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THEORETICAL AND NUMERICAL
STABILITY OF THE BRESSE SYSTEM:
EXPLORING FRACTIONAL DAMPING

THROUGH TRADITIONAL AND NEURAL
NETWORK APPROACHES

Ahmed Bchatnia®", Abderrahmane Beniani?, Boumediene Boukhari?

and Foued Mtiri®

Abstract This paper investigates the theoretical and numerical stability of
the one-dimensional Bresse system with fractional damping terms in a bounded
domain. We first establish the well-posedness of the system. Using the fre-
quency domain approach and a theorem by Borichev and Tomilov, we derive
the polynomial decay rate of the system. To validate these theoretical results,
we propose a numerical scheme and compare its performance with the Frac-
tional Physics-Informed Neural Network (fPINN). The comparative analysis
highlights the effectiveness of traditional numerical methods and fPINNs in
capturing the decay rate, offering new insights into the advancement of com-
putational techniques for complex physical systems.

Keywords Bresse system, asymptotic stability, finite difference scheme, Ca-
puto’s fractional derivative.
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1. Introduction

This paper is dedicated to the study of the one-dimensional linear Bresse system,
given by:

p1e1e — K(pz + 9+ lw)y — Kol (we — lp) + 979 = 0,
p2thie — gy + K(pz + ¥ + lw) + 07 M1p = 0, (L.1)
prwy — ko(We —1p)e + Kl(pe + 1 +lw) + 07> w = 0,
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where (z,t) € (0,L) x (0,400) denote the space and time variables, respectively.
The constants pi, p2, Ko, Kk, [, and b are positive, 7 is a non-negative constant, and
a; € (0,1) for i =1,2,3.

The initial conditions are given by:

cp(x,O) = QDO(x)a <pt(xa0) = @1(37), T e (O7L)7
w(%o) = ¢0($)7 ’(/Jt($70) = wl('x)’ U (OaL)7 (1'2)
w(z,0) = wo(z), w(r,0)=wi(z), z€(0,L).

0r(t,x) = Y (t, ) = we(t,z) =0, forxz=0,L,

o(t,x) =¢(t,z) =w(t,z) =0, forxz=0,L. (1.3)

The notation 9;"" stands for the generalized Caputo fractional derivative of order
a, 0 < a < 1, with respect to the time ¢. It is defined as follows:

1 ¢ o g d
8?’"f(t):m/o (t—s) e S)d—i(s)d& n > 0.

Here, x and ¢ denote the space and time variables, respectively.
The Bresse system, or the curved beam [14], is modeled by the system:

prpee — K(pz + P +lw)y — kol(we — lp) =0,

ptht - b¢rr + H(‘Pr + 1/1 + lw) = 07

prwe — Ko(Wy — o)z + Kl(pg + 9 + lw) = 0.
The terms kol(w, — lp), k(@ + ¥ + lw), and by, denote the axial force, the shear
force, and the bending moment, respectively. The functions ¢, ¥, and w represent,
respectively, the transverse displacement of a curved beam, the rotation angle of
the filament, and the longitudinal displacement. We denote by kg = FH, k = GH,
b = EI, where py, p2, I, G, E, and H are positive constants characterizing the
physical properties of the beam and the filament. Additionally, | = %7 where R is
the radius of curvature (see [8,16] for more details).

In [19], B. Mbodje explored the asymptotic behavior of solutions for the system:

O2u(w,t) — upy(z,t) =0, (z,t) € (0,1) x (0, +00),
u(0,t) =0,
Dpu(1,t) = —kOPMu(1,8), € (0,1),n> 0,k >0,
u(z,0) = up(x),
Opu(x,0) = vo(x).

He proved strong asymptotic stability of solutions when n = 0, and a polynomial
decay rate of ¢t~! as time tends to infinity when  # 0. The energy method was
used to establish the polynomial decay rate. Akil et al., in [2] under the equal
speed propagation condition, they established the optimal polynomial energy decay
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rate and they proved the indirect boundary exact controllability of the Timoshenko
system with mixed Dirichlet—Neumann boundary conditions and boundary con-
trol. In [3,5] studied the stabilization for a coupled wave equations with fractional-
damping. They proved the polynomial stability of the system. Recently, in [4] they
proved the energy decay of hyperbolic systems of wave-wave, wave-Euler Bernoulli
beam and beam-beam types. they established different types of polynomial energy
decay rate which depends on the order of the fractional derivative and the type of
the damped equation in the system.

In [9], the Bresse model for circular beams, with the addition of two frictional
dissipations in the system, was analyzed. Exponential stability was found if and
only if kK = kg, with polynomial decay in the general case. The problem of the
optimality of the polynomial decay rate was also studied. In [21], the exponential
decay of a dissipative Bresse system was demonstrated using techniques developed
in [18], and numerical simulations were provided to support their results.

When thermal effects are considered, the asymptotic behavior of the Bresse
system may become more complicated due to the coupling between elasticity and
heat conduction. Currently, there are some theoretical and numerical results on the
asymptotic behavior of thermoelastic Bresse systems [10,17].

Recently, in [12], Beniani et al. examined a system comprising coupled wave
equations featuring a diffusive internal control of a general nature:

“+o0
Opu — Agu + C/ o(w)p(x,w,t) dw + Pv =0,

o
Opv — Agv + (/ o(w)p(z,w, t) dw + Bu = 0,

u=v =0, on 0N,

z,0) =vo(z), Ow(z,0)=wv(x),

¢(2,w,0) = do(z,w), and  (z,w,0) = po(z,w).

They demonstrated the absence of exponential stability and investigated the asymp-
totic stability of the model, establishing a general decay rate that is dependent on
the density function p.

Numerically, the finite element method has been widely used in many studies
related to control systems (see [7,13,15,20]). However, to the best of my knowledge,
no study has yet validated the decay rate using the Fractional Physics-Informed
Neural Network (fPINN).

This paper is organized as follows: In Section 2, we prove the well-posedness
of System (1.1) using arguments that combine semigroup theory. In Section 3, we
establish the polynomial stability of the Bresse system (1.1) through a frequency
domain approach and a theorem by Borichev and Tomilov. Section 4 is dedicated
to the discretization of the energy using the finite element method, and Section 5
explores the fPINN approach.
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2. Augmented model and well-posedness of the sys-
tem

This section is concerned with the reformulation of the model (1.1) into an aug-
mented system. We need the following theorem:

Theorem 2.1. [6] Let p be the function:

2a-1)/2
p(© =172, ceR, 0<a<l.
Consider the system governed by the equation

Oup (2, &) + (IE7 + 1) @ (.6,1) = U(z,)u(€) =0, €€R, n=0,t>0,
with the initial condition
¢ (2,6,0) =0,
and the output defined as
O (x,t) = 7~ sin (o) / w(&)p(x,&t)dE.
R

The relationship between the “input’ U and the ’output’ O is then given by
O(z,t) = I'"*"(x,t) = D*"U(x, 1),

where

A1) = g [ =0T e ()

I'(«
We also need the following lemma in the sequel:
Lemma 2.1. [1] IfAeD={AeC|RX+n>0}U{S\ #0}, then
2
M (5) a—1
—=—df= A+ ,
o) [ A de= )

where 7(a) = 771

Lemma 2.2. If A € D,, = C\| — 00, -1, then

sin(a).

