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1. Introduction

Let I ⊆ R be an interval. A real-valued function f : I → R is said to be convex (or
concave, respectivey) on I if the inequality

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

holds for all x, y ∈ I and t ∈ [0, 1]. Suppose that f : I ⊆ R → R is a convex
function on an interval I such that a, b ∈ I and a < b. Then the well-known
Hermite–Hadamard integral inequality reads that

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x) dx ≤ f(a) + f(b)

2
.

In [1, 4], the concept of s-convex functions was innovated below.
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Definition 1.1 ( [1, 4]). Let s ∈ (0, 1] be a real number. A function f : R → R0 =
[0,∞) is said to be s-convex in the second sense if the inequality

f(tx+ (1− t)y) ≤ tsf(x) + (1− t)sf(y)

holds for all x, y ∈ I and t ∈ [0, 1].

It is easy to see that for s = 1 the s-convexity reduces to the classical and
ordinary convexity of functions defined on R0.

The Hermite–Hadamard type integral inequalities for s-convex functions in the
second sense are a very active research topic. We now recall some of them as follows.

Theorem 1.1 ( [9]). Let f : I ⊆ R0 → R be differentiable on I◦, the numbers
a, b ∈ I with a < b, and f ′ ∈ L1([a, b]). If |f ′|q is s-convex on [a, b] for some fixed
s ∈ (0, 1] and q ≥ 1, then∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤b− a

2

(
1

2

)1−1/q[
2 + 1/2s

(s+ 1)(s+ 2)

]1/q[
|f ′(a)|q + |f ′(b)|q

]1/q
.

Theorem 1.2 ( [11]). Let f : I ⊆ R0 → R be differentiable on I◦, let a, b ∈ I with
a < b, and let f ′ ∈ L1([a, b]). If |f ′| is s-convex on [a, b] for some s ∈ (0, 1], then∣∣∣∣16

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ (s− 4)6s+1 + 2× 5s+2 − 2× 3s+2 + 2

6s+2(s+ 1)(s+ 2)
(b− a)

(
|f ′(a)|+ |f ′(b)|

)
.

For some other related papers on Hermite–Hadamard type inequalities for con-
vex functions and s-convex functions, please refer to [3, 7, 14,15].

In [5], Hussain and his two coauthors studied the Hermite–Hadamard type in-
equality of s-convex functions in the second sense, established several Hermite–
Hadamard type inequalities for differentiable and twice differentiable functions
based on concavity and s-convexity, and applied to construct some special means.

2. Hermite–Hadamard type inequalities by Hussain
and his coauthors

Hussain and his two coauthors introduced in [5] the following lemma.

Lemma 2.1 ( [5, Lemma 3]). Let I ⊆ R denote an interval, f : I → R be a
differentiable function on I◦ (the interior of I), and a, b ∈ I◦ with a < b. If
f ′ ∈ L1([a, b]), then

f

(
a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

=
(b− a)2

4

∫ 1

0

(1− t)

[
f ′
(
ta+ (1− t)

a+ b

2

)
+ f ′

(
tb+ (1− t)

a+ b

2

)]
dt. (2.1)
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Using Lemma 2.1, Hussain and his coauthors established the following Theo-
rems 2.1 to 2.4 in the paper [5].

Theorem 2.1 ( [5, Theorem 4]). Let f : I ⊂ R0 → R be a differentiable function
on I◦ such that f ′ ∈ L1([a, b]), where a, b ∈ I with a < b. If |f ′|q is an s-convex
function in the second sense on [a, b] for some fixed s ∈ (0, 1] and q ≥ 1, then∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ (1

2

)1/p
{[

|f ′(a)|q + (s+ 1)
∣∣f ′(a+b

2

)∣∣q]1/q
[(s+ 1)(s+ 2)]1/q

+

[
(s+ 1)

∣∣f ′(a+b
2

)∣∣q + |f ′(b)|q
]1/q

[(s+ 1)(s+ 2)]1/q

}
.

Remark 2.1. If q ≥ 1, the factor
(
1
2

)1/p
in [5, Theorem 4] should be modified to(

1
2

)1−1/q
. Otherwise, if q = 1, the number p = q

q−1 is meaningless.

