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GLOBAL BOUNDEDNESS IN A QUASILINEAR
CHEMOTAXIS-CONSUMPTION SYSTEM

WITH SIGNAL-DEPENDENT MOTILITY AND
SUPER-QUADRATIC DAMPING∗

Chi Xu1,†

Abstract In this paper, we consider a quasilinear chemotaxis-consumption
model ut = ∆(vαum) + ru− µul, x ∈ Ω, t > 0,

vt = ∆v − uv, x ∈ Ω, t > 0

within a smoothly bounded domain Ω ⊂ Rn under homogeneous Neumann
boundary conditions, where the parameters α, r, µ > 0 and l,m > 1. For any
sufficiently regular initial data and parameters l,m > 1 with l > m + 1, it
is shown that the aforementioned system possesses at least one global weak
solution with a boundedness property

∥u(·, t)∥Lp(Ω) + ∥v(·, t)∥W1,∞(Ω) ≤ C

for all p ≥ 2 and t > 0. This finding indicates the regularizing effect of
super-quadratic damping of a logistic-type source under strong degeneracy of
signal-dependent motility, even though the cross-diffusion is simultaneously
enhanced.
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1. Introduction

Chemotaxis, which refers to the directed movement toward the area with higher
chemical concentrations, is essential for the growth and survival of cells or bacteria.
The chemotactic movement can be described by the following reaction-diffusion
systemut = ∇ · (γ(u, v)∇u) +∇ · (ϕ(u, v)u∇v) + g(u, v), x ∈ Ω, t > 0,

vt = ∆v + f(u, v), x ∈ Ω, t > 0,
(1.1)
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which is also known as the Keller-Segel model. Here, u and v represent the density
of cells and chemicals, respectively, and Ω ⊂ Rn is a bounded domain with a smooth
boundary. In the signal equation, f(u, v) reflects the dynamics of cells and signifi-
cantly influences the behavior of the solution. For example, with the prototypical
choice f(u, v) = −v+ u, cells aggregate due to the movement of the chemotaxis in-
duced by the chemical they secrete. In this scenario, the dynamics of (1.1) is highly
dependent on the spatial dimension, with the phenomenon of critical mass observed
when n = 2 under conditions γ(u, v) = ϕ(u, v) = 1 and g(u, v) = 0 (see survey [1]).
In contrast, when f(u, v) = −uv, cells are primitive bacteria and the movement
of the chemotaxis is mainly a result of the cross-diffusion movement toward the
oxygen they consume. However, compared to the case where the chemical signal is
produced, the chemotaxis consumption system is dominated by random diffusion
of bacteria, and the solution will eventually approach its homogeneous steady state
as time tends to infinity [11].

As a simplification of (1.1), the Keller-Segel model with signal-dependent motil-
ity ut = ∆(ϕ(v)um) + g(u, v), x ∈ Ω, t > 0,

vt = ∆v + f(u, v), x ∈ Ω, t > 0
(1.2)

was proposed in [4] to model the stripe formation structure observed in experi-
ments. When the diffusion is Brownian, i.e., m = 1, and f(u, v) = −v + u, in this
case (1.2) can be written as

ut = ∆(ϕ(v)u) + g(u, v), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0.
(1.3)

When g(u, v) = 0, the blow-up phenomena in (1.1) can be suppressed if the motility
function ϕ(v) exhibits algebraic decay at infinity [3, 5, 6]. However, a similar crit-
ical mass phenomenon, which was firstly detected in the Keller-Segel model, was
also identified in [5, 7, 9] if the motility function is an exponential decay function
e−χv. These findings indicate that, on the one hand, the signal-dependent motil-
ity can bring a regularizing effect to suppress the blow-up of solutions when ϕ(v)
is an algebraic decay function, but, on the other hand, the blow-up suppression of
signal-dependent motility might be invalid if ϕ(v) is a fast decay function such as an
exponential function. When considering cell proliferation, the prototypical choice of
g(u, v) is a logistic source g(u, v) = ru−µul. When l = 2 and the spatial dimension
n = 2, for any ϕ(s) ∈ C3([0,∞)) such that ϕ′(s) < 0, lim

s→∞
ϕ(s) = 0, and the limit

lim
s→∞

ϕ′(s)
ϕ(s) exists, (1.2) will admit a unique global classic solution, which eventually

tends towards the constant equilibrium of (1.2) if µ > 1
16 max

0≤s<+∞
|ϕ′(s)|2
ϕ(s) [8]. Sub-

sequently, a boundedness property in higher dimensions is obtained in [26] with
sufficiently large µ. Nevertheless, pattern formation can occur if µ is sufficiently
small [22]. For further results on super-quadratic damping, we refer to [20,21].