1 — 2« T (2a-5)
= (iIA+n) 7, (2.1)
4 in 7(20‘:3)7r

[l

oo (IA+E2+1)?

| e e < pintalt ana
TV 5 5 — 1|7 an
e [N+ =T

+o0 |f|2 T 5
———df < —tA + 2,
/oc ‘i/\ 52 77|4 ¢ = 16'2 77|

Using the previous theorem, the system (1.1) can be rewritten as the following
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augmented model:

p1ou — K(pr + ¥ +lw)y — kol(we —lp) + G /Ru(f) ¢1 (2, €, t) d§ =0,
m%r4wm+me+w+MO+QAQMO¢ﬂL&ﬂdfi&
prwge — ko(wy — 19)y + Kl(@z + 1 + lw) + Cs/Ru (&) p3 (x, &, t) d§ =0, (2.2)

ai&d)l (I7§7t) + (52 + 77) ¢1 (xagat) K (E) atgo(xat) = 07
at§b2 (l',f,t) + (62 + 77) ¢2 (.’E,&t) —H (5) 8t1/}($7t) = 07
at¢3 (x’gat) + (52 + 77) ¢3 (xafat) — K (g) atw(xvt) =0

where (z,€,t) € (0,L) x R x (0,+00) and with the following initial conditions:

For a solution U = (@, p¢, ¥, ¥y, w,wy, ¢1, d2, ¢3) of (2.2), we define the energy by

2

1, [F
+k|ps + 1 + lw?) dm—|—§ZCi/0 (/R|¢i2d§> dz,
i=1

1 L
E(t) =*/ (prleel® + pa|e]® + prlwel® + blibe|* + Kolwe — lof?
0
(2.3)

where ¢; = v;7~ L sin(ay).
The following lemma characterizes the decay of the energy functional for the
system described by (2.2).

Lemma 2.3. Let U = (¢, ¢, ¥, s, w, we, d1, a2, d3) be a regular solution of the
problem (2.2). Then, the functional energy defined in equation (2.3) satisfies

Dow——Se [ [ (e ) 1o e.0)
#50=-26 [ [ (el n)loe P

Proof. Multiplying the equations (2.2);, (2.2),, and (2.2); by ¢, 1, and wy
respectively, using integration by parts over (0, L), and adding the results, we obtain

1d ( [*
Sdt (/ (prleel® + p2ltel” + prlwel® + blepe|* + Kolws — lo]?
0

L
TRl 1 + Lwf?) de) + / (G / () (@, €, 1)de
0 R
+ G /R J(€) o, €, 8)dE + Crwy /R j(€)da(z, €, de)dz = 0. (2.4)
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Multiplying the equations (2.2),, (2.2);, and (2.2)4 by 101, {202, and E3¢3 respec-
tively, integrating over (0, L) x R, and summing, we obtain

L
/ (Cl‘Pt/U(ﬁ)%(%fiﬂf‘*‘@%/M(f)¢2($,§,t)d§
0 R R
+aun u<s>¢3<z,s,t>ds> iz
R
3

1d r (2.5)
:2dt<z;€i/0 /R@IQdfda:)
3 L
@ ? i(2, &, 1)|? d da.
36 [ lote e o deis

Combining the equations (2.4) and (2.5), we obtain

d _ k r 2 2
70 =-26 | [@+niosop

This completes the proof of the lemma. O
We now discuss the well-posedness of (2.2). To this end, we introduce the
following Hilbert space, which serves as the energy space:

H = (H'(0,L) x L*(0, L))" x (L*(R))".

For U = (907 Pt ¢, 1/%7 w, W, d)lv ¢2» ¢3)T and 0 = (va @ta 7[’; 'l/;ta 'U~}, U~)t; (517 &27 QES)Tv
we define the following inner product in H:

<U, U>H
L —
= / (mso@ + pathithy + prwyy + b@x@) dx
o > -
+/0 Ko(pz — lp)(Pa — 1@) dz

L _ 3 _
+/O k(e + 1+ w) (@ +¢+1w>dx+;§i4¢i¢idf.

We then reformulate the system (2.2) in the context of semigroup theory.

Introducing the vector function U = (uy, ug, us, U4, us, ug, d1, d2, ¢3)7, the sys-
tem (2.2) can be reformulated as:

U =AU, t>0,
U(0) = Uy,

T
where UO = (9007<P1>¢0,¢17w0>w17¢(1)a¢87¢8) -
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The operator A is linear and is defined by

U2
B B TR ) = S [ @i, 0
ug o 1z 3 5)x P 5z — U1 o RM 1\ S,
us ta
. Dtses = s a4 tus) 2 [ p(©oalon )
A us = Ue
o | s =t = s a4 ) = £ ©0alne ) de
1 — (&2 + )1 + uz(x)p(é)
b2 — (&2 +n)p2 + ua(z)u(€)
¢3 —(&2 4+ n)p3 + ug(x)u(€)

The domain of the operator A is given by

(ul,u2,u37u4,u5,u6,¢1,¢2,¢3)T € H | U1, U3, Us S H2 mHla

fgbla §¢2a é-(b?) € LQ(R)7

D(A) =\ = ([P +n) ¢i +ui(2)n() € L*(R), i=1,2,3,
‘Pm(tax) = wm(tx) = wz(tvx) - ‘P(tvx) = w(tv:ﬂ) - w(tvx) =0
for x =0, L.

Theorem 2.2. 1. If Uy € D (A), then system (2.2) has a unique strong solution
UecC’(Ry,D(A))NC (R, H).
2. If Uy € H, then system (2.2) has a unique weak solution
UecC'(Ry,H).

Proof. First, we prove that the operator A is dissipative.
For any U = (uy,uz, u3, ua, us, Us, ¢1, $2, $3) € D(A), we have

Re (AU,U),, Zg/ (€2 + 1) s (a. €, D)2 de < 0.

Hence, A is dissipative.

We will now show that the operator I — A is surjective.

Given F' = (f1, f2, f3, fa, 5, f6, f7, f3, fo) € H, we need to prove that there exists
U = (u1, us, us, ug, us, ug, P1, P2, ¢3) € D(A) satisfying

(I-A)U=F.
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That is,

ur — ug = f1,
Uy — = (ury + ug + lug), — %Ol(usw —luy) + 51 / (&)1 (x, &, t) d€ = fo,

1 1 P1 Jr
uz — ug = f3,
b K G2
Uy — —U3gx + *(ulx + u3 + ZUS) + = N(£)¢2(x7€7t) dé = f47
p2 p2 P2 JR
us — ug = f,
Y0 Hl §3

Uug — E(%x —lup)e + H(le + uz + lus) + o /Rﬂ(f)%(fﬂ,&t) d§ = fe,

or1(1 4+ +n) — p(&)uz(z,t) = fr,
G2(1+ & +n) — p(&)ualx, t) = fs,
G3(1+ &+ n) — p(&)us(z,t) = fo.