Theorem 2.2 ( [5, Theorem 5]). Let f : I ⊂ R0 → R be a differentiable function
on I◦ such that f ′ ∈ L1([a, b]), where a, b ∈ I with a < b. If |f ′|q is a concave
function on [a, b] for q > 1, then∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ (b− a)2

4(p+ 1)1/p

[∣∣∣∣f ′
(
3a+ b

4

)∣∣∣∣+ ∣∣∣∣f ′
(
a+ 3b

4

)∣∣∣∣],
where p = q

q−1 .

Theorem 2.3 ( [5, Theorem 6]). Let f : I ⊂ R0 → R be a differentiable function
on I◦ such that f ′ ∈ L1([a, b]), where a, b ∈ I with a < b. If |f ′|q is an s-convex
function in the second sense on [a, b] for some fixed s ∈ (0, 1] and q > 1, then∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ (b− a)2

4(p+ 1)1/p

(
1

s+ 1

)1/q

×
[(

|f ′(a)|q +
∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣q)1/q

+

(∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣q + |f ′(b)|q
)1/q]

,

where p = q
q−1 .

Theorem 2.4 ( [5, Theorem 7]). Let f :⊂ R0 → R be a differentiable function on
I◦ such that f ′ ∈ L1([a, b]), where a, b ∈ I with a < b. If |f ′|q is an s-concave
function on [a, b] for some fixed s ∈ (0, 1] and q > 1, then∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ (b− a)2

4(p+ 1)1/p
2(s−1)/q

[∣∣∣∣f ′
(
3a+ b

4

)∣∣∣∣+ ∣∣∣∣f ′
(
a+ 3b

4

)∣∣∣∣],
where p = q

q−1 .

We note that many typos in the above lemma and theorems quoted from the
paper [5] have been corrected.

In this article, we will modify and correct the conditions and errors in Theo-
rems 2.1 to 2.4 about s-convex functions in the second sense.
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3. Errors and two lemmas

We first give a counterexample of [5, Lemma 3], that is, Lemma 2.1 mentioned
above in this paper.

Example 3.1. Letting f(x) = x2 for x ∈ [a, b] and taking a = 0 and b = 1 in
Lemma 2.1, then

f

(
a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx− (b− a)2

4

∫ 1

0

(1− t)

[
f ′
(
ta+ (1− t)

a+ b

2

)
+ f ′

(
tb+ (1− t)

a+ b

2

)]
dt = −1

3
.

Therefore, we can be sure that Lemma 2.1, that is, [5, Lemma 3], is not valid.
In [13, Remark 1], among other things, the invalidness of the integral identity

in [5, Lemma 3] has been pointed out and alternatively corrected.

Making use of [8, Lemma 2.1], we correct [5, Lemma 3] as follows.

Lemma 3.1. Let f : I ⊆ R → R be a differentiable function on I◦ and let a, b ∈ I
with a < b. If f ′ ∈ L1([a, b]), then

f

(
a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

=
b− a

4

∫ 1

0

(1− t)

[
f ′
(
ta+ (1− t)

a+ b

2

)
− f ′

(
tb+ (1− t)

a+ b

2

)]
dt. (3.1)

Example 3.2. Let f(x) = x2 for x ∈ [a, b]. Then |f ′(x)|q is an s-convex function
in the second sense on [a, b] for s = 1 and q = 1.

If setting a = 0, b = 12.12, and s = q = 1 in Theorem 2.1, then∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ = 1

12
(b− a)2

=12.2412

>12.12

=
|f ′(a)|+ 2

∣∣f ′(a+b
2

)∣∣
6

+
2
∣∣f ′(a+b

2

)∣∣+ |f ′(b)|
6

.

If letting a = 0, b = 6, and s = q = 1 in Theorem 2.1, then∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ = 1

12
(b− a)2

= 3

< 6

=
|f ′(a)|+ 2

∣∣f ′(a+b
2

)∣∣
6

+
2
∣∣f ′(a+b

2

)∣∣+ |f ′(b)|
6

.

These numerical computations reveal that Theorems 2.1 to 2.4 are not necessarily
true.
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Remark 3.1. Comparing the factors (b−a)2

4 and b−a
4 on the right hand sides of the

integral equalities (2.1) and (3.1), we can illustrate that Theorems 2.3 to 2.4 are
not necessarily true.

