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1. Introduction

Differential equations serve as a fundamental mathematical framework for model-
ing various dynamic processes across multiple disciplines. These equations describe
relationships involving unknown functions and their derivatives, making them es-
sential for capturing the evolution of physical, biological, and financial systems over
time. Among them, ordinary differential equations (ODEs) are widely used to rep-
resent processes where changes depend on a single independent variable [29], such
as population dynamics, mechanical vibrations, and economic systems. Notably,
systems of ODEs play a crucial role in financial modeling, where they help analyze
the stability and dynamics of economic variables [21].

On the other hand, partial differential equations (PDEs) extend this concept by
involving multiple independent variables, making them indispensable for modeling
complex physical and engineering phenomena. PDEs are particularly useful for
describing heat diffusion, wave propagation, and fluid and gas dynamics, including
water flow and air movement. Many mathematicians have extensively explored these
topics, particularly in the context of modern physics and technology. For example,
in [17], Bouziani examined a class of nonclassical hyperbolic equations with nonlocal
conditions. In [36], Merad and Bouziani applied the Laplace transform to solve
pseudo-parabolic equations with nonlocal conditions. Finally, in [37], Merad and
Bouziani investigated the solvability of the telegraph equation with purely integral
conditions. Recent studies on nonlocal conditions have addressed boundary data
that cannot be directly measured.

Pseudo-hyperbolic equations play a crucial role in physics by describing a wide
range of physical phenomena. For example, in [25], Guo and Rui developed least-
squares Galerkin procedures for pseudo-hyperbolic equations. In [33], Liu et al.
proposed splitting positive definite mixed element methods for solving pseudo-
hyperbolic equations. Finally, in [34], Liu et al. introduced a new splitting 1-
Galerkin mixed method for pseudo-hyperbolic equations.. Recent research high-
lights their capability to model the dynamics of propagating waves in striated and
rotating fluids, nerve conduction and reaction-diffusion processes, as well as appli-
cations in heat and mass transfer, engineering, and mathematical biology. In [8],
Aronszajn introduced the theory of reproducing kernels, which is fundamental to
many areas of mathematical analysis. In [40], Nagumo et al. developed an active
pulse transmission line simulating nerve axons. In [7], Arima and Hasegawa studied
global solutions for mixed problems of a semi-linear differential equation. In [42],
Pao investigated a mixed initial boundary value problem arising in neurophysiology.
In [43], Ponce studied the global existence of small solutions to a class of nonlin-
ear evolution equations. Finally, in [18], Bouziani and Benouar addressed a mixed
problem with integral conditions for a third-order parabolic equation.

Pseudo-hyperbolic equations with purely integral conditions are essential for
understanding and modeling heat distribution, wave motion, and fluid dynamics.
The study of such equations has gained significant attention in recent years [38,
44]. This study focuses on obtaining approximate solutions for pseudo-hyperbolic
equations with purely integral conditions.

The general form of a pseudo-hyperbolic equation with purely integral conditions
is given as follows:

Let τ > 0, and define the domain as Θ = {(z, l) ∈ R2 | 0 < z < 1, 0 < l ≤ τ}.
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We seek a function u : Θ → R that satisfies the equation [38]:

∂2u

∂l2
− α

∂2u

∂z2
− β

∂3u

∂l∂z2
= g(z, l), 0 < z < 1, 0 < l ≤ τ, (1.1)

subject to the initial conditions:

u(z, 0) = φ(z), 0 < z < 1, (1.2)

∂u(z, 0)

∂l
= ψ(z), 0 < z < 1, (1.3)

and the purely integral conditions:∫ 1

0

u(z, l) dz = E(l), 0 < l ≤ τ, (1.4)∫ 1

0

zu(z, l) dz = G(l), 0 < l ≤ τ, (1.5)

where u : Θ → R is the unknown function, and g : Θ → R is a sufficiently smooth
function. The functions φ,ψ : [0, 1] → R and E,G : [0, τ ] → R are given, while α
and β are positive constants.

To handle the nonhomogeneous conditions, we transform the problem (1.1)-(1.5)
into an equivalent one with homogeneous conditions. We introduce the transforma-
tion:

v(z, l) = u(z, l) +S(z, l), (1.6)

where

S(z, l) =− 6z(El(0)l − 2Gl(0)l − E(l) + E(0) + 2G(l)− 2G(0))

+ 2(2El(0)l − 3Gl(0)l − 2E(l) + 2E(0) + 3G(l)− 3G(0))− lψ(z)− φ(z).
(1.7)

Consequently, problem (1.1)-(1.5) can be equivalently transformed into deter-
mining the function v that satisfies the following conditions:

∂2v

∂l2
− α

∂2v

∂z2
− β

∂3v

∂l∂z2
= H(z, l), 0 < z < 1, 0 < l < τ,

v(z, 0) = 0, 0 < z < 1,

∂v(z, 0)

∂l
= 0, 0 < z < 1,∫ 1

0

v(z, l)dz = 0, 0 < l < τ,∫ 1

0

zv(z, t)dz = 0, 0 < l < τ,

(1.8)

where

H(z, l) = g(z, l) +
∂2S(z, l)

∂l2
− α

∂2S(z, l)

∂z2
− β

∂3S(z, l)

∂l∂z2
. (1.9)

Numerical methods are widely applied to solve a variety of differential equations,
including ordinary and partial differential equations, both classical and fractional
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derivatives. These methods are essential for understanding complex systems in
fields such as physics, biology, and finance, providing approximations where analyt-
ical solutions are not feasible. Techniques like Tikhonov regularization, Chebyshev
series, and B-spline methods have been effectively used to address different types of
equations in these domains [5,11,22,30,35,45,47]. This study applies the RKHSM
to approximate solutions for pseudo-hyperbolic equations with purely integral con-
ditions. The RKHSM is a powerful numerical and analytical technique for solving
a wide range of ordinary and partial differential equations involving various orders
of derivatives. One of its key strengths is its ability to generate solutions in the
form of rapidly convergent series, with efficiently computable components. Its ad-
vantages include (1) the ability to produce globally smooth numerical solutions; (2)
uniform convergence of the numerical solutions and their derivatives to the exact
solutions; (3) applicability of the numerical solutions and all their derivatives at any
arbitrary point within the defined domain; and (4) its mesh-free nature, eliminating
the need for time discretization while ensuring ease of implementation. The con-
cept of reproducing kernels originated in the early 20th century with Zaremba [49]
and Bergman [15] and has since been widely applied to various types of differential
equations and numerical analysis. For instance, in [27], Inc and Akgül applied the
reproducing kernel Hilbert space method to solve Troesch’s problem. In [4], Akgül et
al. presented numerical solutions of fractional differential equations of Lane-Emden
type using an accurate technique. In [23], Fardi and Ghasemi solved nonlocal initial-
boundary value problems for parabolic and hyperbolic integro-differential equations
using the reproducing kernel Hilbert space method. In [31], Li and Wu introduced
a new algorithm for solving nonclassical parabolic problems based on the reproduc-
ing kernel. In [2], Akgül and Bonyah applied the reproducing kernel Hilbert space
method to solve the generalized Kuramoto-Sivashinsky equation. In [28], Jiang and
Cui focused on solving nonlinear singular pseudo-parabolic equations with nonlocal
mixed conditions in the reproducing kernel space. Finally, in [48], Yang and Lin
used the reproducing kernel Hilbert space method to solve linear initial-boundary
value problems.