(2.6)
Then, from (2.6),, (2.6)g, and (2.6),, we obtain:
b = fr 4+ p(§ua(z, 1)
! 1+&4n 7
_ St mua(z, t)
s = fo + pu(&ue(, 1)
1+

Inserting the equations (2.6), into (2.6),, (2.6); into (2.6),, and (2.6), into (2.6),
we obtain:

prur — K(uiz + us + lug)y — kol(usy — lur) + G / (&) (x, &, t) dg
R

= p1(f1 + f2),

WW*MMHWWM+%+MQ+@/M@®@@U%

R (2.8)

= p2(f3 + fa),

p1uUs — K:O(u&c - lul)x + Hl(ulr + us + lu5) + <3/Rp’(§)¢3(x7£7t) d§
= p1(fs + f6)-

Solving the system (2.8) is equivalent to finding wuy,u3,us € H?(0,L) N H(0, L)
such that:

L
/ [pluln(ulm +us + lus)e — kol(use — lur) + G / w(&) o1 (x,&,t) df] x dx
0 R
L
= [ ol sl

L
/ [P2U3 — busgs + £(u1z + ug + lus) + C2/R/«L(f)¢2($af,t) df] ¢dz
0
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L
:/o [o2(f3 + fa)] Cdx,
L
/ [ﬂ1u5/€0(u5mlul)m+l-€l(u1z+u3+lu5)+<3 / 1(€) s, €, 1) de| W do
0 R

L
=A[m%+nnwm, (2.9)

for all x, ¢, W € H*(0, L).
Inserting the equations (2.7); into (2.9),, (2.7), into (2.9),, and (2.7), into
(2.9),, we obtain:

L
/ [pru1 — K(u1e + us + lus)y — Kol(usy — lug)
0

2
+Ciua (2, t) / - f E(f) dg} dz

_ [t §)f1— fr)
-/ p1f1+p1f+</ ngm dﬁ]xd%

r 12(€)
/ pau3z — bu3mm + ﬁ(ulm + us + Z’U,5) + CQU3(xa t) /
0

L r1+& 47
_ [ &)fs - fs)
= [t g+ o [ HEEGBZT o) ¢

df] Cdw

L
/ [p1us — ko(usz — lur), + Kl(u1e + us + lus)

0
2
+(3us(, t)/ lff(f)

_ (" )fs — f9>
—/0 [Pl(f5+f6 +Gs / 1+£2 df} Wdz.

Consequently, the problem (2.10) is equivalent to the problem:

a((ul,U3,U5),(X,C,W)) :‘C<Xa<7 W)v (211)

dg} W dzx

(2.10)

where
L
a((u1,us,us), (x, ¢, W)) =/ [p1ur — K(urg + us + lus), — Kol(usy — luy)
0

9 -
+ C1U1(x’t)/Rl_f§(2§_)|_nd£ x dx

L
+ / [p2us — buzgs + KU1, + ug + lus)
0

2
+ C2u3(337t)/R 1 ff(f—)kn

d§_ Cdx

L
+ / [p1us — ko(usz — lu)z + Kl(u1, + us + lus)
0

2
+ C3U5($»t)/R 1 ff(fi—

df] W dz,
7
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and

L
coeem) = [ nfiempea [ 1+£2finf7)df]xdw

t §fs — fs)
et e [ 1+£2 de| ¢

L §)fs — f9)
+/0 {pl(f5+f6 +C/ 1+§2

It is easy to verify that a is continuous and coercive, and £ is continuous. Ap-
plying the Lax-Milgram theorem, we infer that for all (x,(, W) € H'(0,L) x
H'(0,L) x H*(0, L), problem (2.11) has a unique solution (u1,us,us) € H} (0, L) x
H}(0,L) x H(0,L). Applying classical elliptic regularity, it follows from (2.11)
that (u,us,us) € H?(0,L) x H?(0,L) x H*(0,L). Therefore, the operator I — A
is surjective. Finally, the result of Theorem 2.2 follows from the Lumer-Phillips
theorem. O

d{] W da.

3. Polynomial stability

In this section, we will prove a polynomial decay rate for the system. It is important
to note that, in the decoupled case, the system fails to exhibit exponential decay.
First, we need to prove the following lemmas:

Lemma 3.1. A has no eigenvalues on iR.

Proof. We prove that the unique U = (uy,ue,us, u4, us, ug, ¢1, P2, ¢3) € D(A)
satisfying

AU = i\U, (3.1)
isU =0.
Equation (3.1) is equivalent to
Ug = i)\ul,
K Kol .
2 s = g b+ 2 sy — ) = S [ ()01 (6,0)d6 = D
p1 p1 P JR
Ug = i)\’LLg,
b K G2 .
—user — —(W1z +uz +lus) — = [ p(§) P2 (§,1) d€ = iAuy,
P2 P2 P2 JR
Ug = TA\Us, (3.2)

5 (g — luy ) — il(ulw +uz +lus) — == / (&) ¢3 (&, t) d€ = idug,
P1 R

P1

G1(IN+ €% + 1) — p(&)ua(z,t) =0
G2(iA+ €2 4+ 1) — p(&)ua(x,t) = 0,
P3(iX+ &2 + 1) — p(&ug(x,t) =0

Then, from (3.2);, (3.2);, (3.2);, (3.2);, (3.2)g, and (3.2)y, we obtain for k €
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{1,2, 3}
b = iA(§)uzp—1(x, 1)
’ N+ +n (3.3)

U2k = i/\ng_l (’I, t).

On the other hand, multiplying (3.2), by u1, (3.2), by us, and (3.2)4 by us leads
to:

g 2
) iA t
[ - e s+ s+ ral{uge —Iua)us — L 9l
—A /71/ utdz,
0
L
£)icui (z,1)

—b 3o — T l 3 > T 9 v 74

/0 ug:z K(u1g + us + lus)u C/ z)\—|—§2_|_77 ¢

—\2py / uida,
0
p* () iAug (w, )

d
iIN+E2 4+ <

L
/ —ko(Use — lu1)use — Kl(U1e + uz + lus)us — Cg/
0 R

L
My / uida.
0

(3.4)
Adding (3.4); — (3.4),, one gets:
L
— / (bu%m + k(u1y + uz + lus)? + ko(use — lug)?
0
+z‘AZ3:<ku2 / ﬂdg)dx
ot 2k—1 " Z>\+£2+77
L
= _ )\2/ (plu% + pgug + plug)dx. (3.5)
0

Here we distinguish 2 cases:

Case 1. A #0.
Taking the imaginary part in (3.5), we obtain

23 K2 (€) s
A ——d dz =0, for k 1,2,3
k_ICkA ZA+€2+77 5/0 U —104T 07 or 6{ ) 4 }7

and we deduce that u; = ug = us = 0. Using now (3.3), it follows that U = 0.

Case 2. A =0.
Coming back to (3.3), we have:

us = ug = ug =0 and ¢1 = ¢ = ¢35 = 0.
On the other hand, we deduce from (3.5):

U3y = 07
Uiy +ug + lus =0, (3.6)
- lu1 =0.
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Using the fact that U € D(A) and (3.6), we find that uz = 0. Consequently, u;
satisfies the equation

Ulpe + Z2U1 =0.

Given that U € D(A), this implies u; = 0, which in turn leads to the conclusion
that U = 0. O

Lemma 3.2. The operator (i)\l — A) 18 surjective.

