal (4.066), Noor (7.432), and Mann
(9.292).

In the present analysis, the ANI values serve as a quantitative measure for
comparing the efficiency of different iteration processes. The M-iteration process
consistently yields the lowest ANI values across all cases, indicating its superior rate
of convergence. In contrast, the higher ANI values associated with methods such as
Noor and Mann suggest slower convergence or, in some instances, potential diver-
gence. These numerical findings are consistent with the visual patterns observed in
the polynomiographs, further validating ANI as a reliable metric for assessing the



2544 B. Nawaz, K. Ullah, H. A. Hammad & M. De la Sen

(a) Mann (b) Khan (c) Agarwal

(d) Noor (e) M

Figure 6. Polynomiographs generated by various iteration processes with parameters α = β = γ = 0.7.

performance of iterative methods.

6. Application to fractional delay differential equa-
tions

Fractional calculus plays an important role in physics, engineering, and control sys-
tems to analyze their working phenomena. Fractional calculus formulate models
of engineering systems that are far better than developed by ordinary derivatives
approaches. Fractional differential equations (FDEs) are used in electrical networks
to model circuits containing capacitors, inductors, and resistors, particularly when
non-integer order dynamics are present. In control systems, FDEs play a crucial
role in robust control theory, helping design controllers that enhance stability and
performance in uncertain or complex systems. Additionally, FDEs are applied in
image and audio processing for edge detection and noise reduction. FDEs also have
applications in fluid dynamics, where they are used to model anomalous diffusion
and turbulence. In physics, they are employed in wave propagation models and
dielectric material analysis. In biology, FDEs are utilized for modeling brain signal
processing and memory-dependent neuronal activities. They also aid in understand-
ing the spread of diseases with memory effects, such as COVID-19 dynamics. In
chemistry, FDEs are used to model chemical reactions and diffusion processes in
heterogeneous media. Furthermore, in fractal and chaos theory, FDEs are instru-
mental in modeling self-similar structures and complex patterns found in nature
(see, e.g., [13, 14,21,23,24,31,32]).
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Various researchers have attempted to find numerical solutions for fractional dif-
ferential equations (see, e.g., [4,5,41]). In this section, we approximate the solution
of the following fractional delay differential equation in the Caputo sense using the
M-iteration process (1.7).

Eventually, the DFDE is

cDg(ζ) = h(ζ, ζ(g), g(ζ − σ)), ζ ∈ [e,B], (6.1)

with initial conditions

g(ζ) = ψ(ζ), ζ ∈ [e− µ, e], (6.2)

where the constant σ is stand for time delay, σ > 0, B > 0, µ > 0, g ∈ Rk,
ψ ∈ C([e − σ, e] : Rk) and h : [e,B] × Rk × Rk → Rk is essentially a continuous
function.

Some conditions are needed as follows that must be hold.

(K1): One is able to select a real number Lh > 0 with

‖h(ζ, x1, y1)− h(ζ, x2, y2)‖ ≤ Lh(‖x1 − y1‖+ ‖x2 − y2‖), ∀x1, x2, y1, y2 ∈ Rk.

(K2): One can find a constant, namely, δL > 0 with the property that 2L
δL

< 1 if

M ∈ (C([e − σ,B] : Rk)
⋂
C1([e,B] : Rk)) is a function satisfying (6.1) and (6.2),

then M is called a solution to problems (6.1) and (6.2).

In [18], the authors proved that the solution to the problem (6.1) and (6.2) is
equivalent to the solution of the following integral equation:

t(ζ) = ψ(e) +
1

Γ(γ)

∫ ζ

e

(ζ − e)γ−1h(µ, g(µ), g(µ− σ))dµ, ∀ ζ ∈ [e,B], (6.3)

where t(ζ) = ψ(ζ),∀ζ ∈ [e − µ, e] and Γ(γ) =
∫∞

0
e−x xγ−1dx The solution set

of (6.3) and problems (6.1) and (6.2) are same. Let us define the norm ‖.‖δL on
(C([e− σ,B] : Rk) as

‖ψ‖δL =
sup‖ψ(ζ)‖
Eγ(δLζγ)

∀ψ ∈ C([e− σ, e] : Rk), (6.4)

where the notation Eγ stand for Mittag-Leffler function and it is reads as follows:

Eγ(ζ) :

∞∑
k=0

ζk
Γ(γk + 1)

∀ζ ∈ R.

Clearly, (C([e− σ,B] : Rk), ‖.‖δL) is a Banach space [1].

In [40], the authors from condition (K1), proved that the solution of problem
(6.1) and (6.2) exists and it is also unique. Now, we utilize the M-iteration process
(1.7) to appromate the solution of problem (6.1) and (6.2). The main result in this
section is given as follows:

Theorem 6.1. Suppose that assumptions (K1) and (K2) hold true. Then the
sequence defined by (1.7) converges to a unique solution M of (6.3) in G = C([e−
σ,B] : Rk)

⋂
C1([e,B] : Rk).
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Proof. Define an operator K as

Kg(ζ) =

ψ(e) +
1

Γ(γ)

∫ ζ

e

(ζ − e)γ−1h(µ, g(µ), g(µ− σ))dµ, if ζ ∈ [e,B],

ψ(ζ), if ζ ∈ [e− µ, e].
(6.5)

We need to show that zn →M as n→∞. We must distinguish two cases:

Case 1. If ζ ∈ [e− µ, e], then obviously zn →M when n→∞.

Case 2. If ζ ∈ [e,B], then using (1.7), Lemma 3.1 and assumptions (K1) and
(K2), we have

||zn+1 −M|| = ||(1− αn)Kzn + αnKun −M||
≤ (1− αn)||zn −M||+ αn||Kzn −M||.