Now we establish the Jensen type integral inequalities for s-concave functions.

Lemma 3.2. Let φ : [a, b] → R0 be continuous and g, p : [a, b] → R be integrable

functions with g(x) ∈ [a, b], p(x) ≥ 0 for x ∈ [a, b], and
∫ b

a
p(x) dx > 0. If φ is

an s-concave function in the second sense for some s ∈ (0, 1], then the Jensen type
integral inequality

φ

(∫ b

a
p(x)g(x) dx∫ b

a
p(x) dx

)
≥
∫ b

a
[p(x)]sφ(g(x)) dx[∫ b

a
p(x) dx

]s (3.2)

is sound.

Proof. Let x0 < x1 < · · · < xn be a partition of [a, b] and denote ∆xi = xi−xi−1

for i = 1, 2, . . . , n such that max1≤i≤n{∆xi} ≤ 1. In this way, we see that (∆xi)
s ≥

∆xi for i = 1, 2, . . . , n. By the s-concavity in the second sense of φ on [a, b],
see [16, Corollary 4], we obtain

φ

(∑n
i=1 p(xi)g(xi)∆xi∑n

i=1 p(xi)∆xi

)
≥
∑n

i=1[p(xi)∆xi]
sφ(g(xi))[∑n

i=1 p(xi)∆xi

]s
≥
∑n

i=1[p(xi)]
sφ(g(xi))∆xi[∑n

i=1 p(xi)∆xi

]s .

Further taking the limit of n → ∞ on both sides of the above inequality leads to
the inequality (3.2). The proof of Lemma 3.2 is completed.

4. Modifications and corrections of integral inequal-
ities of s-convex functions in the second sense

In this section, we modify and correct the conditions and errors in Theorems 2.1
to 2.4 about s-convex functions in the second sense.

Theorem 4.1 (Modifications and corrections of Theorem 2.1). Let f : I ⊆ R → R0

be a differentiable function on I◦ such that f ′ ∈ L1([a, b]), where a, b ∈ I with a < b.
If |f ′|q is an s-convex function in the second sense on [a, b] for some fixed s ∈ (0, 1]
and q ≥ 1, then∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤b− a

4

(
1

2

)1−1/q

×

{[
|f ′(a)|q + (s+ 1)

∣∣f ′(a+b
2

)∣∣q]1/q
[(s+ 1)(s+ 2)]1/q

+

[
(s+ 1)

∣∣f ′(a+b
2

)∣∣q + |f ′(b)|q
]1/q

[(s+ 1)(s+ 2)]1/q

}
.

(4.1)
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Proof. Since |f ′|q is s-convex in the second sense on [a, b], using Lemma 3.1 and
by the Hölder integral inequality, we have∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ b− a

4

∫ 1

0

(1− t)

[∣∣∣∣f ′
(
ta+ (1− t)

a+ b

2

)∣∣∣∣+ ∣∣∣∣f ′
(
tb+ (1− t)

a+ b

2

)∣∣∣∣]dt
≤ b− a

4

[∫ 1

0

(1− t) dt

]1−1/q

×
{[∫ 1

0

(1− t)

(
ts|f ′(a)|q + (1− t)s

∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣q)dt

]1/q
+

[∫ 1

0

(1− t)

(
ts|f ′(b)|q + (1− t)s

∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣q)dt

]1/q}
=

b− a

4

(
1

2

)1−1/q
{[

|f ′(a)|q + (s+ 1)
∣∣f ′(a+b

2

)∣∣q]1/q
[(s+ 1)(s+ 2)]1/q

+

[
(s+ 1)

∣∣f ′(a+b
2

)∣∣q + |f ′(b)|q
]1/q

[(s+ 1)(s+ 2)]1/q

}
.

The proof of Theorem 4.1 is completed.