Proof. Let F = (f1, fa, f3, fa, [5, f6) € H we looking for
U = (u1,uz,u3,us, $1,$2) € D(A) such that

iU — AU = F.
That is,
Mul — Uy = fl,
. K Kol
Xty — —(ury +uz + lug)y — —— (use — luy) + o / w(&)o1(x, &, t) dE = fo,
P1 P1 P1 JRr

iAug — ug = f,

] b K C2

iUy — —Ugge + — (U1z +u3 + lus) + (&) pa(x, &, 1) d€ = fu,
P2 P2 R

iAus — ug = fs,

l
zAuﬁ—%(um—wl)ﬁZ (1 + us + lus) +—/ ) s(x, &, ) dE = fo,
1 1

G1(IN+ &% + 1) — p(&)ua(z,t) = fr,
G2(iX + €% + 1) — p(&)ua(z,t) = fs,
G3(iA+ €2 4+ 1) — p(&ug(x,t) = fo.

By eliminating us, u4 and ug from the above system, we get the following syst(gg )
—p1N2uy — k(uie + us + lus), — Kol (use — luy) + iACru (z,t) Io(\, )

= p1(iAfi + f2) + QL2 (X ) fr = (A, m) f7),
—p2A2uz — buzgy + K(u1g + usg + lus) + iACus(z, t) I (N, 1)

= p2(iAfs + fa) + Q(L2(A,n) fs — Ii(A.n) fs),
—p1N2us — ko(use — lur)e + Kl(u1e + us + lus) + iACus (2, t) (N, n)

= p1(iAfs + fo) + G(L2(An) fs — Ti(A,m) fo),

1*(€)

where I; (\,n) = / He) md{.

————d¢ and Iy (\,n) =
T et 3 2(A, 1) /]R
We now distinguish two cases.

Step 1. A = 0 and > 0 : System (3.8) is equivalent to finding uy,us,us €
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H?(0,L) N H} (0, L) such that

L
(—Ii(’ulw + ug + lus )y — Kol(usz — lul)) X dx

~

(p1fa+ ¢ (12(0,n) fr — 11(0,n) f7)) x dz,

~

(=bugey + KU1z +us +lus)) ¢ dx

c\c\c\hc\o\c\

(p2fa+ C2(12(0,m) f3 — 11(0,1) fs)) ¢ du,

L
(—ko(use — lur)y + kl(ur, + ug + lus)) Wdz

L
(p1fe + C3(12(0,n) fs — 11(0,n) fo)) W d,

for all x,(, W € H} (0, L).
Using integration by parts in (3.9) we deduce that (3.8) is equivalent to:

b((ulau37u3)7(Xa<aW)) :M(X7<7W)’ (310)

where

L
b ((ulv us, U5) ) (Xa Ca W)) :A [H(ulm + u3z + ZU5)(X$ + C + IW) + bu3zCz
+ ko(use — luy) (W, — Ix)] dx,

and

L
M (x, ¢, W) :/0 [p1f2 + C1(12(0,m) f1 — I11(0,m) f7)] x dx

L
+ / (p2fa + Cao(T2(0,0) f — Ty (0,m) )] C

0

L
4 /O (1 fo + Ca(To(0,0) f5 — 11 (0. 7) fo)| W .

It is straightforward to verify that the bilinear form b is continuous and coercive,
and the operator M is continuous. By applying the Lax-Milgram theorem, we con-

clude that for all (x, ¢, W) € (Hg(0, L))B, the problem (3.10) has a unique solution
(u1,u3,us) € (Hg (0, L))g. Utilizing classical elliptic regularity, it follows from (3.9)
that (u1,us,us) € (H2(07 L))3. Consequently, the operator —A is surjective.

Step 2. A#0andn>0:

Now, consider the system:
—k(U1y + ug + lug), — Kol(use — luy) = g,
—busgy + KU1y + us + lus) = ga, (3.11)

_K:O(u5.7; - lul)l + Kil(ulw + us + lu5) = 93,
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with the conditions

ui(t, ) = us(t,z) = us(t,z) =0, forx=0,L,
U1y (t, @) = use(t, ) = usz (¢, 2) =0, for x =0, L,

3
where (gla92ag3) € (LQ(O)L)>

Let us note L : (uy, ug, u3) — (—k(u1y + usg + lus)e — kol(use — lug), —busg, +
K(u1e + us + lug), —ko(usy — luy). + Kl(uiy + ug + lus)) with domain D(L) =

{(u1,uz2,u3) € (Hol(O,L) ﬂHQ(O,L))g, U1z (x) = use(x) = use(x) = 0, for x =

0,L}.
Multiplying (3.11), by x, (3.11), by ¢ and (3.11), by W one gets:

L
/ [F(u1e + us + lus)(Xe + C+IW) + bug G + Ko(use — lur)(Wy — Ix)] dz
0

L
= / (91x + 92€ + gsW ) d,
’ (3.12)
for all (x,¢, W) € (H&(O,L))g.
By applying the Lax—Milgram theorem once more, we deduce that there exists
a unique strong solution (uq,us,us) € D(L) for the variational problem (3.12).

3
Consequently, it follows that £7! is compact in (L2 (0, L)) and therefore (3.8)
is equivalent to:
(5—1 o B —I)U — o,

where U = (uy, us, us),

BU := ((pA* — iACu Tz (A, m))ur, (p2aX? — iAGaTa (X, 0))us, ()1 A% — iA(s Tz (A, ) )us )

and ¢ = _(pl(i)‘fl+f2)+C1(I2(>‘,77)f1 —Ii(\n) fr), p2(iXf3+ fa) + G2 (L2 (N, 1) f3 —

Li(Am) fs), p1(iAfs + fo) + (3 (T2 (A n) f5 — T (A, n)fg)). Noting that the operator B
is bounded, so Lo B is compact, and applying Fredholm’s alternative, it is sufficient
to show that

ker (ﬁ_l oB — I) = {0}.

For this purpose, let (y1,ys,ys) € Ker (E_l oB— I) then we have:

(p1A2 = iXG (N 0))y1 + K(Yy1z + Y3 + 1Ys)e + Kol(yse — ly1) = 0,
(p2)‘2 - Z/\4-2-[2(/\7 77))2/3 + bydx:r - K(ylz + Y3 + lyB) = 0» (313)
(1A% = iAGI (A, 1))Ys + Ko(Yse — y1)e — Kl(y12 + y3 + lys) = 0,

with the conditions

v (t,x) = ys3(t, ) = ys(t,z) =0, forxz=0,L,
Y12 (t, @) = Y3z (t, ) = ys5.(t,2) =0, for z =0, L.
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Multiplying (3.13), by 71, (3.13), by 73 and (3.13), by ¥s5, integrating over (0, L),
one gets:

L
/ ((p1/\2 — XL\ )|y ]? + (022 — i T (A, ) |ys|?
0
T (002 = NG RO 1) s ) d
L
+ / [Rly1e +ys + lys|* + blysa|* + rolyse — lyn|?] da = 0.
0

Taking the real part, we deduce that (y1,ys,ys) = (0,0,0). This completes the proof
of Lemma 3.2. O

We now recall the following result, which characterizes the polynomial decay of
the energy.

Lemma 3.3 ( [11]). Assume that A is the generator of a strongly continuous semi-
group of contractions {S(t)}+>0 on a Hilbert space H. If

iR C p(A), (3.14)

then for a fired § > 0, the following conditions are equivalent:

lim sup
se€R |s|—o0

1. _
WH(ZSI— A) 7z < oo, (3.15)

&
ISV < Z1Volbay U € DIA). for some ¢ > 0.