(6.6)

Taking the supremum on [e− σ,B] on both sides, we have

sup
ζ∈[e−σ,B]

||zn+1 −M|| ≤ sup
ζ∈[e−σ,B]

((1− αn)||zn −M||+ αn||Kzn −KM||)

≤ (1− αn) sup
ζ∈[e−σ,B]

||zn −M||+ αn sup
ζ∈[e−σ,B]

||Kzn −KM||.

Using (6.5), we get

≤(1− αn) sup
ζ∈[e−σ,B]

||zn −M||+ αn sup
ζ∈[e−σ,B]

(||ψ(e)

+
1

Γ(γ)

∫ ζ

e

(ζ − e)γ−1h(µ, zn(µ), zn(µ− σ))dµ − ψ(e)

− 1

Γ(γ)

∫ ζ

e

(ζ − e)γ−1h(µ,M(µ),M(µ− σ))dµ||)

≤(1− αn) sup
ζ∈[e−σ,B]

||zn − q||+ αn sup
ζ∈[e−σ,B]

1

Γ(γ)

∫ ζ

e

(ζ − e)γ−1

× ||h(µ, zn(µ), zn(µ− σ))− h(µ,M(µ),M(µ− σ))||dµ.

Using assumption K1, we obtained

≤(1− αn) sup
ζ∈[e−σ,B]

||zn −M||+ αn sup
ζ∈[e−σ,B]

1

Γ(γ)

∫ ζ

e

(ζ − e)γ−1dµ

× Lh(‖zn −M(µ)‖+ ‖zn(µ− σ)−M(µ− σ)‖)

≤(1− αn) sup
ζ∈[e−σ,B]

||zn −M||+ αn
1

Γ(γ)

∫ w

e

(w − e)γ−1dµ

× Lh( sup
w∈[e−σ,B]

‖zn −M(µ)‖+ sup
ζ∈[e−σ,B]

‖zn(µ− σ)−M(µ− σ)‖).

Dividing by Eγ(δLζL)

supζ∈[e−σ,B] ||zn+1 −M||
Eγ(δLζL)

≤
(1− αn) supζ∈[e−σ,B] ||zn −M||

Eγ(δLζL)
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+ αn
1

Γ(γ)
(

∫ ζ

e

(ζ − e)γ−1dµ)× Lh(
supζ∈[e−σ,B] ‖zn −M(µ)‖

Eγ(δLζL)

+
supζ∈[e−σ,B] ‖zn(µ− σ)−M(µ− σ)‖

Eγ(δLζL)
).

Using (6.4), we get

‖zn+1 −M‖δL

≤(1− αn)‖zn −M‖δL + αn
1

Γ(γ)

∫ ζ

e

(ζ − e)γ−1dµ

× Lh(‖zn −M(µ)‖δL + ‖zn(µ− σ)−M(µ− σ)‖δL)

≤(1− αn)‖zn −M‖δL + αn
1

Γ(γ)

∫ ζ

e

(ζ − e)γ−1dµ

× 2Lh‖zn −M‖δL

=(1− αn)‖zn −M‖δL +
αn2Lh
Eγ(δLζL)

‖zn −M‖δL ,

1

Γ(γ)

∫ ζ

e

(ζ − e)γ−1Eγ(δLζL)dµ

=(1− αn)‖zn −M‖δL +
αn2Lh
Eγ(δLζL)

‖zn −M‖δL ,

cI©(cD
Eγ(δLζL

δL
)

=(1− αn)‖zn −M‖δL +
αn2Lh
Eγ(δLζL)

Eγ(δLζL
δL

‖zn −M‖δL

=(1− αn)‖zn −M‖δL +
αn2Lh
δL

‖zn −M‖δL .

Using assumption K2, we get

‖zn+1 −M‖δL ≤ ‖zn −M‖δL .

Put ‖zn −M‖δL = ℘n, then

℘n+1 ≤ ℘n ∀ n ∈ N .

⇒ {℘n} is a sequence of real numbers with monotone decreasing characteristics.
Moreover it is bounded as well, so we can conclude that

lim
n→∞

℘n = inf{℘n} = 0

⇒ ‖zn −M‖δL = 0.

So {zn} converges to M.

7. Conclusion

In this research article, the three-step M-iteration process is employed to estimate
fixed points of mappings satisfying the (KSC)-condition. We establish weak and
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strong fixed-point convergence results for such mappings. Additionally, two new
examples are provided to demonstrate that the (KSC)-condition is more general
than condition (C). Several polynomiographs are generated for different settings of
iteration parameters, and ANI values are computed to compare their convergence
speed. Furthermore, a comparative numerical simulation is conducted to support
our main findings. Finally, an application in a class of fractional differential equa-
tions is discussed to highlight the significance of the M-iteration process.
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[11] I. Gościniak and K. Gdawiec, Control of dynamics of the modified Newton-
Raphson algorithm, Communications in Nonlinear Science and Numerical Sim-
ulation, 2019, 67, 76–99.

[12] H. A. Hammad, H. ur Rehman and M. De la Sen, Advanced algorithms and
common solutions to variational inequalities, Symmetry, 2020, 12(7), 1198.

[13] H. A. Hammad and M. De la Sen, Stability and controllability study for mixed
integral fractional delay dynamic systems endowed with impulsive effects on
time scales, Fractal and Fractional, 2023, 7(1), 92.

[14] H. A. Hammad and M. De la Sen, A tripled fixed point technique for solving a
tripled-system of integral equations and Markov process in CCbMS, Advances
in Difference Equations, 2020, 567, 2020.

[15] B. Kalantari, Polynomiography: From the fundamental theorem of algebra to
art, Leonardo, 2005, 38(3), 233–238.
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