For a better understanding of the RKHSM, including its theoretical background,
historical development, modifications, fundamental characteristics, kernel functions,
and its orthogonal and orthonormal basis properties, interested readers may refer
to [20]. This work provides a comprehensive exploration of the methodology, prop-
erties, and practical applications of the RKHS approach.

Several authors have recently addressed problems involving integral conditions
using the RKHS approach. For instance, L. Yingzhen and Z. Yongfang [32] ap-
plied RKHS to solve nonlinear pseudo-parabolic equations with nonlocal bound-
ary conditions. Additionally, M. Cui, along with F. Geng, developed a method
based on RKHSM for solving forced Duffing equations with integral boundary con-
ditions [24]. In [26], Hemati et al. proposed a numerical solution for the multiterm
time-fractional diffusion equation using reproducing kernel theory. In [46], Sakar
et al. introduced a novel technique for solving the fractional Bagley-Torvik equa-
tion. In [10], Abu Arqub et al. applied the reproducing kernel approach to solve
fuzzy fractional initial value problems under the Mittag-Leffler kernel differential
operator. In [1], Akgül presented a new method for fractional derivatives with a non-
local and non-singular kernel. In [3], Akgül et al. solved the fractional gas dynamics
equation using a new technique. In [6], Allahviranloo and Sahihi used the reproduc-
ing kernel method to solve fractional delay differential equations. In [12], Attia et
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al. studied solutions for the time-fractional advection-diffusion equation using nu-
merical methods. In [13], Azarnavid used Bernoulli polynomials to solve nonlinear
Volterra integro-differential equations of fractional order. In [14], Babolian et al.
applied the reproducing kernel method to solve Bratu-type fractional order differen-
tial equations. In [16], Beyrami and Lotfi introduced a method with error analysis
for solving a logarithmic singular Fredholm integral equation. In [19], Chellouf et
al. solved fractional differential equations with temporal two-point boundary value
problems using the reproducing kernel Hilbert space method. In [24], Geng and Cui
developed a new method for solving forced Duffing equations with integral boundary
conditions. In [39], Momani et al. investigated Caputo-Fabrizio fractional Riccati
and Bernoulli equations using the iterative reproducing kernel method. Finally,
in [9], Abu Arqub et al. developed the reproducing kernel Hilbert space algorithm
for solving time-fractional nonlocal reaction-diffusion equations.

2. Preliminaries

2.1. Reproducing kernel Hilbert spaces S1[0, 1], S2[0, τ ] and ℵ(Θ)

To solve equations (1.1)-(1.5), we introduce the following reproducing kernel Hilbert
spaces (RKHSs).

1. The function S1[0, 1] is defined as [20]:

S1[0, 1] ={v| v, v′, v(2) ∈ AC[0, 1], v(3) ∈ L2[0, 1],

and

∫ 1

0

v(z)dz =

∫ 1

0

zv(z)dz = 0},

where AC denotes the space of absolutely continuous functions.
The inner product and norm of this space are defined as follows:

⟨v1, v2⟩S1[0,1]
=

2∑
i=0

v
(i)
1 (0)v

(i)
2 (0) +

∫ 1

0

v
(3)
1 (z)v

(3)
2 (z)dz, (2.1)

and

∥v1∥S1[0,1] =
√

⟨v1, v1⟩S1[0,1]
. (2.2)

Theorem 2.1. The Hilbert space S1[0, 1] is a RKHS with the RKF my(z).
For each fixed y ∈ [0, 1] and any v(z) ∈ S1[0, 1],there exists my(z) ∈ S1[0, 1]
and z ∈ [0, 1], such that [20]

⟨v(.),my(.)⟩ = v(y).

The RKF my(z) is given by:

my(z) =


6∑

i=1

ci(y)z
i−1 +

a1(y)

6!
z6 +

a2(y)

7!
z7, if z ≤ y,

6∑
i=1

di(y)z
i−1 +

a1(y)

6!
z6 +

a2(y)