Our main result in the section is the following:

Theorem 3.1. The semigroup {S(t)}i>0 is polynomially stable and
2 1 2
E(t) = [S()Uoll3 < FHUOHD(A)'

Furthermore, the energy decay rate of t2/1=% is optimal for general initial data in

D(A).

Proof. Based on Lemma 3.3, the proof of Theorem 3.1 requires verifying the
validity of (3.14) and (3.15), where § = 1 — . Since (3.14) follows from Lemma 3.1
and Lemma 3.2, our focus shifts solely to proving (3.15).

Here, we employ a contradiction argument. Suppose that (3.15) is invalid; con-
sequently, there exists a sequence A\, € R,n € N such that \,, = +00 as n — +o0,
and a sequence U™ = (u}, uly, uf, ulf, ul, uf, d1, &%, ¢%) € D(A) such that

1Un|l = 1, (3.16)
and

lim

Jim S (@A = A) 7l ey =0, (3.17)

We have
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For simplicity, we drop the index n in the sequel. From (3.17), we get

AU — Uy = % — 0,
l
TAUY — i(ulw +uz + lus)e — R—O(Ug,x —luy) + & / w (&) d1 (x,&,t) dE
P1 p1 P1 JR
= % — 0,
IAU3 — Uy = % — 0,
Z>\U4— uS.L.L+ 7(“1.’1) +U3+lu5)+%/ﬂ(f) ¢2 (xafat) d£
R
= f1 —0
A9 ’
IAUs — Ug = % — 0,
iAug — @(um —luy). + il(uu +ug + lus) + <] / w(§) ¢3 (x,&,t) d§
p1 P prJr
= % — 0,
BA+E +n) — p(Euale, 1) = 45— 0,
SN+ € ) — plEus(at) = 13 0,
B3(iX+ €2 +n) — u(E)uo(z, 1) = 43 — 0.

(3.18)

In the following, we will prove that, ||U|l% = o(1), hence reaching the desired
contradiction. For clarity, we divide the proof into several lemmas.

On the other hand, for all § > 0, taking the real part of the inner product of

(3.17) with U in H, then using the fact that U is uniformly bounded in H, we have

L o(1) )
/O /R(§2+n) |i(, &, 1)|? dédx = 5 fori=1,2,3. (3.19)

Inserting the equations (3.18), into (3.18),, (3.18), into (3.18),, and (3.18), into
(3.18)4, we obtain:

1A 2ur + K(urg + ug + lus)e + Kol (usy — lug) — ¢ / (&)1 (x, &, t) d§

R
f2 if1
- _pl(ﬁ + A1 ),

paA2us + biisgs + K{urs +us + lus) — Co / H(E)da(, €.1) de

. R
= o+ B,
N5 + o(uss — lur)e — Kl(ure +us + lus) — Cs /R 1(€)ds (. €, 1) de
fe ifs

= _pl(ﬁ + A(S_l )
(3.20)
To complete the proof of the theorem, we require the following lemmas:
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Lemma 3.4. Let § > 0, we have
L L L
o(1) o(1) o(1)
A |u,2(l‘)|2d$ = A\o+a—17 A ‘U4(l‘)|2d$ = \o+a—17 and/() |U6($)|2dl': A\o+a—1"

Proof. From (3.18)7, we have

f7

(N +E2+n)p1 — 25 = ua(x)u(€), on (0,L).

Then
|

[ua (2)](€) < (Al +€ +m)lén] + =5

By multiplying it by (|]A| + €2 + n)~2|¢|, we obtain

on (0,L).

(IA+E2 4+ 1) "2[€[ua (@) p(€) = (IA+E2+n) " €| d1 — (IA+E +n)~ 2|€| Vo € (0, L).
(3.21)

Taking the absolute values of both sides of (3.21), integrating over(—oo, +00) with

respect to the variable £, and applying Cauchy-Schwarz’s inequality, we obtain

Plua(z)| < M (/_J:o(ﬁQ +1)|¢1(x, ) dg) N </+°0 fr 2

2o

[ee)

1

3
d£> . (3.22)
where P, M and N are defined as:

—+o0 %
- (/ (A + & +n)‘2d§> ,

_ ‘ / ;OO(MI + € 4 m)2elu(e)

o= ([T e i)

— 00
By applying Young’s inequality and integrating (3.22) over (0, L), we obtain

/OLuzm

+oo

(& +n)|o1(x,&)|? déda

2/\/2 / /+°° f |2

| dedr.

Using lemma 2.2, we get

1 — 2a T (2a—5) 71' _s
= A < /=(IA
i 4 |sin£2a:3>7r|(| ) Msy 5 (A+mT,

and

N <Y
It is simple to check that

2ao

P2=0(A\"7), M2=0(A"3) and N2 =O(]A"3).
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Then

L
2, _ _o(l) o) _ o(1)
A ua (@) = 1o + sy = s (3.23)
Using the same argument, we can prove
L L

2, _ o(l) 2, o(l)
/0 |ug ()| da = No=1+5 and /0 lug(x)|“dx = Yo—its (3.24)
O

Lemma 3.5. Let 6 > 0. Then the solution (uy, us, us, s, us, Ug, P1, d2, ¢3) € D(A)
of (3.18) satisfies the following asymptotic behavior estimation:

L L L o
/0 |)\u1(x)|2dx:/0 |)\U3(x)\2d:z::/0 \/\U5(x)|2dx:%. (3.25)

Proof. From (3.18),, we obtain

L L ) L
/ |)\U1|2dl‘ S 2/ |UQ|2dJ? + ﬁ/ ‘f1|2d.%'
0 0 0

Hence, using Lemma 3.4 and the fact that || fi|| = o(1), we get

L
o(1
| o pas = 25

Using the same argument, we can prove

L L
o(1
| st = [ pus(o)Pae = 5255

O

Lemma 3.6. Let 6 > 0. Then the solution (uy, us, us, us, us, Ug, P1, d2, ¢3) € D(A)
of (3.18) satisfies the following asymptotic behavior estimation:

L
o(1)
| n@pas = 255,

L L
o(1 o(1
[ R e S MU I N CES

Proof. Multiplying (3.20), by 1, (3.20), by u3, and (3.20), by s leads to:

L
/ (—pl)\2|u1|2 + I{(Ulm + us —+ l’LL5)ﬂ1I — Iﬁ:ol(U5x — lul)ﬂl
0

L .
+ ClAM(§)¢1($,§,t)U1d§> du :/o ,01(% + )\ng,ll)ﬂld%

L
/ (—p2X?|us|® + bluss|® + K(ure + us + lus)us
0

fa if3

5 (3.27)
4G [ Weonte & made) do= [ S + s,

L
/ (—,01)\2|U5|2 + Ho(U5x — lul)ﬂm + Hl(um + us + ZU5)ﬂ5
0

L .
G /R u(§)¢s(x,£,t)u5d£> dz = /0 PELEC L
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Adding (3.27), — (3.27),, one gets

L
/ (=12 ur [ = paX2lusl® — p1A|us|? + bluse|* + Klure + uz + lus |
0

+Ro|use — lu1|2) dx
L
€, t)urd L€, Ousd
(o [ m@ontcomd + [ oo e .
s / u(5>¢3<x,s,t>u5d5> d
R

L . ) _
fa if1 fa ifs fo | ifs
:A (pl(/\é + o1 Yuy + pz(ﬁ + -1 Yasz + pl(ﬁ + N1 )U5> dx.