However, if m > 1, the diffusion of cells is not Brownian and the literature on
this topic is far from complete. For example, the following quasi-linear chemotaxis-
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production system ut = ∆(ϕ(v)um), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,
(1.4)

where the motility function generalizes the prototype ϕ(v) = v−α, admits a global
bounded weak solution under several constraints on α and the additional condition
m > n

2 [36].
In the signal consumption scenario with m = 1, system (1.2) can readily take

the form ut = ∆(ϕ(v)u) + g(u, v), x ∈ Ω, t > 0,

vt = ∆v − uv, x ∈ Ω, t > 0.
(1.5)

When g(u, v) = 0, rigorous analytical research in the early stages mainly concen-
trates on the case where ϕ(s) has a uniform positive lower bound for s ∈ [0,∞),
and the findings suggest that a non-degenerate motility function does not signifi-
cantly impact the dynamics of (1.2) when cells consume the signal [13, 16, 17, 27].
In fact, under the condition ϕ(s) > 0, s ∈ [0,∞), the existence of a classical so-
lution was established with a smallness condition on the initial data [13]. Later,
this smallness condition was removed for spatial dimension n = 2 [27]. Recently,
global solvability was established in a generalized framework, and this solution will
eventually stabilize to the homogeneous steady state of (1.6) [16, 17]. If the motil-
ity function is given by ϕ(s) = s−α, there exists a weak-strong solution for (1.6),
which can transform into a standard weak solution under conditions 2 ≤ n ≤ 5
and α > n−2

6−n . Moreover, the solution can be converted into a classical solution in
spatial dimension n = 1 [25]. But, the qualitative asymptotic analysis in the case
of ϕ(s) = s−α is still lacking. When considering the degeneracy of ϕ(s) in s = 0,
several profound studies reveal that this degeneracy can essentially complicate both
the theory of the solution and its asymptotic behavior. For example, the constant
equilibrium, which is asymptotically stable for any non-degenerate ϕ(s), will even-
tually lose its stability, causing the solution to approach a non-constant equilibrium
as time tends to infinity [12, 34, 35]. When g(u, v) ̸= 0, the system (1.2) possesses
a globally bounded classical solution with non-degenerate ϕ(s) if the source term is
either a super-quadratic degradation term or a standard logistic source with large
µ > 0 [28]. Other similar variants with logistic-type source can be found in [19,29].

Whenm > 1 and g(u, v) = 0, an analogous result in the chemotaxis-consumption
system ut = ∆(ϕ(v)um), x ∈ Ω, t > 0,

vt = ∆v − uv, x ∈ Ω, t > 0
(1.6)

was achieved in [15] with a non-degenerate motility function ϕ(s). These findings
illustrate that porous medium-type diffusion can regularize the signal-dependent
Keller-Segel model in both signal production and consumption scenarios, provided
there is sufficiently strong nonlinear enhancement, even though cross-diffusion is
simultaneously enhanced. Recently, the existence of a global weak solution was
established in [2] when ϕ(s) is a singular motility function s−α under constraints
between m and α, but the results regarding the well-posedness of (1.6) under the
degeneracy of ϕ(s) at s = 0 are still quite limited, not to mention the influence of
considering of proliferation effect of cells. To the best of our knowledge, if g(u, v) = 0
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and the motility function nearly takes the form ϕ(s) = sα, system (1.6) possesses
a global weak solution under the condition a ∈ [1, 2m), while in one-dimensional
setting, the existence of a global weak solution can also be obtained for arbitrary
α > 0, and that solution remains uniformly bounded when α ≥ 1. Moreover, the
uniformly bounded solution will eventually converge to a nonhomogeneous steady
state as time passes to infinity [14]. However, as far as we know, no rigorous analysis
exists for the scenario where g(u, v) ̸= 0.

Main result. Based on the preceding discussion, this study primarily investi-
gates the impact of cell proliferation on the system (1.6). To this end, by incor-
porating a logistic source term ru − µul in (1.6), the objective of this paper is to
determine to what extent the damping effect of the logistic source can regularize
(1.6) when ϕ(s) potentially degenerates at s = 0. Specifically, we consider the
initial-boundary value problem

ut = ∆(vαum) + ru− µul, x ∈ Ω, t > 0,

vt = ∆v − uv, x ∈ Ω, t > 0,

∂u

∂ν
=

∂v

∂ν
= 0, x ∈ Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, t > 0,

(1.7)

where Ω ⊂ Rn(n ≥ 1) is a bounded domain with a smooth boundary and ν is the
outward unit normal vector of Ω. The parameters r, µ, α > 0 and m > 1. We
assume the initial data satisfiesu0 ∈ W 1,∞(Ω), u0 ≥ 0 with u0 ̸≡ 0 and,

v0 ∈ W 1,∞(Ω), v0 > 0 in Ω.
(1.8)

Our main result can be stated as follows

Theorem 1.1. Let n ≥ 1 and Ω ⊂ Rn be a bounded domain with smooth bound-
ary. Suppose that the parameters r, µ, α > 0 and m > 1. For any initial data satisfies
(1.8) and m, l > 1 fulfills

l > m+ 1, (1.9)

the problem (1.7) exists at least one global weak solution in the sense of Definition
2.1 below with additional boundedness property

∥u(·, t)∥Lp(Ω) + ∥v(·, t)∥W 1,∞(Ω) ≤ C (1.10)

with constant C > 0, for all p ≥ 2 and t > 0.

Remark 1.1. 1. If l = m + 1, the sufficiently large µ > 0 can also guarantee the
existence of the global weak solution.
2. Given that l > m+1 > 2, our findings suggest that the superquadratic damping
effect of the logistic source can effectively regularize the system (1.6), even when
ϕ(s) degenerates at s = 0.

Main idea. Our intention of constructing a global weak solution in the sense
of Definition 2.1 below is based on the analysis of functional of energy type

F(t) =

∫
Ω

up(·, t) +
∫
Ω

v−2p−2m+3|∇v(·, t)|2p+2m−2 (1.11)
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for a certain regularized system of (1.7). The functional F(t) actually admits a quasi-
energy structure for any suitably large p (Lemma 3.1). Thereafter, by introducing
the transformation

w = − ln
v

∥v0∥L∞(Ω)
,

the positive lower bound of v can be obtained through an argument of heat semi-
group along with aforementioned Lp-boundedness property (Lemma 3.3). Then the
local L∞-boundedness of solution can readily be obtained through standard Moser
iteration (Lemma 3.4). Now, we collect all aforementioned estimates to derive a time
regularity of umvα in regularized system to gain the compactness features of the
solution of regularized system through Aubin-Lions Lemma (Lemma 3.6) and the
weak solution can be constructed through a standard extraction procedure (Lemma
4.1).