7!
z7, if y < z,

(2.3)
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with

d1(y) =− 28872

26510995
y7 +

3932

757457
y6 +

5201

90894840
y5 +

1236

757457
y4 +

7976

757457
y3

+
23928

757457
y2 − 29664

757457
y +

5201

757457
,

d2(y) =
9516

5302199
y7 − 23584

3787285
y6 − 1236

3787285
y5 − 171665

18178968
y4 − 48404

757457
y3

− 145212

757457
y2 +

171665

757457
y − 29664

757457
,

d3(y) =
13098

26510995
y7 − 40291

22723710
y6 +

997

3787285
y5 +

12101

1514914
y4 +

608257

9089484
y3

+
608257

3029828
y2 − 145212

757457
y +

23928

757457
,

d4(y) =
4366

26510995
y7 − 40291

68171130
y6 +

997

11361855
y5 +

12101

4544742
y4 − 37300

6817113
y3

− 37300

2272371
y2 − 48404

757457
y +

7976

757457
,

d5(y) =− 793

10604398
y7 +

2948

11361855
y6 +

103

7574570
y5 − 1017

757457
s4 +

12101

4544742
y3

+
12101

1514914
y2 +

24408

757457
y +

1236

757457
,

d6(y) =− 1203

132554975
y7 +

983

22723710
y6 − 1306

18936425
y5 +

103

7574570
y4

+
997

11361855
y3 +

997

3787285
y2 − 1236

(3787285
y − 31344

3787285
,

a1(y) =
400968

26510995
y7 − 220144

3787285
y6 +

23592

757457
y5 +

141504

757457
y4 − 322328

757457
y3

− 966984

757457
y2 − 3396096

757457
y +

2831040

757457
,

a2(y) =− 744192

26510995
y7 +

400968

3787285
y6 − 173232

3787285
y5 − 285480

757457
y4 +

628704

757457
y3

+
1886112

757457
y2 +

6851520

757457
y − 4157568

757457
,

c1(y) =− 28872

26510995
y7 +

3932

757457
y6 − 31344

3787285
y5 +

1236

757457
y4 +

7976

757457
y3

+
23928

757457
y2 − 29664

757457
y +

5201

757457
,

c2(y) =
9516

5302199
y7 − 23584

3787285
y6 − 1236

3787285
y5 +

24408

757457
y4 − 48404

757457
y3

− 145212

757457
y2 +

171665

757457
y − 29664

757457
,

c3(y) =
13098

26510995
y7 − 40291

22723710
y6 +

997

3787285
y5 +

12101

1514914
y4 − 37300

2272371
y3

+
608257

3029828
y2 − 145212

757457
y +

23928

757457
,

c4(y) =
4366

26510995
y7 − 40291

68171130
y6 +

997

11361855
y5 +

12101

4544742
y4 − 37300

6817113
y3

+
608257

9089484
y2 − 48404

757457
y +

7976

757457
,
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c5(y) =− 793

10604398
y7 +

2948

11361855
y6 +

103

7574570
y5 − 1017

757457
y4 +

12101

4544742
y3

+
12101

1514914
y2 − 171665

18178968
y +

1236

757457
,

c6(y) =− 1203

132554975
y7 +

983

22723710
y6 − 1306

18936425
y5 +

103

7574570
y4

+
997

11361855
y3 +

997

3787285
y2 − 1236

3787285
y +

5201

90894840
.

Proof. We need to prove the existence of my(z) ∈ S1[0, 1]. For any v(z) ∈
S1[0, 1], we aim to show that

⟨v(.),my(.)⟩S1[0,1]
= v(y).

Let my(z) ∈ S1[0, 1]. Using equation (2.1) along with the conditions
∫ 1

0
v(z)dz

=
∫ 1

0
zv(z)dz = 0, we obtain

⟨v(z),my(z)⟩S1[0,1]
=

2∑
i=0

v(i)(0)∂izmy(0) +

∫ 1

0

v(3)(z)∂3zmy(z)dz.

Applying integration by parts three times, we get:

⟨v(z),my(z)⟩S1[0,1]

=

2∑
i=0

v(i)(0)[∂izmy(0)− (−1)2−i∂5−i
z my(0)] +

2∑
i=0

(−1)2−iv(i)(1)∂5−i
z my(1)

−
∫ 1

0

v(z)∂6zmy(z)dz

=

2∑
i=0

v(i)(0)[∂izmy(0)− (−1)2−i∂5−i
z my(0)] +

2∑
i=0

(−1)2−iv(i)(1)m(5−i)
y (1)

−
∫ 1

0

v(z)m(6)
y (z)dz + a1(y)

∫ 1

0

v(z)dz + a2(y)

∫ 1

0

zv(z)dz

=

2∑
i=0

v(i)(0)[∂izmy(0)− (−1)2−i∂3zmy(0)] +

2∑
i=0

(−1)2−iv(i)(1)∂5−i
z my(1)

−
∫ 1

0

v(z)[∂6zmy(z)− a1(y)− a2(y)z]dz.

Now, define: ∂izmy(0)− (−1)2−i∂5−i
z my(0) = 0, i = 0, 1, 2,

∂5−i
z my(1) = 0, i = 0, 1, 2.

(2.4)

Then, we obtain:

v(y) = −
∫ 1

0

v(z)[∂6zmy(z)− a1(y)− a2(y)z]dz,
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which implies that:

∂6zmy(z)− a1(y)− a2(y)z = −δ(z − y), (2.5)

where δ(z − y) is the Dirac delta function defined as:

δ(z − y) =

1, z = y,

0, z ̸= y.

Thus, we confirm:
⟨v(.),my(.)⟩S1[0,1]

= v(y).

This proves that S1[0, 1] is a RKHS and my(z) is a RKF.
From equation (2.5), for x ̸= y, my(z) satisfies the following linear homoge-
neous differential equation of 6th order:

∂6zmy(z)− a1(y)− a2(y)z = 0. (2.6)

The boundary conditions are given by (2.4). The characteristic equation of
(2.6) is −λ6 + a1(y) + za2(y) = 0.
Solving equation (2.5), we obtain the general form ofmy(z) (see formula (2.3)).
The coefficients ci(y), di(y), ( for i = 1, . . . , 6) and a1(y), a2(y) are determined
using the following conditions:

∂izmy(0)− (−1)2−i∂5−i
z my(0) = 0, i = 0, 1, 2,

∂5−i
z my(1) = 0, i = 0, 1, 2,

limx→y+

∂jmy(z)

∂zj
= lim

z→y−

∂jmy(z)

∂zj
, j = 0, 1, 2, 3, 4,

limz→y+

∂5my(z)

∂z5
− lim

z→y−

∂5my(z)

∂z5
= −1,∫ 1

0

my(z)dz = 0,∫ 1

0

zmy(z)dz = 0.

(2.7)

Thus, the proof is complete.

2. The function space S2[0, τ ] is defined as [20]:

S2[0, τ ] = {v| v, v′, v′′ ∈ AC[0, τ ], v(3) ∈ L2[0, 1], and v(0) = v′(0) = 0}. (2.8)

The inner product and the norm in this space are defined as follows:

⟨v1, v2⟩S2[0,τ ]
=

2∑
i=0

v
(i)
1 (0)v

(i)
2 (0) +

∫ τ

0

v
(3)
1 (l)v

(3)
2 (l)dl, (2.9)

and
∥v1∥S2[0,τ ] =

√
⟨v1, v1⟩S2[0,τ ]

, (2.10)

where v1, v2 ∈ S2[0, τ ].
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Theorem 2.2. The function space S2[0, τ ] is a RKHS. The RKF ps(l) of
S2[0, τ ] is given by [4, 23]:

ps(l) =


s2

4
l2 +

s2

12
l3 − s

24
l4 +

1

120
l5, l ≤ s,

s5

120
− s4

24
l +

s3

12
l2 +

s2

4
l2, s < l.