From (3.28) and considering (3.16), (3.19), Lemma 3.4, and Lemma 3.5, we obtain

o(1)

L
/O (b|’u,3x‘2 —+ I€|’U,1z —+ us —+ IU5‘2 —+ I€0|U5x — lu1|2) d’I,’ = W

Consequently, it follows that

L
o(1)
| e@pas = 255 (329)
Using the fact that

luizll20,0) < llure + us + lus||L20,1) + |lus + lus||22(0,1)

and
lusallzz(0,0) < lluse — luallrzco,z) + luillz20,1),
we complete the proof of Lemma 3.6. O
Returning to the proof of Theorem 3.1, and taking into account Lemmas 3.4,
3.5, and 3.6, we establish that |U]| = o(1), which contradicts (3.16). Moreover, we
confirm the optimality of the decay rate, which closely aligns with the asymptotic
expansion of the eigenvalues. Specifically, it reveals a behavior in the real part

resembling k(1= . This concludes the proof.
O

4. Discrete energy of the system

We will start by using the Finite Element Method (FEM) to obtain a discrete
representation of the solution to equation (1.1)-(1.3). Before calculating the dis-
crete energy, we employ the finite difference method to approximate the fractional
derivative. The energy discrete F (t) will then be calculated using this method.

4.1. Discrete formulation by Finite Element Method

Let © = [0,L] be a finite domain. Let £, be a uniform partition of Q, with a
uniform grid given by:

O=xg<21<...<Zpp1 < Ty =1,
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so 0 = U;’;Bl Q;, where Q; = [z;,2;41]. The time discretization of the interval
I =[0,T] is given by

O=to<ti<...<tp1<t,=T,

where m and n are positive integers, Ax = z; — 2,1 = %, so z; = 1Az for
i=1,...,m, and At =t; —tj,l = %, so t; ;jAtforj: 1,...,@.

Denote by ¢(z;,t;) = ¢!, ¥(xi,t;) = ¢!, and w(x;, t;) = w] the value of the
functions ¢, ¥, and w evaluated at the point z; and the instant ¢;. We also define
the space Sy as the set of piecewise linear functions associated with this partition:

o € Pl(Qi)’ u € C(Q)}7

where P;(€;) is the space of linear polynomials defined on ;.
The basis functions h; of Sy for each €2; in changing from the real base to the
reference base are given by:

B{h1 LI hgl(xxl)}.

T2 — X1 T2 — X1

Sk = {u; u

Denoting by ¢, 97, and w’ the approximations of ¢’ (t;,z), 17 (t;, ), and w’ (t;, z),
we have:

@l = Zcpzhi(x), P o= Zz&fh,(x), and w’ = wahl(x),
i=0 i=0 i=0
where
1 1
E(x - xifl)v VI’ S [miflaxi]a va VZ’ S [miflaxi]a
(=11 Dy ) -1
hi(w) = E(%H —x), Vo€l mig], &chl(x) ) Az Vo € (i, Tiya],
0, elsewhere, 0, elsewhere,
1
ho(z) = M(xl —x), V&€ |xg,z1],
0, elsewhere,
1
h (ZL’) _ Fx(x - m'mfl)v Vo € [xmflvl'm]a
0, elsewhere.

hi(x)
ho hy h; -
! ! ! ! ! -
2o X1 Z; LTm

Figure 1. Piecewise Linear Interpolation Functions h;(z) over (zo, Tm ).
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To summarize the principle of the finite element method, we multiply the equations
(1.1);, (1.1),, and (1.1)5 by h respectively, and integrate over 2. We obtain:

() (o) (5, (1))
(), ), )+ (327, <0
(), = (), 5{(5e)  (08), (1),

+(or"u,n) =0,
(plwtt’ h)n — o ((wm, h)n B (lgpz, h)Q)
+Hz<(%, h)Q + (w, h)Q + (lw,h)ﬂ) + (333>”w, h)Q —0.

The weak formulation of the problem can also be expressed by choosing each test
function h as h;, : = 0,m, and for j = 1,n — 1, as follows:

(vt ()~ (), - (1),

—/-;Oz((w;,hi)g - (l<p7,hi)ﬂ) (aal ", h) —0,

(leb{t, hl)Q + <bwg’ hi)Q + H((wé’hi)g + ( > * (le’hi)9>
+(a§“%w‘ , hi>Q —0,

(plwgt’ hi)ﬂ + o ((w;, hi)ﬂ + (lgo;, hi)Q) + ﬁl<<¢g”’ hi)Q + (djj’ hi)Q
+(sz' ,hi)ﬂ> + (aﬁs’”wﬂ' ,hi>ﬂ ~0.

on T Tu
T S S
FEM—j¢--&--o- g0‘———‘0———0 {p?, 7w}
N S !
bttt
(0,0) o (L,0)
o

Figure 2. Mesh of the domain [0, L] x [0, T] with red points at each (x;,t;).

In Figure 2, we show the pattern mesh of ¢, ¥, and w using the discretization of
the intervals (0, L) and (0,7T).

Now, using the finite difference method, we define the following approximations
of the derivatives of ¢, 1, and w, respectively:

It — 207 + (pJ 1 . Il 2pT il
AtQ ’ wtt - At? ’

P = (4.1)
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and
G with— 200 it
wiy = INE .
The following lemmas will be useful.
Lemma 4.1. For a € (0,1) we have:
j n* ! - k+1 k
9N I — ok

< (3(1= @t =) =2 (1-aunlt; ~ 1) ).

Proof. Recall that

1 t 0
am L p Y et —r) P
9 p(ty, ) T1l_a) /0 (tj —r)"% or (r,z)dr,

where 1 > 0. Using finite differences, we get

' 1 J=1 g k+1 _  k
e — Z/ (t; — r)oen—n L O

I'(l—a) W At

k=0
We then have

—1 tet1
0;y? = AtF 1 Z - / (t; —r)" e =) gp.
—a)

k=0 b

Changing variables with u = n(t; — ), we obtain
tet1
/ (t; —r) e ") dr

n(t;—tx)
N> 1/ wlm e du
n(t;—trt1)
:770‘71 (’y((]_ - Oé), ﬂ(tj - tk)) - 7((1 - O‘)’ 7)(tj B tk"‘l)))’

where + is the lower incomplete gamma function defined by:

'y(s,x):/ tsle~t dt.
0

Substituting (4.5) into (4.4), we obtain (4.3).