2. Preliminaries

We firstly form the concept of weak solution as follows

Definition 2.1. Let Ω ⊂ Rn(n ≥ 1) be a bounded domain with smooth bound-
ary. Suppose that r, µ > 0, that l ≥ 1 and that (1.8) holds for any initial value of
(1.7). Then, a pair of functionsu ∈ L1

loc(Ω× [0,∞)),

v ∈ L∞
loc(Ω× [0,∞))

⋂
L1
loc((0,∞);W 1,1(Ω)),

(2.1)

is called a global weak solution for system (1.7), if (u, v) satisfies

ul ∈ L1
loc(Ω× [0,∞)), umvα ∈ L1

loc(Ω× [0,∞)), (2.2)

and

−
∫ ∞

0

∫
Ω

uφt −
∫
Ω

u0φ(·, 0)

=

∫ ∞

0

∫
Ω

umvα∆φ+ r

∫ ∞

0

∫
Ω

uφ− µ

∫ ∞

0

∫
Ω

ulφ

(2.3)

for all φ ∈ C∞
0 (Ω× [0,∞)) with ∂φ

∂ν |∂Ω = 0, as well as∫ ∞

0

∫
Ω

vφt +

∫
Ω

v0φ(·, 0) =
∫ ∞

0

∫
Ω

∇v · ∇φ+

∫ ∞

0

∫
Ω

uvφ (2.4)

for all φ ∈ C∞
0 (Ω× [0,∞)).

To appropriately start the approximation procedures, the regularized system for
(1.7) can be constructed by

uεt = ∆(vαε u
m
ε ) + ruε − µul

ε, x ∈ Ω, t > 0,

vε = ∆vε − uεvε, x ∈ Ω, t > 0,

∂uε

∂ν
=

∂vε
∂ν

= 0, x ∈ ∂Ω, t > 0,

uε(·, 0) = u0 + ε, vε(·, 0) = v0, x ∈ Ω,

(2.5)
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and thereby the local existence and the extensibility for (2.5) can be established by
applying the argument in [32]. Therefore, the proof is omitted.

Lemma 2.1. Let n ≥ 1, r, µ > 0 and assume (1.8) holds. Then for every ε ∈
(0, 1), there existsuε ∈ C0(Ω× [0, Tmax,ε))

⋂
C2,1(Ω× (0, Tmax,ε)),

vε ∈
⋂

q≥1 C
0([0, Tmax,ε);W

1,q(Ω))
⋂
C2,1(Ω× (0, Tmax,ε)),

(2.6)

with Tmax,ε ∈ (0,∞] such that (uε, vε) solves (2.5) in the classical sense in Ω ×
(0, Tmax,ε) with uε > 0, vε > 0. Moreover,

lim sup
t→Tmax,ε

∥uε(·, t)∥L∞(Ω) = ∞, if Tmax,ε < ∞. (2.7)

Then some basic estimates can be readily at hand.

Lemma 2.2. Let n ≥ 1, r, µ > 0 and assume (1.8) holds. Then for t ∈ (0, Tmax,ε),
the solution (uε, vε) satisfies∫

Ω

uε(·, t) ≤ δ := max

{∫
Ω

u0,

(
r

µ

) 1
l−1

|Ω|

}
, (2.8)

and
∥vε(·, t)∥L∞(Ω) < ∥v0∥L∞(Ω). (2.9)

Proof. An integration along with the Hölder inequality in the first equation of
(2.5) can produce the following result.

d

dt

∫
Ω

uε = r

∫
Ω

uε − µ

∫
Ω

u2
ε ≤ r

∫
Ω

uε − µ|Ω|
1

l−1

(∫
Ω

uε

)l

. (2.10)

Hence (2.8) is a direct consequence of the above inequality through a standard com-
parison argument. Then we invoke the maximum principle on the second equation
of (2.5) and the positivity of the solution to obtain (2.9).

Finally, we collect some basic inequalities presented in [33], which can be treated
as a preparation for the analysis of the functional energy in the latter section.

Lemma 2.3. Let n ≥ 1, r, µ, α > 0 and assume (1.8) holds. For each ε ∈ (0, 1)
and any choice of η > 0 as well as q > 2, there exist C = C(q, η) such that for all
t ∈ (0, Tmax,ε)

d

dt

∫
Ω

v−q+1
ε |∇vε|q + q

∫
Ω

v−q+3
ε |∇vε|q−2|D2 ln vε|2

≤ q

2

∫
∂Ω

v−q+1
ε |∇vε|q−2 ∂|∇vε|2

∂ν
+ q(q − 2 +

√
n)

∫
Ω

uεv
−q+2
ε |∇vε|q−2|D2vε|,

(2.11)
and ∫

Ω

v−q−1
ε |∇vε|q+2 ≤ (q +

√
n)2

∫
Ω

v−q+3
ε |∇vε|q−2|D2 ln vε|2, (2.12)

and∫
Ω

v−q+1
ε |∇vε|q−2|D2vε|2 ≤ (q +

√
n+ 1)2

∫
Ω

v−q+3
ε |∇vε|q−2|D2 ln vε|2, (2.13)
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as well as∫
∂Ω

v−q+1
ε |∇vε|q−2 ∂|∇vε|2

∂ν

≤ η

∫
Ω

v−q+1
ε |∇vε|q−2|D2vε|2 + η

∫
Ω

v−q−1
ε |∇vε|q+2 + C

∫
Ω

vε.