(2.11)

For the proof, refer to the references [4] and [23].

3. Let Θ = [0, 1]× [0, τ ]. The binary function space ℵ(Θ) is defined as [20]:

ℵ(Θ) = {v(z, l)
∣∣∣ ∂4v
∂z2∂l2 is completely continuous in Θ, ∂6v

∂z3∂l3 ∈ L2(Θ), v(z, 0)

= ∂v(z,0)
∂l = 0,

∫ 1

0
v(z, l)dz =

∫ 1

0
zv(z, l)dz = 0}. The inner product in ℵ(Θ) is

defined as:

⟨v1(z, l), v2(z, l)⟩ℵ(Θ) =

2∑
i=0

∫ τ

0

∂3

∂l3
∂i

∂zi
v1(0, l)

∂3

∂l3
∂i

∂zi
v2(0, l)dl

+

2∑
j=0

〈
∂j

∂lj
v1(z, 0),

∂j

∂lj
v2(z, 0)

〉
ℵ(Θ)

+

∫ τ

0

∫ 1

0

∂3

∂z3
∂3

∂l3
v1(z, l)

∂3

∂z3
∂3

∂l3
v2(z, l)dxdt.

The norm is given by:

∥v1∥ℵ(Θ) =
√

⟨v1, v1⟩ℵ(Θ). (2.12)

For further details on the inner product and norm, refer to [20,23].

Theorem 2.3. The Function space ℵ(Θ) is a Hilbert space. The RKF of
ℵ(Θ) is given by [20]:

Ky,s(z, l) = my(z)ps(l), (2.13)

where

• my(z) is the RKF in S1[0, 1].

• ps(l) is the RKF in S2[0, τ ].

Proof. We have〈
v(z, l),K(y,s)(z, l)

〉
ℵ(Θ)

= ⟨v(z, l),my(z)ps(l)⟩ℵ(Θ)

=

2∑
i=0

∫ τ

0

∂3

∂l3
∂i

∂zi
v(0, l)

∂3

∂t3
ps(l)

∂i

∂zi
my(0)dl

+

∫ τ

0

∫ 1

0

∂3

∂l3
∂3

∂z3
v(z, l)

∂3

∂z3
my(z)

∂3

∂l3
ps(l)dzdl

+

2∑
j=0

〈
∂j

∂lj
v(z, 0),

∂j

∂lj
my(z)Ps(0)

〉
S1[0,1]
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=

∫ τ

0

[{
2∑

i=0

∂3

∂l3
∂i

∂zi
v(0, l)

∂3

∂l3
ps(l)

∂i

∂zi
my(0)

+

∫ 1

0

∂3

∂z3
∂3

∂l3
v(z, l)

∂3

∂z3
my(z)

∂3

∂l3
ps(l)dz

}]
dl

+

2∑
j=0

∂j

∂lj
v(y, 0)

∂j

∂lj
ps(0)

=

∫ τ

0

∂3

∂l3
ps(l)

∂3

∂l3

[∫ 1

0

∂3

∂z3
v(z, l)

∂3

∂z3
my(z)dz

+

2∑
i=0

∂i

∂zi
v(0, l)

∂i

∂zi
my(0)dz

]
dl

+

2∑
j=0

∂j

∂lj
v(y, 0)

∂j

∂lj
ps(0)

=

∫ τ

0

∂3

∂l3
ps(l)

∂3

∂l3
⟨v(z, l),my(z)⟩S1[0,1]

dl

+

2∑
j=0

∂i

∂li
v(y, 0)

∂i

∂li
ps(0)

=

∫ τ

0

∂3

∂l3
ps(l)

∂3

∂l3
v(y, l)dl +

2∑
j=0

∂j

∂lj
v(y, 0)

∂j

∂lj
ps(0)

= ⟨ps(l), v(y, l)⟩V2[0,τ ]

=v(y, s).

Thus, the proof is complete.

4. The function space m0(Θ) is defined as [20]:
m0(Θ) = {v(z, l)|v(z, l) is continoues in Θ and v(z, l) ∈ L2(Θ)}.
Here, m0(Θ) is a subspace of L2(Θ).

3. Application of the RKHSM

We aim to determine the solution of equation (1.8) within the RKHS ℵ(Θ). To
achieve this, we define a linear operator ℏ : ℵ(Θ) −→ m0(Θ) as follows [38]:

ℏv(z, l) =
∂2v

∂l2
− α

∂2v

∂z2
− β

∂3v

∂l∂z2
. (3.1)

Thus, problem (1.8) is transformed into the following operator form:

ℏv(z, l) = H(z, l), (z, l) ∈ (0, 1)× (0, τ ],

vl(z, 0) = 0, 0 < z < 1,

v(z, 0) = 0, 0 < z < 1,∫ 1

0

v(z, l)dz = 0, 0 < l ≤ τ,∫ 1

0

zv(z, l)dz = 0, 0 < l ≤ τ.

(3.2)
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Lemma 3.1. The operator ℏ is a bounded linear operator from ℵ(Θ) to m0(Θ).

Proof. To prove that ℏ is a bounded operator, we show that

∥ℏv∥m0
≤ J ∥ v ∥ℵ(Θ),

where J > 0 is a positive constant.
We have

∥ℏv∥2m0
=

∫∫
Θ

|(ℏv)(z, l)|2 dzdl

=

∫∫
Θ

∣∣∣∣∂2v∂l2 − α
∂2v

∂z2
− β

∂3v

∂l∂z2

∣∣∣∣2 dzdl
≤
∫∫

Θ

[∣∣∣∣∂2v∂l2
∣∣∣∣+ α

∣∣∣∣∂2v∂z2

∣∣∣∣+ β

∣∣∣∣ ∂3v∂l∂z2

∣∣∣∣]2 dzdl
≤
∫∫

Θ

(∣∣∣∣∂2v∂l2
∣∣∣∣2 + α2

∣∣∣∣∂2v∂z2

∣∣∣∣2 + β2

∣∣∣∣ ∂3v∂l∂z2

∣∣∣∣2
+ 2α

∣∣∣∣∂2v∂l2
∣∣∣∣ . ∣∣∣∣∂2v∂z2

∣∣∣∣+ 2β

∣∣∣∣∂2v∂l2
∣∣∣∣ . ∣∣∣∣ ∂3v∂l∂z2

∣∣∣∣
+2αβ

∣∣∣∣∂2v∂z2

∣∣∣∣ . ∣∣∣∣ ∂3v∂l∂z2

∣∣∣∣) dzdl.
Since

v(z, l) = ⟨v(ξ, ϱ),E(z,l)(ξ, ϱ⟩ℵ(Θ),

we obtain: ∣∣∣∣ ∂m+n

∂zm∂ln
v(z, l)

∣∣∣∣ = ⟨v(ξ, ϱ), ∂m+n

∂zm∂ln
E(z,l)(ξ, ϱ)⟩.

