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THE EXISTENCE OF GLOBAL ATTRACTIVE
SOLUTIONS FOR A CLASS OF TEMPERED
FRACTIONAL DIFFUSION EQUATIONS

Siyi Zhang1,†

Abstract This paper is devoted to the existence and attractiveness of solu-
tions for a class of fractional diffusion equations with slow growth characteris-
tics. The existence of global attractive solutions for this equation is established
by the generalized Ascoli-Arzelà theorem. Our results reveal some charac-
teristics of the solutions of the fractional diffusion equations with tempered
fractional derivative, and extend the relevant results in existing literature.
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1. Introduction

Recently, fractional differential equations have garnered immense significance, es-
pecially since they were applied to diverse disciplines, notably physics, chemistry,
and engineering. By incorporating fractional derivatives, these equations have seen
significant progress in the fields of both ordinary and partial differential equations
over recent years, we refer to the monographs by Diethelm [5], Kilbas et al. [11]
and Podlubny [15]. There are many interesting results for qualitative analysis and
applications about fractional diffusion equations, due to fractional diffusion model
is derived from a continuous time random walk model, and it can describe more
precise for some models of anomalous diffusion in heterogeneous media. The ad-
vancements in solving fractional diffusion equations have opened up new avenues
for the analysis of systems that exhibit nonlocal or long-range interactions, lead-
ing to more nuanced and sophisticated models in various scientific and engineering
disciplines, we refer to the papers [1–3,6, 8, 9, 13,24,26] and reference therein.

It’s worthy of mention that Chen et al. [3], Losada et al. [13], as well as Banas and
O’Regan [1], studied the attractiveness of solutions to fractional ordinary differential
equations and integral equations. However, to the best of our knowledge, there
is relatively little works on the global existence of solutions to fractional diffusion
equations in Hilbert spaces, for example, Zhou [26] considered an abstract fractional
equation in Banach space X as follows{

LDα
0+x(t) = f(t, x(t)), t > 0,

I1−α
0+ x(0) = x0,
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where LDα
0+ is the Riemann-Liouville fractional derivative and I1−α

0+ is the Riemann-
Liouville fractional integral of α ∈ (0, 1). The author also noted that the results
essentially reveal the characteristics of the solutions to fractional evolution equations
that utilize the Riemann-Liouville fractional derivative. Furthermore, a result as
showed in [26] for the fractional evolution equations LDα

0+x(t) = Ax(t) + f(t, x(t))
where A generates a bounded C0-semigroup, while A is an almost sectorial opera-
tor, the paper [23] discussed the existence and attractiveness of fractional evolution
equations. Vivek et al. [22] proved the attractivity and Ulam-Hyers stability of so-
lution for a delay problem. Zhou and He [25] established the existence of solutions
in semi-infinite interval with Hilfer type fractional derivative by using cosine/sine
family. Poruhadi et al. [16] extended these properties involving Hilfer type frac-
tional derivative by using measure of noncompactness. Zhu [27] showed a global
attractiveness of solution with Riemann-Liouville fractional derivative. Tuan [20]
considered a positive linear delay systems with variable coefficients, he obtained the
separation and the attractiveness of solutions.

Due to the increasing prevalence of anomalous diffusion phenomena in real life,
and tempered fractional derivatives are suitable for simulating anomalous diffusion
phenomena in an exponentially tempered power law jump distribution. In this
paper, we consider the following fractional initial boundary problem:

Dα,λ
0+ x(t, z) +Ax(t, z) = f(t, z, x(t, z)), t > 0, z ∈ Ω,

x(t, z) = 0, t ≥ 0, z ∈ ∂Ω,

x(0, z) = x0(z), z ∈ Ω,

(1.1)

where Ω ⊂ RN (N ≥ 1) is a bounded region with smooth boundary ∂Ω, Dα,λ
0+ stands

for tempered fractional derivative of order 0 < α < 1 and type λ ≥ 0, see Definition
2.2 below. The function f : [0,∞) × X → X is a continuous function, x0(·) is an
element in Hilbert space X = L2(Ω). The operator A stands for the unbounded
uniformly elliptic operator with the domain D(A) := H1

0 (Ω) ∩H2(Ω) defined by

Ax(z) = −
N∑
i=1

∂

∂zi

 N∑
j=1

Aij(z)
∂

∂zj
x(z)

+ b(z)x(z), (1.2)

where Aij = Aji, i, j = 1, 2, . . . , N , and there exists a constant µ > 0 such that