(2.14)

Proof. The proof of all the above inequalities can be found in [33] and thereby
we omit it directly.

3. A priori estimates

3.1. Global Lp-boundedness of solution

Our procedures will start with the analysis of a suitably designed functional

Fε(t) =

∫
Ω

up
ε(·, t) +

∫
Ω

v−2p−2m+3
ε (·, t)|∇vε(·, t)|2p+2m−2, (3.1)

with suitably large p > 2, which genuinely admits a quasi-energy structure by fully
utilizing the outcomes of Lemma 2.2. Our core lemma can be stated as follows

Lemma 3.1. Let n ≥ 1, r, µ, α > 0 and assume that (1.8)-(1.9) hold. Then for
all ε ∈ (0, 1) and any p > 2 satisfying

p >

(
1

α
−m

)
+

,

one can find a constant C = C(p) > 0 such that

d

dt
Fε(t) + Fε(t) +

mp(p− 1)

2

∫
Ω

um+p−3
ε vαε |∇uε|2 +

µ

2

∫
Ω

up+l−1
ε ≤ C (3.2)

for all t ∈ (0, Tmax).

Proof. At first, multiplying the first equation of (2.5) by up−1
ε with p > 2 and

utilizing Young’s inequality, we have

1

p

d

dt

∫
Ω

up
ε +m(p− 1)

∫
Ω

um+p−3
ε vαε |∇uε|2 + µ

∫
Ω

up+l−1
ε

= α(p− 1)

∫
Ω

um+p−2
ε vα−1

ε ∇uε · ∇vε + r

∫
Ω

up
ε

≤ m(p− 1)

2

∫
Ω

um+p−3
ε vαε |∇uε|2 +

α2(p− 1)

2m

∫
Ω

um+p−1
ε vα−2

ε |∇vε|2 + r

∫
Ω

up
ε .

(3.3)
Then, we apply Young’s inequality again to find c1 > 0 such that

d

dt

∫
Ω

up
ε +

m(p− 1)

2

∫
Ω

um+p−3
ε vαε |∇uε|2 +

µ

2

∫
Ω

up+1
ε

≤ α2(p− 1)

2m

∫
Ω

up+m−1
ε vα−2

ε |∇vε|2 + c1.

(3.4)



Global boundedness in chemotaxis-consumption system 2577

Now recalling the outcomes of Lemma 2.2, we set q = 2m+ 2p− 2 > 0 to obtain

d

dt

∫
Ω

v−2p−2m+3
ε |∇vε|2p+2m−2

+(2p+ 2m− 2)

∫
Ω

v−2p−2m+5
ε |∇vε|2p+2m−4|D2 ln vε|2

≤ (p−m+ 1)

∫
∂Ω

v−2m−2p+3
ε |∇vε|2p+2m−4 ∂|∇vε|2

∂ν

+(2p+ 2m− 2)(2p+ 2m− 4 +
√
n)

∫
Ω

uεv
−2m−2p+4
ε |∇vε|2p+2m−4|D2vε|.

(3.5)
At this position, we set two constants

c2 :=
p+m− 1

(2p+ 2m− 1 +
√
n)2

and

c3 :=
p+m− 1

(2p+ 2m− 2 +
√
n)2

,

then (2.14) along with (2.12) as well as (2.13) readily yields

(p+m− 1)

∫
∂Ω

v−2p−2m+3
ε |∇vε|2p+2m−4 ∂|∇vε|2

∂ν

≤ c2
2

∫
Ω

v−2p−2m+3
ε |∇vε|2p+2m−4|D2vε|2 +

c3
2

∫
Ω

v−2p−2m+1
ε |∇vε|2p+2m

+C

∫
Ω

vε, for all t ∈ (0, Tmax,ε) and ε ∈ (0, 1)

(3.6)

with some positive content C = C(c2, c3). Noting the fact that

(2p+ 2m− 2)

∫
Ω

v−2p−2m+5
ε |∇vε|2p+2m−4|D2 ln vε|2

≥ c2

∫
Ω

v−2m−2p+3
ε |∇vε|2p+2m−4|D2vε|2 + c3

∫
Ω

v−2m−2p+1
ε |∇vε|2p+2m.

(3.7)

Hence, we obtain

d

dt

∫
Ω

v−2p−2m+3
ε |∇vε|2p+2m−2

+
c2
2

∫
Ω

v−2m−2p+3
ε |∇vε|2p+2m−4|D2vε|2 +

c3
2

∫
Ω

v−2m−2p+1
ε |∇vε|2p+2m

≤ (2p+ 2m− 2)(2p+ 2m− 4 +
√
n)

∫
Ω

uεv
−2m−2p+4
ε |∇vε|2p+2m−4|D2vε|.