By the Cauchy-Schwarz inequality and the continuity of the RKF E(z,l)(ξ, ϱ), we
get: ∣∣∣∣ ∂m+n

∂zm∂ln
v(z, l)

∣∣∣∣ ≤ Bm,n∥v∥ℵ(Θ),m = 0, 1, 2, n = 0, 1, 2.

Setting:
B = max{Bm,n,m = 0, 1, 2, n = 0, 1, 2},

we obtain:
∥ℏv∥2m0

≤ (1 + (α+ β)2 + 2(α+ β))τB2∥v∥2ℵ(Θ).

Thus,
∥ℏv∥m0

≤ J∥v∥ℵ(Θ),

where
J =

√
(1 + (α+ β)2 + 2(α+ β))τB2,

and J is a positive real number .
This completes the proof.
We select a countable dense subset M = {(zi, li)}∞i=1 ⊂ Θ and define Ψi(z, l) as

follows:

Ψi(z, l) = (ℏ(y,s))E(y,s)(z, l)|(y,s)=(zi,li)
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=
∂2E(y,s)(z, l)

∂s2
− α

∂2E(y,s)(z, l)

∂y2
− β

∂3E(y,s)(z, l)

∂s∂y2

∣∣∣∣
(y,s)=(zi,li)

, i = 1, 2, . . . ,

(3.3)

where E(y,s)(z, l) is the RKF in ℵ(Θ).

Lemma 3.2. Ψi(z, l) ∈ ℵ(Θ).

Proof. By the definition of ℵ(Θ), we need to prove the following conditions:

(i) ∂6Ψi(z,l)
∂z3∂l3 ∈ L2(Θ).

(ii) ∂4Ψi(z,l)
∂z2∂l2 is completely continuous in Θ.

(iii) Ψi(z, 0) =
∂
∂lΨi(z, 0) =

∫ 1

0
Ψi(z, l)dz =

∫ 1

0
zΨi(z, l)dz = 0.

Using equations (2.13) and (3.3), we write:

Ψi(z, l) =
∂2

∂s2 ps(l).my(z)− α ∂2

∂y2my(z).ps(l)− β ∂2

∂y2my(z).
∂
∂sps(l).

Differentiating, we obtain:

∂6

∂z3∂l3
Ψi(z, l) =

∂5

∂s2∂l3
ps(l).

∂3

∂z3
my(z)− α

∂5

∂y2∂z3
my(z).

∂3

∂l3
ps(l)

− β
∂5

∂y2∂z3
my(z).

∂4

∂s∂l3
ps(l).

Similarly,

∂4

∂z2∂l2
Ψi(z, l) =

∂4

∂s2∂l2
ps(l).

∂2

∂z2
my(z)− α

∂4

∂y2∂z2
my(z).

∂2

∂l2
ps(l)

− β
∂4

∂y2∂z2
my(z).

∂3

∂s∂l2
ps(l).

1. Proof of ∂6Ψi(z,l)
∂z3∂l3 ∈ L2(Θ) :

By the definition of S2[0, τ ] and the expression of ps(l), we have:

∂3

∂l3
ps(l) ∈ L2[0, τ ], with respect to l.

Since ∂5

∂l3∂s2 ps(l) is piecewise continuous in [0, τ ] with respect to l, we conclude:

∂5

∂l3∂s2
ps(l) ∈ L2[0, τ ].

Similarly,

∂4

∂l3∂s
ps(l) is continuous with respect to l, ⇒ ∂4

∂l3∂s
ps(l) ∈ L2[0, τ ].

Also, using the expression of my(z) and the definition of S1[0, 1], we coclude:

∂5

∂z3∂y2
my(z) ∈ L2[0, 1], and

∂3

∂y3
my(z) ∈ L2[0, 1], with respect to z.

Therefore, ∂6

∂z3∂l3Ψi(z, l) ∈ L2(Θ).
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2. Proof that ∂4Ψi(z,l)
∂z2∂l2 is completely continuous in Θ:

For E(y,s)(z, l) ∈ ℵ(Θ) according to the proof in [20]:

∂i+f

∂zi∂yf
m(y)(z).

∂j+t

∂lj∂st
p(s)(l) =

∂i+j+f+t

∂zi∂lj∂yf∂st
E(y,s)(z, l),

which is completely continuous when 0 ≤ i + f ≤ 4 and 0 ≤ j + t ≤ 4. By
(3.3), we conclude that Ψi(z, l) is completely continuous in Θ.

3. Proof that Ψi(z, 0) satisfies the boundary conditions:
Since my(z) ∈ S1[0, 1], we have:∫ 1

0

my(z)dz =

∫ 1

0

zmy(z)dz = 0. (3.4)

Since ps(l) ∈ S2[0, τ ], we obtain:

ps(0) =
∂

∂l
ps(0) = 0. (3.5)

Using the expression of my(z), we also have:∫ 1

0

∂2

∂y2
my(z)dz =

∫ 1

0

∂2

∂y2
zmy(z)dz = 0. (3.6)

Similarly, using the expression of ps(l), we have:

∂2

∂s2
ps(0) =

∂

∂s
ps(0) = 0, and

∂

∂l
ps(0) =

∂3

∂s2∂l
ps(0) =

∂2

∂s∂l
ps(0) = 0.

(3.7)
From equations (3.4)-(3.7), it follows that:

Ψi(z, 0) =
∂

∂l
Ψi(z, 0) =

∫ 1

0

Ψi(z, l)dz =

∫ 1

0

zΨi(z, l)dz = 0.

Thus, we conclude that:

Ψi(z, l) ∈ ℵ(Θ).

This completes the proof.

Lemma 3.3. The function system {Ψ1(z, l),Ψ2(z, l),Ψ3(z, l), . . . } forms a com-
plete system in ℵ(Θ) [12].