(4.2)

(4.4)

O

Then, using (4.1), (4.2), and Lemma 4.1, we obtain the fully discrete scheme



Theoretical and numerical stability of the Bresse system 2685

(1.1) as follows:

p M A2 + K (chj — S — lSwj) — Kol (Swj — lMgoj)
j—1
S -0 =,
k=0
JHL 9 j—1 _ _ ' _
p2M¢ A@HD + bK 7 + k (Se? + Mip? + IMw?)

j—1 (4.6)
M Z(¢k+l o ’l/)k) . CI?%M — 0’
k=0

ij+1 — 2w’ + wiTt
b1 A2

+ Ko (ij +ngaj) + Kl (S’ij + Mp? +lej)

j—1
+M 2:(101“+1 —wh) . CPr =0,
k=0
for j =1,n — 1, where
gpj:(sp%7¢{""7¢3w)t’ ,(/)]:(wé7 ‘:{7"'7’(/}‘]7\4)t7 wj:(wé7w{7"'7w§w)t

with the following initial conditions:

¢" = po(), P = o(2), w? = wo(z),
1_ 0 10 1_ 0
L A A )
and
a,f3 O‘ﬁ_l
Gy = AT 5) (7(1 =B a(t; - tk)) - 7(1 = B.a(t; - tk+1))>-

The matrices M, K, and S are given as follows:

A
?x’ ifi=0o0ri=m andi=j,
2A
2 fi—jand1<i<m—1,
Mij:<hjahi> = 3
Q@ Az .
- ifli—jl=1and0<i<m,
0, otherwise,
1
g’ ifi=0o0ri=m and i = j,
2
—, ifi=jand1<i<m-—1,
Kijz(h;,h;) =1 4s j
(9] —
0, otherwise,
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and
—1
7a if (7’).7) € {(0,0), (m7m - 1)}7
(i—J) . . ,
fli—jl=1land1<i<m-—1
Sz'j:(h;',hi) _ 5 1 |t — 7] and 1 <¢<m ,
2 1 e
57 if (Z,j) € {(m7m)7 (07 1)}7
0, otherwise.

4.2. Calculation of the discrete energy E(t)

Recall that the energy E(t) of the system (1.1)-(1.3) is defined as:

1 L
E(t) = 3 / (P17 + 2} + prwg + b2 + ko(wy — 19)* + k(s + ¥ + lw)?) da.
0

Let (7,97, w7) be the solution of the scheme (4.6). To evaluate the energy E(t) at
tj+1, we use the mass matrix M, the stiffness matrix K, and the skew-symmetric
matrix S.

Given that M is a symmetric positive definite mass matrix, K is a symmetric
positive definite stiffness matrix, and S is a skew-symmetric matrix, we have the
following approximations:

L L L
/ ©? dx ~ ol Mgy, / o2 dr =~ T K, / ©*dr ~ T Mo,
0 0 0

L
/ (wy — 1) de =~ wT Kw — 21" Sw + 1" M,
0

L
/ (2 + 9 + lw)? dz
0
~ T Ko+ 29T Sp + 2w S + T M + 2lwT My + 12wT Mw,
where
oIt i iYL i Wit — i
pr = , Yy = y W = ———,
At At At
p= <,Oj+1, ¢ _ ¢j+17 w = wit!,

Consequently, the discrete energy of the system (1.1)-(1.3) at time t;4; is written
as follows:

, 1
Elty) = 5 (m(ptTM% + oo My + prw?l Muw, + bip” K

+Ko (wTKw — 20" Sw + ZzgoTMga)
+i (PT Ko + 20T S + 2wT Sp + T Map + 2wT Mep + PwT Mw) )

Here is an algorithm that summarizes all the steps for calculating the discrete energy
E(t):
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Algorithm 1 Calculation of the solution and the energy discrete E(t)

ReqUire: Ata Al’, {M7 K7 S}a {p17p27p3757'l€07l7' . '}a {@0’7/}0711)0}, {(,01,’1,[11,11}1},
{@0,w03w0}a.{¢m77pm,wm}

Ensure: 7,97, w?, EJ
for j=1to N—-1do

J—1
P BN (KT — S0 1w — rol(Swd — M) + MY (hH

k=0
7()0]6).0;:1’?7) +2¢7 — ',
Yt o ALy (waj+f<a(5<pj+MW+lej)+M§(¢j—WA)'C?W)
+2¢7 — 7, - i—1
wﬂ'+1<——%2M‘l<mo(ij +1S@7) + wKl(Se? + M7 + IMuw?) + sz_:(wj
k=0

—wj_l).C’g:"”) +2wd —wi~h
// Compute L? norms at time step j + 1
J+L _ pINT J+1 _ i
¥ ¥ M(SD ¥ )7
At At
It —pINT It — qpd
u( )
At ) At
wItt — i )TM(U,JH — w])’
At - At
norm_phi_x < (gajJrl) K(gaj+1).
// Compute the discrete energy
E7T1 + Apply the Result (4.2)
end for

norm_phi_t < (

norm_psi_t <— (

norm_w_t < (

5. Fractional Physics-Informed Neural Networks
(fPINN) approach

Physics-Informed Neural Networks (PINNs) represent a novel category of neural
networks that integrate machine learning with physical laws. This innovative algo-
rithmic technology emerged relatively recently, in 2019, from research laboratories.

To solve a system involving the Caputo fractional derivative, we employ both the
Physics-Informed Neural Network (PINN) model and the Finite Difference Method
(FDM) (see Figure 3). The PINN captures the complex behaviors of the studied
system, while the FDM discretizes the differential or integral equations, enabling a
numerical approach to problem resolution. By combining these two approaches, we
obtain a scheme termed Fractional Physics-Informed Neural Networks (fPINNs),
which is capable of efficiently solving a variety of mathematical and physical prob-
lems.

To the best of our knowledge, this is the first study to utilize this combined
approach of fractional physics-informed neural networks to solve systems with the
Caputo fractional derivative.
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fPINNs

Doy MSE,

Dyvty ——> MSE, o

D w MSE,
A

1

MSE = MSE, + MSE, + MSE,

calculate energy E(t)

Figure 3. fPINNs to solve the problem (5) for calculate energy E(t).

The predicted function values, denoted as f;,,ed, gwd, and f;’red, are defined as
follows:

fz}red = P1Ut — H(um + v+ lw)z — Hol(wm — lu) + 8211777“’
FRrea = Pavit — buzg + K(ug + v + lw) + 97 v,
f;ed = prwy — ko(we — 1)y + Kl(up +v + lw) + 9, w.

The boundary conditions are:

g1(x) = ue(0,2),  g2(x) = ve(0,2), g3(x) = we(0, w),
hi(t) = u.(t,0), ha(t) =v.(t,0), hs(t) = w,(t,0).
In this context, u(z, t), v(x,t), and w(z, t) will be approximated by a neural network.
The objective of the network is to minimize the following loss function:
MSE =MSE, +MSE, + MSE,,,
where
MSE, = MSE) + MSES- + MSEy,,
MSE, = MSE® + MSEL + MSE;,,
MSE,, = MSE2 + MSESF + MSEy,.
We calculate the right-hand sides of MSEY, MSE?, and MSEY, as follows:

1 X

MSED = 3 ((uta?.0) — ) + r(a9) — ul)?).
=0
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MSED - ;i ((062.0) ~ )" + (32(a) — 1)?),

MSE = 37 (w180 )+ () ),

MSE’E — ;@é ((u(o,tg))Q + (u(L, ) + (i () + (hl(t{))z’),

MSEY = 3 (0. + 01,1+ )+ 0",

MSECE — ib ibo ((w(o,tg))2 + (w(L, ) + (hs(t)” + (hg(ti)f),

and

MSEf = ]\}f; (forea(zisti) 0)%,

MSEy2 = Nizf( 2 ealiti) —0)%,
fizo

MSE ;s = Ni : (f2 cali t:) — 0)°.
fizo

Here, {29, u0} denotes the initial data at t = 0, {t},#] } the boundary data, and
{z;,t;} corresponds to collocation points on f;red(x,t), gred(x,tL and f;’red(x,t),
where Ny, Ny, and Ny are the number of available observations. Figure 4 shows
the point cloud used for training the PINN and calculating the fractional derivative
for each point (x;,t;).

t .
e - - o
° .
. °
tj e .o
: :(xiv'tj;
t2' ° T .o
tl L4 1 :
0 19" iz ¢ t

Figure 4. Point cloud used for training the PINN and calculating the fractional derivative for each
point (x;,t;).