(3.8)
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Now, combining (3.3) with (3.8), we have

d

dt
Fε(t) + Fε(t) +

mp(p− 1)

2

∫
Ω

um+p−3
ε vαε |∇vε|2

+
c2
2

∫
Ω

v−2m−2p+3
ε |∇vε|2p+2m−4|D2vε|2

+
c3
2

∫
Ω

v−2m−2p+1
ε |∇vε|2p+2m + µ

∫
Ω

up+l−1
ε

≤ c4

∫
Ω

uεv
−2m−2p+4
ε |∇vε|2p+2m−4|D2vε|+ c5

∫
Ω

up+m−1
ε vα−2

ε |∇vε|2

+(r + 1)

∫
Ω

up
ε +

∫
Ω

v−2p−2m+3
ε |∇vε|2p+2m−2 + C

∫
Ω

vε

(3.9)

for all t ∈ (0, Tmax,ε) and ε ∈ (0, 1), where

c4 = (2p+ 2m+ 2)(2p+ 2m− 4 +
√
n)

and

c5 =
α2p(p− 1)

2m
.

Then, by applying Young’s inequality, we can obtain

c5

∫
Ω

up+m−1
ε vα−2

ε |∇vε|2

≤ c3
6

∫
Ω

v−2p−2m+1
ε |∇vε|2p+2m +

(
6

c3

) 1
p+m−1

c
p+m

p+m−1

5

∫
Ω

up+m
ε v

p+m
p+m−1 (α−

1
p+m )

ε

(3.10)
and

c4

∫
Ω

uεv
−2m−2p+4
ε |∇vε|2m+2p−4|D2vε|

≤ c2
2

∫
Ω

v−2m−2p+3
ε |∇vε|2m+2p−4|D2vε|2 +

c24
2c2

∫
Ω

u2
εv

−2m−2p+5
ε |∇vε|2p+2m−4

≤ c2
2

∫
Ω

v−2p−2m+3
ε |∇vε|2p+2m−4|D2vε|2 +

c3
6

∫
Ω

v2m−2p−3
ε |∇vε|2p−2m+4

+

(
6

c3

)m+p−2
2

(
c24
2c2

) p+m
2

∫
Ω

up+m
ε vε

(3.11)
as well as ∫

Ω

v−2p−2m+3
ε |∇vε|2p+2m−2

≤ c3
6

∫
Ω

v−2p−2m+1
ε |∇vε|2p+2m +

(
6

c2

)p+m−1 ∫
Ω

vε

(3.12)

for all ε ∈ (0, 1). Hence, one can immediately find constants c6, c7 > 0 as well as
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c8 > 0 such that

d

dt
Fε(t) + Fε(t) +

mp(p− 1)

2

∫
Ω

um+p−3
ε vαε |∇uε|2 + µ

∫
Ω

up+l−1
ε

≤ c6

∫
Ω

up+m
ε v

p+m
p+m−1 (α−

1
p+m )

ε + c7

∫
Ω

up+m
ε + c8

(3.13)

for all t ∈ (0, Tmax,ε) and ε ∈ (0, 1). Now for α > 0, by the choice of p > 0, we
conclude

p >

(
1

α
−m

)
+

>
1

α
−m

which yields

α >
1

p+m
(3.14)

for such choice of p. Thus (2.9) together with (3.14) can immediately yield

c6

∫
Ω

up+m
ε v

p+m
p+m−1 (α−

1
p+m )

ε ≤ c6∥v0∥
p+m

p+m−1 (α−
1

p+m )
L∞(Ω)

∫
Ω

up+m
ε . (3.15)

Then, this fact shows that

d

dt
Fε(t) + Fε(t) +

mp(p− 1)

2

∫
Ω

um+p−3
ε vαε |∇vε|2 + µ

∫
Ω

up+l−1
ε

≤
(
c6∥v0∥

p+m
p+m−1 (α−

1
p+m ) + c7

)∫
Ω

up+m
ε + c8.

(3.16)

Because
p+ l − 1− (p+m) = l − (m+ 1) > 0.

Then Young’s inequality entails

d

dt
Fε(t) + Fε(t) +

mp(p− 1)

2

∫
Ω

um+p−3
ε vαε |∇uε|2 +

µ

2

∫
Ω

up+l−1
ε ≤ c9 (3.17)

with constant c9 > 0 for every ε ∈ (0, 1), which directly yields (3.2).
From the outcome of Lemma 3.1, a standard comparison argument can be ap-

plied to obtain the boundedness property as follows:

Lemma 3.2. Let n ≥ 1, r, µ, α > 0 and assume (1.8)-(1.9) hold. Then for
arbitrary p > 2, one can find C(p) > 0 such that for all t ∈ (0, Tmax,ε)

∥uε(·, t)∥Lp(Ω) ≤ C(p). (3.18)

Proof. For every sufficiently large p satisfying

p >

(
1

α
−m

)
+

,

by dropping the positive term of the left-hand side in (3.2), we can obtain

d

dt
Fε(t) + Fε(t) ≤ C, for all t ∈ (0, Tmax,ε) and ε ∈ (0, 1), (3.19)
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which immediately yields∫
Ω

up
ε ≤ max {Fε(0), C} = max

{∫
Ω

up
0 +

∫
Ω

v−2m−2p+3
0 |∇v0|2m+2p−2, C

}
(3.20)

for all t ∈ (0, Tmax,ε) and ε ∈ (0, 1). But for p satisfying

1 < p ≤
(
1

α
−m

)
+

.

Hölder inequality, along with the fact that Ω is bounded, can readily yield

∥uε(·, t)∥Lp(Ω) ≤ c1∥uε(·, t)∥Lp0 (Ω), for all t ∈ (0, Tmax,ε) and ε ∈ (0, 1),

with constant c1 > 0 and p0 >
(
1
α −m

)
+
, which finishes the proof.