The orthonormal system {Ψ̃(z, l)}∞i=1 in ℵ(Θ), obtained from the Gram-Schmidt
orthogonalization process of {Ψ(z, l)}∞i=1, is given by:

Ψ̃(z, l) =

i∑
k=1

γikΨi(z, l), (3.8)

where γik are the orthogonal coefficients [12].
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Theorem 3.1. If v(z, l) is the exact solution of equation (3.2), then:

v(z, l) =

+∞∑
i=1

i∑
k=1

γikH(zk, lk)Ψ̃(z, l). (3.9)

An approximate solution of equation (3.2) is given by:

vn(z, l) =

n∑
i=1

i∑
k=1

γikH(zk, lk)Ψ̃(z, l). (3.10)

The exact solution of equations (1.1)-(1.5) is

u(z, l) = v(z, l)−S(z, l), (3.11)

where S(z, l) is defined in equation (1.7).

Proof. We prove formulas (3.9)-(3.10). From equation (3.2) and the fact that
v(z, l) ∈ ℵ(Θ), we have

v(z, l) =

+∞∑
i=1

⟨v(z, l), Ψ̃i(z, l)⟩ℵ(Θ)Ψ̃i(z, l)

=

+∞∑
i=1

⟨v(z, l),
i∑

k=1

γikΨi(z, l)⟩ℵ(Θ)Ψ̃i(z, l)

=

+∞∑
i=1

i∑
k=1

γik⟨v(z, l), ℏ(y,s)E(y,s)(z, l)|(y,s)=(zk,lk)⟩ℵ(Θ)Ψ̃i(z, l)

=

+∞∑
i=1

i∑
k=1

γik[ℏ(y,s)⟨v(z, l),E(y,s)(z, l)⟩ℵ(Θ)|(y,s)=(zk,lk)Ψ̃i(z, l)

=

+∞∑
i=1

i∑
k=1

γik
[
ℏ(y,s)v(y, s)

]
|(y,s)=(zk,lk)Ψ̃i(z, l)

=

+∞∑
i=1

i∑
k=1

γikH(zk, lk)Ψ̃i(z, l).

4. Convergence in ℵ(Θ)

Theorem 4.1. [32, 48]

1. For each v(z, l) ∈ ℵ(Θ), let ε2n = ∥vn(z, l) − v(z, l)∥2. Then, the sequence εn
is monotonically decreasing, and εn → 0 as n→ ∞.

2. The approximate solution vn(z, l) uniformly converges to the exact solution
v(z, l).

3. The derivatives ∂i+j
z,l vn(z, l), for i = 0, 1, 2 and j = 0, 1, uniformly converge to

∂i+j
z,l v(z, l), for i = 0, 1, 2 and j = 0, 1.

For the proof, refer to references [48] and [32].
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5. Numerical experiments

This section demonstrates the effectiveness of the proposed method through nu-
merical examples. We apply it to various pseudo-hyperbolic equations subject to
purely integral conditions. hese examples illustrate the extensive applicability of
the method in solving such differential equations.

Example 5.1. Considering the pseudo-hyperbolic equation [38]:

∂2u

∂l2
− ∂2u

∂z2
− ∂3u

∂l∂z2
= g(z, l), 0 < z < 1, 0 < l < 1,

u(z, 0) = sech2(z),
∂u(z, 0)

∂l
= −2 tanh(z)sech2(z), 0 < z < 1,∫ 1

0

u(z, l)dz = tanh(l + 1)− tanh(l), 0 < l ≤ 1,∫ 1

0

zu(z, l)dz = tanh(l) + sinh(1)sech(l)sech(l + 1)

+ ln(cosh(l)sech(l + 1)), 0 < l ≤ 1,

(5.1)

where g(z, l) = 4(cosh(2(l + z))− 5) tanh(l + z)sech4(l + z).
The exact solution to (5.1) is:

u(z, l) =
1

cosh2(z + l)
. (5.2)

In Example 5.1, we apply the RKHSM, as discussed earlier. By selecting p × q =
n = 15 × 15 = 225 collocation points with zi =

i
p for i = 1, 2, . . . , p and lj =

j
q for

j = 1, 2, . . . , q, we obtain the approximate solution using the RKHSM. We compared
the new solution with the exact solution. The results displayed in Table 1 illustrate
the absolute error across the domain [0, 1] × [0, 1]. Figure 1 shows the RKHSM
solution alongside the exact solution at l = 0.3. Figure 2 presents the absolute
error between the RKHSM solution and the exact solution at l = 0.3. Figure 3 is
a 3D plot of the RKHSM solution, while Figure 4 depicts a 3D plot of the exact
solution. Finally, Figure 5 illustrates the 3D plot of the absolute error between
the RKHSM solution and the exact solution. These visualizations confirm that
the RKHSM consistently produces results closely resembling the exact solution,
demonstrating its effectiveness.

Example 5.2. Considering the pseudo-hyperbolic equation [41]:

∂2u

∂l2
− ∂2u

∂z2
− ∂3u

∂l∂z2
= g(z, l), 0 < z < 1, 0 < l < 1,

u(z, 0) = ez,
∂u(z, 0)

∂l
= 0, 0 < z < 1,∫ 1

0

u(z, l)dz = (e− 1) cosh(l), 0 < l ≤ 1,∫ 1

0

zu(z, l)dz = cosh(l), 0 < l ≤ 1,

(5.3)

where g(z, l) = −ez sinh(l).
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Table 1. Numerical results of Example 5.1.

z l Exact Solution RKHSM Absolute Error

0.2 0.2 0.8556387858 0.8556281433 1.1× 10−5

0.4 0.7115777629 0.7115533559 2.4× 10−5

0.6 0.5590551680 0.5589741860 8.1× 10−5

0.8 0.4199743415 0.4197860550 1.9× 10−4

1.0 0.9610429822 0.9610429820 2.0× 10−10

0.4 0.2 0.7115777629 0.7116031528 2.5× 10−5

0.4 0.5590551680 0.5589891901 6.6× 10−5

0.6 0.4199743415 0.4198159681 1.6× 10−4

0.8 0.3050199963 0.3048046490 2.2× 10−4

1.0 0.8556387858 0.8556387859 1.0× 10−10

0.6 0.2 0.5590551680 0.5590904141 3.5× 10−5

0.4 0.4199743415 0.4199959892 2.2× 10−5

0.6 0.3050199963 0.3050961129 7.6× 10−5

0.8 0.2161524591 0.2163801540 2.3× 10−4

1.0 0.7115777629 0.7115777626 3.0× 10−10

0.8 0.2 0.4199743415 0.4199684418 5.9× 10−6

0.4 0.3050199963 0.3050605976 4.1× 10−5

0.6 0.2161524591 0.2162606510 1.1× 10−4

0.8 0.1505270758 0.1507121439 1.9× 10−4

1.0 0.5590551680 0.5590551680 0.0

1.0 0.2 0.3050199963 0.3049664090 5.4× 10−5

0.4 0.2161524591 0.2160943939 5.8× 10−5

0.6 0.1505270758 0.1503328150 1.9× 10−4

0.8 0.1035583741 0.1030522690 5.1× 10−4

1.0 0.4199743415 0.4199743410 5.0× 10−10

Figure 1. RKHSM and Exact solutions for Example 5.1 when l = 0.3.