Theorem 4.2 (Generalization of Theorem 2.3). Let f : I ⊆ R → R0 be a differen-
tiable function on I◦ such that f ′ ∈ L1([a, b]), where a, b ∈ I with a < b. If |f ′|q is
an s-convex function in the second sense on [a, b] for some fixed s ∈ (0, 1] and for
q > 1 and q ≥ ℓ ≥ 0, then∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ b− a

4

(
q − 1

2q − (ℓ+ 1)

)1−1/q{[sB(s, ℓ+ 1)|f ′(a)|q +
∣∣f ′(a+b

2

)∣∣q
s+ ℓ+ 1

]1/q
+

[∣∣f ′(a+b
2

)∣∣q + sB(s, ℓ+ 1)|f ′(b)|q

s+ ℓ+ 1

]1/q}
,

where B(u, v) denotes the classical beta function defined by

B(u, v) =

∫ 1

0

zu−1(1− z)v−1 dz, ℜ(u) > 0,ℜ(v) > 0.

Proof. Similar to the proof of the inequality (4.1) in Theorem 4.1, using Lemma
3.1, employing the Hölder integral inequality, and utilizing the s-convexity in the
second sense on [a, b] of |f ′|q, we derive∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ b− a

4

[∫ 1

0

(1− t)(q−ℓ)/(q−1) dt

]1−1/q
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×
{[∫ 1

0

(1− t)ℓ
∣∣∣∣f ′
(
ta+ (1− t)

a+ b

2

)∣∣∣∣q dt]1/q
+

[∫ 1

0

(1− t)ℓ
∣∣∣∣f ′
(
tb+ (1− t)

a+ b

2

)∣∣∣∣q dt]1/q}
≤ b− a

4

(
q − 1

2q − (ℓ+ 1)

)1−1/q

×
{[∫ 1

0

(1− t)ℓ
(
ts|f ′(a)|q + (1− t)s

∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣q)dt]1/q
+

[∫ 1

0

(1− t)ℓ
(
ts|f ′(b)|q + (1− t)s

∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣q)dt]1/q}
=

b− a

4

(
q − 1

2q − (ℓ+ 1)

)1−1/q{[sB(s, ℓ+ 1)|f ′(a)|q +
∣∣f ′(a+b

2

)∣∣q
s+ ℓ+ 1

]1/q
+

[∣∣f ′(a+b
2

)∣∣q + sB(s, ℓ+ 1)|f ′(b)|q

s+ ℓ+ 1

]1/q}
.

The proof of Theorem 4.2 is completed.

If q > 1 and 1
p = 1 − 1

q , then
1

(p+1)1/p
=
(

q−1
2q−1

)1−1/q
. Therefore, putting ℓ = 0

in Theorem 4.2 yields

Corollary 4.1 (Modifications and corrections of Theorem 2.3). Under conditions
of Theorem 4.2 applied to ℓ = 0, we have∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤b− a

4

(
q − 1

2q − 1

)1−1/q(
1

s+ 1

)1/q

×
[(

|f ′(a)|q +
∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣q)1/q

+

(∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣q + |f ′(b)|q
)1/q]

.

Next, we will study the Hermite–Hadamard type integral inequalities of s-
concave functions. We first establish an Hermite–Hadamard type integral inequality
of s-concave functions in the case of q ≥ 1.

Theorem 4.3. Let f : I ⊆ R → R0 be a differentiable function on I◦ such that
f ′ ∈ L1([a, b]), where a, b ∈ I with a < b. If |f ′|q is an s-concave function in the
second sense on [a, b] for q ≥ 1 and some fixed s ∈ (0, 1], then∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ b− a

23−1/q

(
s

s+ 1

)s/q

×
[∣∣∣∣f ′

(
(3s+ 1)a+ (s+ 1)b

2(2s+ 1)

)∣∣∣∣+ ∣∣∣∣f ′
(
(s+ 1)a+ (3s+ 1)b

2(2s+ 1)

)∣∣∣∣]. (4.2)

Proof. Using Lemma 3.1 and employing the Hölder integral inequality, we obtain∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
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≤ b− a

4

∫ 1

0

(1− t)

[∣∣∣∣f ′
(
ta+ (1− t)

a+ b

2

)∣∣∣∣dt+ ∣∣∣∣f ′
(
tb+ (1− t)

a+ b

2

)∣∣∣∣]dt
≤ b− a

4

(∫ 1

0

(1− t) dt

)1−1/q{[∫ 1

0

(1− t)