3.2. Local L∞-boundedness of solution

Due to the presence of degeneracy in (2.5), the Moser-type iteration cannot be
applied to convert the Lp-boundedness property presented in Lemma 3.2 into a L∞-
bound of the solution. Hence, by following the variable of change used in [30], we
set

wε = − ln
vε

∥v0∥L∞(Ω)

to avoid the difficulty arising from the degeneracy. The result can be stated as
follows.

Lemma 3.3. Let n ≥ 1, r, µ, α > 0 and assume that condition (1.8)-(1.9)
hold. Then, one can find a constant C = C(T ) > 0 with T ∈ (0, Tmax,ε) such
that

vε(x, t) ≥ C(T ), for all x ∈ Ω, t ∈ (0, T ) and ε ∈ (0, 1). (3.21)

Proof. By setting

wε = − ln
vε

∥v0∥L∞(Ω)
,

we rewrite the second equation of (2.5) in the form
wεt = ∆wε − |∇wε|2 + uε, x ∈ Ω, t ∈ (0, T ),

∂wε

∂ν
= 0, x ∈ ∂Ω, t ∈ (0, T ),

wε(x, 0) = − ln
v0

∥v0∥L∞(Ω)
, x ∈ Ω,

(3.22)

with some T ∈ (0, Tmax,ε). Based on a semigroup argument (e.g. [31]), we fix p > n
to obtain

∥wε(·, t)∥L∞(Ω)

≤∥et∆w0∥L∞(Ω) +

∫ t

0

∥e(t−s)∆uε(·, s)∥L∞(Ω)ds

≤∥w0∥L∞(Ω) + c(p)

∫ t

0

(1 + (t− s)−
n
2p )e−λ1(t−s)∥uε(·, s)− uε(s)∥Lp(Ω)ds

+

∫ t

0

uε(s)ds, for all t ∈ (0, T ) and ε ∈ (0, 1),
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with c(p) > 0, where λ1 is the first nonzero eigenvalue of −∆ under homogeneous
Neumann boundary condition. Now, recalling the boundedness property of the so-
lution in Lp(Ω) with arbitrary p > 2, one can immediately find c1, c2 > 0 such
that

∥wε(·, t)∥L∞(Ω) ≤ c1 + c2

∫ t

0

(1 + σ− n
2p )e−λ1σdσ + c1T (3.23)

for all t ∈ (0, T ) and ε ∈ (0, 1). Then the fixed p > n can entail∫ ∞

0

(1 + σ− n
2p )e−λ1σdσ < ∞

and thereby we can estimate

∥wε(·, t)∥L∞(Ω) < c3(T ), for all t ∈ (0, T ) and ε ∈ (0, 1) (3.24)

with constant c3(T ) > 0. Hence (3.21) can be readily obtained through the above
estimation as well as the definition of wε.

Then the following L∞-bound of the solution will be immediately at hand
through a Moser-type iteration.

Lemma 3.4. Let n ≥ 1, r, µ, α > 0 and assume (1.8)-(1.9) hold. Then one can
find a constant C = C(T ) with some T ∈ (0, Tmax,ε) such that

∥uε(·, t)∥L∞(Ω) ≤ C(T ), for all ε ∈ (0, 1) and t ∈ (0, T ). (3.25)

Proof. We first invoke the heat semigroup regularities to estimate

∥∇vε(·, t)∥L∞(Ω)

=

∥∥∥∥∇et∆v0 −
∫ t

0

∇e(t−s)∆(uε(·, s)vε(·, s))ds
∥∥∥∥
L∞(Ω)

≤ c1∥∇v0∥L∞(Ω) + c2

∫ t

0

(1 + (t− s)−
1
2−

n
2p )e−λ1(t−s)∥uε(·, s)∥Lp(Ω)

≤ c3, for all t ∈ (0, T ) and ε ∈ (0, 1),

(3.26)

where λ1 is the first non-zero eigenvalue of −∆ under homogeneous Neumann
boundary condition. Then, by multiplying pup−1

ε on the first equation of (2.5) and
integrating over Ω, one can employ integration by parts and Young inequality to
derive

d

dt

∫
Ω

up
ε +

mp(p− 1)

2

∫
Ω

um+p−3
ε vαε |∇uε|2 + µ

∫
Ω

up+1
ε

≤ α2p(p− 1)

2m

∫
Ω

up+m−1
ε vα−2

ε |∇vε|2 + r

∫
Ω

up
ε .

(3.27)

Now, due to (3.21), (3.27) can convert into

d

dt

∫
Ω

up
ε + c4(T )

∫
Ω

um+p−3
ε |∇uε|2 + µ

∫
Ω

up+1
ε

≤ c5(T )

∫
Ω

up+m−1
ε |∇vε|2 + r

∫
Ω

up
ε , for all t ∈ (0, T ) and ε ∈ (0, 1),

with constant c4(T ), c5(T ) > 0. Therefore, together with (3.26), we invoke the well-
established Moser-type iteration (see e.g. [24]) to derive (3.25), thereby completing
the proof.

We can now assert that the maximal interval Tmax,ε extends to infinity.
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Corollary 3.1. Let n ≥ 1, r, µ, α > 0 and assume (1.8)-(1.9) hold. Then we have

Tmax,ε = ∞. (3.28)

Proof. If Tmax,ε < ∞, from Lemma 3.4, the boundedness property of uε contra-
dicts (2.7), which finishes the proof.