The exact solution to (5.3) is:

u(z, l) = ez cosh(l). (5.4)
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Figure 2. Absolute error of the RKHSM for Example 5.1 when l = 0.3.

Figure 3. 3D Visualization of the RKHSM’s solution for Example 5.1.

Figure 4. 3D Visualization of the exact solution solution for Example 5.1.

In Example 5.2, we apply the RKHSM, as discussed earlier. By selecting p × q =
n = 15 × 15 = 225 collocation points with zi =

i
p for i = 1, 2, . . . , p and lj =

j
q for

j = 1, 2, . . . , q, we obtain the approximate solution using the RKHSM. We compared
the new solution with the exact solution. The results displayed in Table 2 illustrate
the absolute error across the domain [0, 1] × [0, 1]. Figure 6 shows the RKHSM
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Figure 5. 3D Visualization of the absolute error for Example 5.1.

solution alongside the exact solution at l = 0.1. Figure 7 presents the absolute
error between the RKHSM solution and the exact solution at l = 0.1. Figure 8 is
a 3D plot of the RKHSM solution, while Figure 9 depicts a 3D plot of the exact
solution. Finally, Figure 10 illustrates the 3D plot of the absolute error between
the RKHSM solution and the exact solution. These visualizations confirm that
the RKHSM consistently produces results closely resembling the exact solution,
demonstrating its effectiveness.

Figure 6. RKHSM and Exact solutions for Example 5.2 when l = 0.1.

Example 5.3. Considering the pseudo-hyperbolic equation [38]:

∂2u

∂l2
− ∂2u

∂z2
− ∂3u

∂l∂z2
= g(z, l), 0 < z < 1, 0 < l < 1,

u(z, 0) = tanh2(z),
∂u(z, 0)

∂l
= 2 tanh(z)sech2(z), 0 < z < 1,∫ 1

0

u(z, l)dz = tanh(l)− tanh(l + 1) + 1, 0 < l ≤ 1,∫ 1

0

zu(z, l)dz = − tanh(l) + ln(sech(l)) + ln(cosh(l + 1))

− sinh(1)sech(l)sech(l + 1) +
1

2
, 0 < l ≤ 1,

(5.5)
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Table 2. Numerical results of Example 5.2.

z l Exact Solution RKHSM Absolute Error

0.2 0.2 1.245912349 1.245912402 5.3× 10−8

0.4 1.320424777 1.320424496 2.8× 10−7

0.6 1.447930487 1.447929590 9.0× 10−7

0.8 1.633546732 1.633544905 1.8× 10−6

1.0 1.221402758 1.221402756 2.0× 10−9

0.4 0.2 1.521760780 1.521760588 1.9× 10−7

0.4 1.612770465 1.612770801 3.4× 10−7

0.6 1.768506291 1.768507574 1.3× 10−6

0.8 1.995218484 1.995221356 2.9× 10−6

1.0 1.491824698 1.491824698 0.0

0.6 0.2 1.858682813 1.858682776 3.7× 10−8

0.4 1.969842293 1.969843208 9.2× 10−7

0.6 2.160058460 2.160061014 2.6× 10−6

0.8 2.436965359 2.436970457 5.1× 10−6

1.0 1.822118800 1.822118800 0.0

0.8 0.2 2.270200315 2.270200528 2.1× 10−7

0.4 2.405970810 2.405971061 2.5× 10−7

0.6 2.638301361 2.638301603 2.4× 10−7

0.8 2.976516211 2.976516369 1.6× 10−7

1.0 2.225540928 2.225540928 0.0

1.0 0.2 2.772828926 2.772828489 4.4× 10−7

0.4 2.938659384 2.938657212 2.2× 10−6

0.6 3.222428560 3.222423442 5.1× 10−6

0.8 3.635525110 3.635515629 9.5× 10−6

1.0 2.718281828 2.718281828 0.0

Figure 7. Absolute error of the RKHSM for Example 5.2 when l = 0.1.

where g(z, l) = −2(sinh(3(l + z))− 11 sinh(l + z))sech5(l + z).
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Figure 8. 3D Visualization of the RKHSM’s solution for Example 5.2.

Figure 9. 3D Visualization of the exact solution solution for Example 5.2.

Figure 10. 3D Visualization of the absolute error for Example 5.2.

The exact solution to (5.5) is:

u(z, l) =
1

coth2(l + z)
. (5.6)

In Example 5.3, we apply the RKHSM, as discussed earlier. By selecting p × q =
n = 15 × 15 = 225 collocation points with zi =

i
p for i = 1, 2, . . . , p and lj =

j
q for

j = 1, 2, . . . , q, we obtain the approximate solution using the RKHSM. We compared
the new solution with the exact solution. The results displayed in Table 3 illustrate
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the absolute error across the domain [0, 1] × [0, 1]. Figure 11 shows the RKHSM
solution alongside the exact solution at l = 0.1. Figure 12 presents the absolute
error between the RKHSM solution and the exact solution at l = 0.1. Figure 13 is
a 3D plot of the RKHSM solution, while Figure 14 depicts a 3D plot of the exact
solution. Finally, Figure 15 illustrates the 3D plot of the absolute error between
the RKHSM solution and the exact solution. These visualizations confirm that
the RKHSM consistently produces results closely resembling the exact solution,
demonstrating its effectiveness.