∣∣∣∣f ′
(
ta+ (1− t)

a+ b

2

)∣∣∣∣q dt]1/q
+

[∫ 1

0

(1− t)

∣∣∣∣f ′
(
tb+ (1− t)

a+ b

2

)∣∣∣∣q dt]1/q}.
Taking p(t) = (1− t)1/s for [0, 1] in Lemma 3.2, utilizing Lemma 3.2, and using the
s-convexity of |f ′|q in the second sense of [a, b], we derive∫ 1

0

(1− t)

∣∣∣∣f ′
(
ta+ (1− t)

a+ b

2

)∣∣∣∣q dt
≤
(∫ 1

0

(1− t)1/s dt

)s∣∣∣∣f ′
(∫ 1

0
(1− t)1/s

(
ta+ (1− t)a+b

2

)
dt∫ 1

0
(1− t)1/s dt

)∣∣∣∣q
=

(
s

s+ 1

)s∣∣∣∣f ′
(
(3s+ 1)a+ (s+ 1)b

2(2s+ 1)

)∣∣∣∣q
and∫ 1

0

(1− t)

∣∣∣∣f ′
(
tb+ (1− t)

a+ b

2

)∣∣∣∣q dt ≤ ( s

s+ 1

)s∣∣∣∣f ′
(
(s+ 1)a+ (3s+ 1)b

2(2s+ 1)

)∣∣∣∣q.
Substituting these two inequalities into the first inequality in this proof yields the
inequality (4.2). The proof of Theorem 4.3 is completed.

If taking s = 1 in Theorem 4.3, we have

Corollary 4.2. Let f : I ⊆ R → R0 be a differentiable function on I◦ such that
f ′ ∈ L1([a, b]), where a, b ∈ I with a < b. If |f ′|q is a concave function in the second
sense on [a, b] for q ≥ 1, then∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a

8

[∣∣∣∣f ′
(
2a+ b

3

)∣∣∣∣+ ∣∣∣∣f ′
(
a+ 2b

3

)∣∣∣∣].
Theorem 4.4 (Generalization of Theorems 2.2 and 2.4). Suppose q > 1 and q ≥
ℓ ≥ 0. Let f : I ⊆ R → R0 be a differentiable function on I◦ such that f ′ ∈ L1([a, b]),
where a, b ∈ I with a < b. If |f ′|q is an s-concave function on [a, b] for some fixed
s ∈ (0, 1], then∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤b− a

4

(
q − 1

2q − (ℓ+ 1)

)1−1/q(
s

s+ ℓ

)s/q

×
[∣∣∣∣f ′

(
(3s+ ℓ)a+ (s+ ℓ)b

2(2s+ ℓ)

)∣∣∣∣+ ∣∣∣∣f ′
(
(s+ ℓ)a+ (3s+ ℓ)b

2(2s+ ℓ)

)∣∣∣∣]. (4.3)

Proof. Using Lemma 3.1 and utilizing the Hölder integral inequality, we obtain∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
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≤ b− a

4

(∫ 1

0

(1− t)(q−ℓ)/(q−1) dt

)1−1/q

×
{[∫ 1

0

(1− t)ℓ
∣∣∣∣f ′
(
ta+ (1− t)

a+ b

2

)∣∣∣∣q dt]1/q
+

[∫ 1

0

(1− t)ℓ
∣∣∣∣f ′
(
tb+ (1− t)

a+ b

2

)∣∣∣∣q dt]1/q}. (4.4)

Taking p(t) = (1− t)ℓ/s for t ∈ [0, 1] in Lemma 3.2 and using the s-convexity of
|f ′|q in the second sense on [a, b], we have∫ 1

0

(1− t)ℓ
∣∣∣∣f ′
(
ta+ (1− t)

a+ b

2

)∣∣∣∣q dt
≤
[∫ 1

0

(1− t)ℓ/s dt

]s∣∣∣∣f ′
(∫ 1

0
(1− t)ℓ/s

(
ta+ (1− t)a+b

2

)
dt∫ 1

0
(1− t)ℓ/s dt

)∣∣∣∣q
=

(
s

s+ ℓ

)s∣∣∣∣f ′
(
(3s+ ℓ)a+ (s+ ℓ)b

2(2s+ ℓ)

)∣∣∣∣q
and∫ 1

0

(1− t)ℓ
∣∣∣∣f ′
(
tb+ (1− t)

a+ b

2

)∣∣∣∣q dt ≤ ( s

s+ ℓ

)s∣∣∣∣f ′
(
(s+ ℓ)a+ (3s+ ℓ)b

2(2s+ ℓ)

)∣∣∣∣q.
Substituting these two inequalities into the inequality (4.4) yields the inequal-
ity (4.3). The proof of Theorem 4.4 is completed.