3.3. Further ε-dependent regularities

Now we should deduce the time-derivative regularity of up
εv

α
ε with p > 0, and

thereafter prepare an argument based on the application of the Aubin-Lions Lemma,
which is the objective of the next two lemmas. We first concentrate on the regularity
of the spatial gradient involving uε.

Lemma 3.5. Let n ≥ 1 and assume (1.8)-(1.9) hold with r, µ, α > 0. Then for
all p > 0 and any T > 0, there exist C(p, T ) > 0 such that∫ T

0

∫
Ω

um+p−3
ε vαε |∇uε|2 ≤ C(p, T ), for all t ∈ (0, T ) and ε ∈ (0, 1). (3.29)

Proof. Based on the assumption on the initial data, we combine the outcomes of
Lemma 3.3 and Lemma 3.4 to deduce

vε(x, t) ≥ c1(T ), u(x, t) ≤ c2(T ), in Ω× (0, T ) for every ε ∈ (0, 1), (3.30)

and ∫
Ω

|∇vε(x, t)|2 ≤ c3, in Ω× (0, T ) for every ε ∈ (0, 1) (3.31)

with any given T > 0 and constants c1, c2, c3 > 0, which rely on T . Then (3.30)
can warrant that it will be sufficient to prove (3.29) is valid when p ∈ (0, 1). Hence
by multiplying −up

ε on the first equation of (2.5), we have

−1

p

d

dt

∫
Ω

up
ε +

m(1− p)

2

∫
Ω

um+p−3
ε vαε |∇uε|2 − µ

∫
Ω

up+l−1
ε

≤ α2(1− p)

2m

∫
Ω

up+m−1
ε vα−2

ε |∇vε|2 − r

∫
Ω

up
ε .

(3.32)

Then an integration on the above inequality will yield

m(1− p)

2

∫ T

0

∫
Ω

um+p−3
ε vαε |∇uε|2

≤ µ

∫ T

0

∫
Ω

(uε + ε)p+l−1 +
1

p

∫
Ω

(uε + ε)p

+
α2(1− p)

2m

∫ T

0

∫
Ω

(uε + ε)p+m−1vα−2
ε |∇vε|2.

Now, along with (3.30) and (3.31), the above estimates can readily imply (3.29).

By applying the results in Lemma 3.5, we immediately obtain the following
regularity feature involving the time derivative.
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Lemma 3.6. Let p > 0 and suppose that (1.8)-(1.9) hold with α, µ, r > 0. Then
for all T > 0 and k > n

2 , there exist C(p, T ) > 0 such that∫ T

0

∥∂t (up
ε(·, t)vαε (·, t)) ∥(Wk,2(Ω))⋆dt ≤ C(p, T ) (3.33)

and ∫ T

0

∥∂tvε(·, t)∥2(Wk,2(Ω))⋆dt ≤ C(p, T ) (3.34)

for all t ∈ (0, T ) and ε ∈ (0, 1).

Proof. By fixing k > n
2 , the continuity of embedding W k,2(Ω) ↪→ L∞(Ω) can

allow us to find c1 > 0 such that

∥φ∥L∞(Ω) ≤ c1∥φ∥Wk,2(Ω)

for all φ ∈ C∞(Ω). Thus, for φ ∈ C∞(Ω) with ∥φ∥Wk,2(Ω) ≤ 1, a testing procedure
implies that∣∣∣∣∫

Ω

∂t(u
p
εv

α
ε ) · φ

∣∣∣∣
≤ c2

∫
Ω

um+p−3
ε v2αε |∇uε|2 + c2

∫
Ω

um+p−2
ε v2α−1

ε |∇uε||∇vε|

+c2

∫
Ω

um+p−1
ε v2α−2

ε |∇vε|2 + c2

∫
Ω

um+p−2
ε v2αε |∇uε|

+c2

∫
Ω

um+p−1
ε v2α−1

ε |∇vε|, for all t ∈ (0, T ) and ε ∈ (0, 1),

(3.35)

with a constant c2 > 0. Now for given T > 0, let us once more recall Lemma 3.3,
Lemma 3.4 and (3.26) to find c3(T ), c4(T ) and c5 such that

vε(x, t) ≥ c3(T ), uε(x, t) ≤ c4(T ), for every ε ∈ (0, 1) in Ω× (0, T ) (3.36)

and ∫
Ω

|∇vε(·, t)|2 ≤ c5, for every ε ∈ (0, 1) in Ω× (0, T ). (3.37)

Hence, by utilizing Young’s inequality, one can see that∫
Ω

um+p−2
ε v2α−1

ε |∇uε||∇vε|

≤ 1

2

∫
Ω

um+p−3
ε vαε |∇uε|2 +

1

2

∫
Ω

um+p−1
ε v3α−2

ε |∇vε|2

≤ 1

2

∫
Ω

um+p−3
ε vαε |∇uε|2 + ∥v0∥3αL∞(Ω)c

−2
3 (T )cm+p−1

4 (T )|Ω|

(3.38)

and∫
Ω

um+p−2
ε v2αε |∇uε| ≤

∫
Ω

um+p−3
ε vαε |∇uε|2 +

∫
Ω

um+p−1
ε v3αε

≤
∫
Ω

um+p−3
ε vαε |∇uε|2 + cm+p−1

4 (T )∥v0∥3αL∞(Ω)|Ω|.
(3.39)
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Then, we insert (3.38) and (3.39) into (3.35) to obtain

∥∂t(up
εv

α
ε )∥(Wk,2(Ω))⋆ ≤ c6(T )

∫
Ω

um+p−3
ε vαε |∇uε|2 + c6(T ) (3.40)

for all t ∈ (0, T ) and ε ∈ (0, 1) with constant c6(T ) > 0, which readily yield (3.33)
through integration upon the interval [0, T ].