Table 3. Numerical results of Example 5.3.

z l Exact Solution RKHSM Absolute Error

0.2 0.2 0.6407986834 0.6408327447 3.4× 10−5

0.4 0.7425668027 0.7425644140 2.4× 10−6

0.6 0.8192933610 0.8193033003 9.9× 10−6

0.8 0.8749901286 0.8750928380 1.0× 10−4

1.0 0.5130826389 0.5130826389 0.0

0.4 0.2 0.2884222375 0.2883968450 2.5× 10−5

0.4 0.4409448323 0.4410108100 6.6× 10−5

0.6 0.5800256579 0.5801840714 1.6× 10−4

0.8 0.6949800040 0.6951953661 2.2× 10−4

1.0 0.1443612139 0.1443612140 1.0× 10−10

0.6 0.2 0.4409448323 0.4409095888 3.5× 10−5

0.4 0.5800256579 0.5800040189 2.2× 10−5

0.6 0.6949800040 0.6949039051 7.6× 10−5

0.8 0.7838475416 0.7836199009 2.3× 10−4

1.0 0.2884222375 0.2884222374 1.0× 10−10

0.8 0.2 0.5800256579 0.5800315519 5.9× 10−6

0.4 0.6949800040 0.6949393916 4.1× 10−5

0.6 0.7838475416 0.7837393425 1.1× 10−4

0.8 0.8494729244 0.8492878571 1.9× 10−4

1.0 0.4409448323 0.4409448321 2.0× 10−10

1.0 0.2 0.6949800040 0.6950335947 5.4× 10−5

0.4 0.7838475416 0.7839055720 5.8× 10−5

0.6 0.8494729244 0.8496671540 1.9× 10−4

0.8 0.8964416253 0.8969477000 5.1× 10−4

1.0 0.5800256579 0.5800256580 1.0× 10−10

6. Conclusion

This study employed the RKHS approach to solve pseudo-hyperbolic equations
with purely integral conditions. The effectiveness of this method was demonstrated
through three numerical experiments, with results presented in tables and figures.
The use of highly effective reproducing kernel functions played a crucial role in
achieving the desired outcomes. Our findings suggest that this method is capable of
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Figure 11. RKHSM and Exact solutions for Example 5.3 when l = 0.1.

Figure 12. Absolute error of the RKHSM for Example 5.3 when l = 0.1.

Figure 13. 3D Visualization of the RKHSM’s solution for Example 5.3.

addressing even more complex problems, leading us to conclude that the proposed
approach holds significant potential for application to more intricate challenges.

Regarding the applicability of the presented scheme to fractional derivatives, it
is important to note that the current study focuses on classical pseudo-hyperbolic
equations with integral conditions. To the best of our knowledge, this type of equa-
tion with fractional derivatives under purely integral conditions has not yet been
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Figure 14. 3D Visualization of the exact solution solution for Example 5.3.

Figure 15. 3D Visualization of the absolute error for Example 5.3.

explored using RKHSM. Developing a fractional extension of this method would
require further investigation into adapting the RKHS approach to fractional-order
operators. Future studies could focus on extending this approach to fractional
pseudo-hyperbolic equations, investigating its convergence properties, and compar-
ing it with other numerical schemes.

Acknowledgements

The authors are grateful to the anonymous referees for their useful comments and
suggestions.

References

[1] A. Akgül, A novel method for a fractional derivative with non-local and non-
singular kernel, Chaos Solitons Fractals, 2018, 114, 478–482.

[2] A. Akgül and E. Bonyah, Reproducing kernel Hilbert space method for the
solutions of generalized Kuramoto-Sivashinsky equation, J. Taibah Univ. Sci.,
2019, 13(1), 661–669.

[3] A. Akgül, A. Cordero and J. R. Torregrosa, Solutions of fractional gas dynamics
equation by a new technique, Math. Methods Appl. Sci., 2020, 43, 1349–1358.



2634 H. Zerouali, A. Merad, A. Akgül, D. Saadi, N. Attia & E. Hincal

[4] A. Akgül, M. Inc, E. Karatas and D. Baleanu, Numerical solutions of fractional
differential equations of Lane-Emden type by an accurate technique, Adv. Differ.
Equ., 2015, 2015, 220.

[5] K. K. Ali, M. A. Abd El Salam, E. M. H. Mohamed, B. Samet, S. Kumar and
M. S. Osman, Numerical solution for generalized nonlinear fractional integro-
differential equations with linear functional arguments using Chebyshev series,
Adv. Differ. Equ., 2020, 2020(1), 494.

[6] T. Allahviranloo and H. Sahihi, Reproducing kernel method to solve fractional
delay differential equations, App. Math. Comput., 2021, 400, 126095.

[7] R. Arima and Y. Hasegawa, On global solutions for mixed problems of a semi-
linear differential equation, Proc. Japan Acad., 1963, 39(10), 721–725.

[8] N. Aronszajn, Theory of reproducing kernels, Trans. Am. Math. Soc., 1950, 68,
337–404.

[9] O. Abu Arqub, M. S. Osman, C. Park, J. R. Lee, H. Alsulami and M. Alhodaly,
Development of the reproducing kernel Hilbert space algorithm for numerical
pointwise solution of the time-fractional nonlocal reaction-diffusion equation,
Alex. Eng. J., 2022, 61(12), 10539–10550.

[10] O. Abu Arqub, J. Singh, B. Maayah and M. Alhodaly, Reproducing kernel
approach for numerical solutions of fuzzy fractional initial value problems under
the Mittag-Leffler kernel differential operator, Math. Methods Appl. Sci., 2023,
46(7), 7965–7986.

[11] O. Abu Arqub, S. Tayebi, D. Baleanu, M. S. Osman, W. Mahmoud and H.
Alsulami, A numerical combined algorithm in cubic B-spline method and finite
difference technique for the time-fractional nonlinear diffusion wave equation
with reaction and damping terms, Results Phys., 2022, 41, 105912.

[12] A. Attia, A. Akgül, D. Seba and A. Nour, On solutions of time-fractional
advection-diffusion equation, Numer. Methods Partial Differ. Equ., 2023, 39(6),
4489–4516.

[13] B. Azarnavid, The Bernoulli polynomials reproducing kernel method for nonlin-
ear Volterra integro-differential equations of fractional order with convergence
analysis, Comput. Appl. Math., 2022, 42(1), 8.

[14] E. Babolian, S. Javadi and E. Moradi, RKM for solving Bratu-type differential
equations of fractional order, Math. Meth. Appl. Sci., 2016, 39(6), 1548–1557.
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