For 0 < o < 1 and the interval [to,;] discretized into j 4+ 1 points, 0 = ¢y <
t; < --- <t;, the Caputo fractional derivative of order a using the method of finite
differences and Lemma 4.1 is approximated as:

Df""u(mi, tj)
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<.
|

a—1 1
R . — ol
= A1 ) O(u(gc“tkﬂ) u(x;, ty))

X (7(1 —a,n(tj — tk)) - 7(1 —a,n(t; — tk+1)))

b
Il

%F(??la:la) ZZ;IJ %“(xi’ trt1) <7<1 —a,n(t; — tk)) - 7(1 —a,n(t; — tk+1)>>.

The Physics-Informed Neural Network (PINN) calculates the integer-order partial

derivative ‘g%‘ using automatic differentiation to obtain the gradients of the model’s

predictions with respect to the inputs.
Recalling that the energy E(t) is defined by:

1 L
E(t) = /O (P19} + P2t} + prwi + b2 + ko(wy — 1p)? + k(s + ¥ + lw)?) da.

Now, we define the following approximation of the derivatives of ¢ and v, respec-
tively. The L? norm of a discretized function is approximated by:

N
115 ~ Az f(ait)? (5.1)
1=0

Thus, the discrete energy of the system (1.1)-(1.3) at time ¢4, is approximated as
follows:

E(tj+1)

M 1 o\ 2 i1 o\ 2
Az Wt — ! -
~=Z 1 i i ) ) )
> 2| ( Al ) +p ( AL )

=0

Wit —wi\® (ol =i
3 7 7 b i i
TP At + Aw

) . 2 ; ; 2
Wit _ it A P I _ .
e <+Ax S I B e R T ARR LA B BENCE)

The following algorithm summarizes all the steps for the calculation of the discrete
energy F(t) using the L? norm defined by (5.1).

6. Numerical test

To verify the asymptotic behavior of the solutions to the system (1.1), we use the
following parameters: At = 1072, Az = 107!, L = 1, and the initial conditions
given by:

o(z,0) = 2%(x — 1)2,  i(z,0) =0, x€(0,L),

U(@,0) = 22 —a?, G(,0) =0, we(0,L),

w(z,0) =2%(x —1)3, wi(x,0) =0, x€(0,L).
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Algorithm 2 Calculation of Solution and Energy E(¢) by fPINN
Require: {z°,uf,v?, w?, ul, v}, w}l, No},{to,tr, Np}, {xi, ti, Ny},

(RE (AR A

Ensure: u-Matrix, v]-Matrix, w]-Matrix, E
#Create the PINN and perform an initial training phase.
MSE < e+1
# Do the learning phase. Train PINNs
while MSFE > ¢ do

uvw « Train(PINN)

# Calculate MSE.

MSE =MSE,+ MSE, + MSE,,
end while
// Compute energy
E3+1 < Apply the Result (5.2)

Figures 5-6 illustrate the comparison between the numerical FEM approximations
of energy and their corresponding fPINN approximations at different time steps.
Figures 7 and 8 specifically illustrate the polynomial decay of the energy for both

Energy by FEM Energy by Fpinn

0.040 A
0.04

0.035 A

0.030
0.03

0.025

F 0,020 E

0.02

0.015 4

0.010 4
0.01 1

0.005 -

0.000 7 0001

0 2 4 6 8 10 0 2 4 6 8 10
Time Time
Figure 5. Energy by FEM for T' = 10. Figure 6. Energy by fPINN for T' = 10.

the numerical FEM and fPINN approaches. The curves demonstrate that the decay
cannot be exponential and, in other words, confirm the lack of exponential energy
decay.

We calculate the Root Mean Square Error (RMSE) to quantify the accuracy of
the fPINN solutions compared to FEM. The RMSE is defined as:

m n

RMSE — %Zz(ug _ i),

i=0 j=0

where ﬁf represents the values obtained by the finite element method, uf represents
the values obtained by the physics-informed neural network, and N is the number
of observations.

Table 1 presents the RMSE between the fPINN solution and its numerical ap-
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by FEM by Fpinn
0 o
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0 2 4 6 8 10 0 2 4 6 8 10
Time Time
Figure 7. Log Energy/t by FEM for T = 10. Figure 8. Log Energy/t by fPINN for T = 10.
Table 1. RMSE between the fPINN solution Table 2. RMSE between the energy calculated
and its numerical approximation by FEM for by fPINN and its numerical energy approxima-
@, P and w. tion by FEM.
FEM FEM
© )\ w T=1 T=5 T=10
fPINN | 0.012210 | 0.013177 | 0.006276 fPINN | 0.011884 | 0.027809 | 0.051233

proximation by FEM for ¢, 1, and w. Table 2 shows the RMSE for the energy com-
puted by fPINN compared to its FEM approximation at different time instances.

These values indicate that the FPINN method closely approximates the FEM
solutions with relatively low RMSE across all variables. The RMSE values being
close to zero suggests that FPINN can effectively capture the behavior of the system
as predicted by the traditional FEM approach.

The relatively small RMSE values in both tables highlight that fPINN is a
robust method for approximating solutions and energy decay in complex systems
like the one studied. However, the slightly higher RMSE at larger time intervals
suggests that while fPINN is effective, it may not yet fully match the precision of
FEM for long-term predictions without further refinement. The overall comparison
indicates that fPINN provides a viable and promising alternative to traditional
numerical methods like FEM, especially for problems involving fractional derivatives
and complex coupled systems. The differences in RMSE are minimal, demonstrating
that fPINN can achieve similar accuracy with potentially less computational cost
and greater flexibility in handling complex problems.

This comparison underscores the potential of fPINN as a powerful tool for nu-
merical analysis, while also highlighting areas where further optimization might
enhance its performance relative to established methods like FEM.

7. Conclusion
In this work, we investigated the polynomial stabilization of the Bresse system

with three types of fractional derivative dissipation. We began by analyzing the
polynomial stability of the system (1.1)-(1.3). Then, we applied a finite difference
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scheme to compute numerical solutions, demonstrating the stability of the discrete
energy.

This manuscript makes a significant contribution to numerical analysis and
applied mathematics by enhancing the use of Physics-Informed Neural Networks
(PINNSs) in solving complex fractional and coupled PDEs. This advancement pro-
vides a powerful tool for researchers and practitioners facing sophisticated modeling
challenges.

Our findings suggest that PINNs represent a robust and promising approach for
addressing complex PDEs, potentially offering a transformative alternative in the
field.
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