As for (3.34), we once more choose φ ∈ C∞(Ω) with ∥φ∥Wk,2(Ω) ≤ 1 and invoke

the continuity of embedding W k,2(Ω) ↪→ L∞(Ω) to see∣∣∣∣∫
Ω

vεt · φ
∣∣∣∣ ≤ ∫

Ω

|∇vε|+ c1

∫
Ω

uεvε ≤ c7(T ) (3.41)

with constant c7(T ) > 0, which readily yield (3.34) through integration.
Now, for turning the compactness feature of up

εv
α
ε into component uε, the ob-

stacle therein seems to be the information on the positivity of the weight function
vε. Hence, the following observation, which guarantees the positivity of vε, is nec-
essary when accomplishing the subsequent extraction procedure.

Lemma 3.7. Let n ≥ 1 and assume (1.8)-(1.9) hold with r, µ, α > 0. Then, for a
given T > 0, there exist C(T ) > 0 such that∫

Ω

ln
∥v0∥L∞(Ω)

vε(·, t)
≤ C(T ), for all t ∈ (0, T ) and each ε ∈ (0, 1). (3.42)

Proof. Based on an argument to the second equation of (2.5), we invoke Young
inequality and (2.8) to obtain

d

dt

∫
Ω

ln
∥v0∥L∞(Ω)

vε
= − d

dt

∫
Ω

ln vε = −
∫
Ω

|∇vε|2

v2ε
+

∫
Ω

uε ≤ δ. (3.43)

Then an integration in the time interval [0, T ] can yield (3.42) along with the posi-
tivity of v0 in Ω.

4. Passing to the limit

In this section, we combine all of the above estimates, especially the compactness
property thus implied, to accomplish the main step towards the existence of the
global weak solution by passing to the limit ε ↘ 0.

Lemma 4.1. Let n ≥ 1 and assume (1.8)-(1.9) hold with r, µ, α > 0. Then there
exist (εj)j∈N ⊂ (0, 1) as well as negative functionsu ∈ L∞

loc(Ω× [0,∞)),

v ∈ L∞((0,∞);W 1,∞(Ω)),
(4.1)

such that εj ↘ 0 as j → ∞, and that ε = εj ↘ 0, we have

uε → u, in
⋂

p≥1 L
p
loc(Ω× [0,∞)) and a.e. in Ω× (0,∞), (4.2)

vε → v, in
⋂

p≥1 L
p
loc(Ω× [0,∞)) and a.e. in Ω× (0,∞), (4.3)
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∇vε
∗
⇀ ∇v, in L∞(Ω× [0,∞)). (4.4)

Moreover, v > 0 in Ω × (0,∞) and (u, v) forms a global weak solution of (1.7) in
the sense of Definition 2.1.

Proof. By fixing p > m−1
2 and k ∈ N such that k > n

2 , we infer from (3.33) that
for any given T > 0,

(∂t(u
p
εv

α
ε ))ε∈(0,1) is bounded in L1((0, T ); (W k,2(Ω))⋆).

Now according to (2.9), (3.26), (3.29) and Lemma 3.3 as well as Lemma 3.4, one
can find a constant C(T ) > 0 such that∫ t

0

∥∇(up(·, s)vαε (·, s))∥2L2(Ω)ds ≤ 2p

∫
Ω

u2p−2
ε v2αε |∇uε|2 + 2α2

∫
Ω

u2p
ε v2α−2

ε |∇vε|2

≤ C(T ),

(4.5)
with such p > m−1

2 and T > 0. Hence, this fact actually implies that

(up
εv

α
ε )ε∈(0,1) is bounded in L2((0, T ); (W 1,2(Ω))).

Thereafter, from (2.9), (3.34) and (3.26), it can readily be verified that

(vε)ε∈(0,1) is bounded in L∞((0,∞);W 1,∞(Ω))

as well as

(vεt)ε∈(0,1) is bounded in L2((0,∞); (W k,2(Ω))⋆).

Then, two applications of Aubin-Lions Lemma can allow us to pick a subsequence
ε = εj ↘ 0 with two nonnegative functions z ∈ L1

loc(Ω× [0,∞)) and v ∈ L∞((0,∞);
W 1,∞(Ω)) such that (4.3), (4.4) hold as well as

zε = up
εvε → z, a.e. in Ω× (0,∞) and in L1

loc(Ω× [0,∞)) (4.6)

when ε = εj ↘ 0. Since v ≤ ∥v0∥L∞(Ω) due to (2.9) and (4.3), Lemma 3.7 along with
Fatou’s Lemma guarantees that v is positive a.e. in Ω × (0,∞) and therefore, we

define u = ( z
vα )

1
p , which is nonnegative and uε = ( zε

vα
ε
)

1
p → u a.e. in Ω×(0,∞). Since

uε is bounded in L∞
loc(Ω× [0,∞)), u must belong to this space and satisfy (4.2) as

a consequence of Vitali convergence theorem.

Now, the verification of the claimed weak solution of (u, v) is quite straightfor-
ward. In fact, the integral identities (2.3)-(2.4) can be derived by standard argument
from the corresponding weak formations in (2.5) after letting ε = εj ↘ 0 and us-
ing (4.2)-(4.5) as well. As for the rest of the integrability features required in this
lemma, it can be immediately obtained from (4.3).
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