If putting s = 1 and ℓ = 0 in Theorem 4.4, we acquire

Corollary 4.3. (Modifications and corrections of Theorem 2.2) Let f : I ⊆ R → R0

be a differentiable function on I◦ such that f ′ ∈ L1([a, b]), where a, b ∈ I with a < b.
If |f ′|q is a concave function on [a, b] for q > 1, then∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤b− a

4

(
q − 1

2q − 1

)1−1/q[∣∣∣∣f ′
(
3a+ b

4

)∣∣∣∣+ ∣∣∣∣f ′
(
a+ 3b

4

)∣∣∣∣].
If letting ℓ = 0 in Theorem 4.4, we obtain

Corollary 4.4. (Modifications and corrections of Theorem 2.4) Let f : I ⊆ R → R0

be a differentiable function on I◦ such that f ′ ∈ L1([a, b]), where a, b ∈ I with a < b.
If |f ′|q is an s-concave function on [a, b] for some fixed s ∈ (0, 1] and q > 1, then∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤b− a

4

(
q − 1

2q − 1

)1−1/q[∣∣∣∣f ′
(
3a+ b

4

)∣∣∣∣+ ∣∣∣∣f ′
(
a+ 3b

4

)∣∣∣∣].
5. Conclusions

In this paper, we pointed out many errors appeared in the article [5], corrected
these errors, and established several new integral inequalities of s-convex functions
in the second sense.
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For more information on recent developments of this topic, please refer to the
papers [2, 6, 10,12,13,17] and closely-related references therien.
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for Grüss type inequalities pertaining to the constant proportional fractional
integrals, Appl. Comput. Math., 2023, 22(2), 275–291. Available online at
https://doi.org/10.30546/1683-6154.22.2.2023.275.

[3] G. Gulshan, H. Budak, R. Hussain and K. Nonlaopon, Some new quan-
tum Hermite-Hadamard type inequalities for s-convex functions, Symmetry,
2022, 14(5), Art. 870,14 pp. Available online at https://doi.org/10.3390/
sym14050870.

[4] H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequa-
tiones Math., 1994, 48(1), 100–111. Available online at http://dx.doi.org/
10.1007/BF01837981.

[5] S. Hussain, M. I. Bhatti and M. Iqbal, Hadamard-type inequalities for s-convex
functions I, Punjab Univ. J. Math. (Lahore), 2009, 41, 51–60.
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type inequalities for s-convex functions, Appl. Math. Comput., 2007, 193(1),
26–35. Available online at http://dx.doi.org/10.1016/j.amc.2007.03.030.

[10] M. Samraiz, M. Malik, S. Naheed and A. O. Akdemir, Error estimates of
Hermite–Hadamard type inequalities with respect to a monotonically increas-
ing function, Math. Methods Appl. Sci., 2023, 46(13), 14527–14546. Available
online at https://doi.org/10.1002/mma.9334.

https://doi.org/10.30546/1683-6154.22.2.2023.275
https://doi.org/10.3390/sym14050870
https://doi.org/10.3390/sym14050870
http://dx.doi.org/10.1007/BF01837981
http://dx.doi.org/10.1007/BF01837981
https://doi.org/10.18514/MMN.2024.4367
https://doi.org/10.18514/MMN.2024.4367
https://doi.org/10.1515/math-2017-0121
https://doi.org/10.1515/math-2017-0121
http://dx.doi.org/10.1016/S0096-3003(02)00657-4
http://dx.doi.org/10.1016/S0096-3003(02)00657-4
http://dx.doi.org/10.1016/j.amc.2007.03.030
https://doi.org/10.1002/mma.9334


2662 J.-Y. Wang, H.-P. Yin, B.-Y. Xi & F. Qi
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