N∑
i,j=1

Aijx(z)ξiξj ≥ µ

N∑
i=1

ξ2i , z ∈ Ω, ξi ∈ RN ,

Aij ∈ C1(Ω), b ∈ C(Ω), b(z) ≥ 0 for all z ∈ Ω.
Tempered fractional diffusion equations have been used to describe random walk

models that are characterized by an exponentially tempered power law jump dis-
tribution, as highlighted in [17], in which equations were introduced an exponential
tempering factor to the particle jump density, allowing for a more nuanced repre-
sentation of dynamical processes. Previous works, including those by Liemert and
Klenle [12], have obtained the fundamental solutions of space-time fractional dif-
fusion equations incorporating tempered fractional derivatives. Chen and Deng [4]
further developed high-order algorithms tailored for space-time fractional diffusion-
wave equations. Additionally, Ke and Quan [10] utilized the α-resolvent theory to
establish finite-time attractivity for semilinear tempered fractional wave equations.
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Motivated by these works, this paper concerns on the existence and attractive-
ness of solutions to problem (1.1), deriving sufficient conditions that ensure the
global attractiveness of these solutions. We observe that, the tempered fractional
derivatives Dα,λ

0+ reduce to the standard Caputo fractional derivative when λ = 0,
while the existence results of global solutions with Caputo fractional derivative still
are scarce, where the above mentioned results involve the Riemann-Liouville and
Hilfer fractional derivative, and in particular, there is no results of the current prob-
lem with tempered fractional derivatives. Following this aspect, it is interesting to
consider the global existence of problem (1.1). Due to the exponential function in
the tempered fractional derivatives, the integral representation of the solutions may
be complex. However, we will utilize the translation property of Laplace trans-
form to handle this difficult. Based on this representation of the solutions, our
results essentially reveal the characteristics of the solutions to fractional diffusion
equations involving the tempered fractional derivative, whereas the integer order
diffusion equations may approach infinity as time tends towards infinity. Compared
to Riemann-Liouville fractional differential equations, the results of this paper cover
the case where the solution is continuous at the initial point, which also extends
the conclusion of paper [24]. In addition, we also show that integer differential
equations do not possess attractive properties.

This paper is organized as follows. In Section 2, we introduce some notations
and useful concepts for tempered fractional calculus. In Section 3, we show the
main results about the existence and attractiveness of solutions for problem (1.1).

2. Preliminaries

In this section, we first recall some concepts of fractional integral and derivatives,
and then provide some lemmas which are used in the next section. Let X be a
Banach space with norm ∥ · ∥.

Definition 2.1. The tempered fractional integral of order α ∈ (0, 1) and type λ ≥ 0
for a function x ∈ L1([0,∞);X) is defined by

Iα,λ0+ x(t) := hα,λ(t) ∗ x(t) =
∫ t

0

hα,λ(t− s)x(s)ds, t > 0,

provided that the integral converges, where ∗ is the convolution and hα,λ(t) is
defined by

hα,λ(t) = tα−1e−λt/Γ(α), t > 0.

Definition 2.2. For a function x ∈ C1([0,∞);X), the Caputo tempered fractional
derivative of order α ∈ (0, 1),type λ ≥ 0 is defined by

Dα,λ
0+ x(t) = h1−α,λ(t) ∗ (λx+ x′)(t),

where x′ is the first order derivative of x.

Note that when λ = 0, the tempered fractional derivative of order α ∈ (0, 1)
corresponds to the Caputo fractional derivative. If λ = 0, α = 1, then the tempered
fractional derivative is actually the first order derivative. For more details on the
tempered fractional calculus, please see the reference [17].
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Let
C0([0,∞);X) = {x ∈ C([0,∞);X) : lim

t→∞
∥x(t)∥ = 0}.

Obviously, C0([0,∞);X) is a Banach space with norm ∥x∥0 = supt≥0 ∥x(t)∥.
We next will give the generalized Ascoli-Arzelà theorem [7].

Lemma 2.1. [7] The set H ⊂ C0([0,∞);X) is relatively compact if and only if
the following conditions are true:

(i) The function in H is equicontinuous on [0, T ] for any T > 0;

(ii) H(t) = {x(t) : x ∈ H} is relatively compact in X for any t ∈ [0,∞);

(iii) lim
t→∞

∥x(t)∥ = 0 uniformly for x ∈ H.

In order to obtain the main conclusion, we need the following lemmas, see [26]
for example.

Lemma 2.2. [25] Let α, β, ω > 0, it yields∫ t

0

(t− s)α−1e−ωssβ−1ds ≤Mtα−1, t > 0,

where M > 0 is a constant independent with α, β, ω.

Lemma 2.3. Let X be a Banach space and S ⊂ X be a convex closed subset of X.
If T : S → S is continuous and the set T (S) ⊂ X is relatively compact, then T has
a fixed point in X.

It is well known that the operator A introduced by (1.2) can generate the fol-
lowing spectral problem

Aen(z) = −λnen(z), z ∈ Ω; en(z) = 0, z ∈ ∂Ω, n ∈ N, (2.1)

where {λn}∞n=1 denotes the set of eigenvalues satisfying

0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · ,

and limn→∞ λn = ∞, and en ∈ H1
0 (Ω)∩H2(Ω) for every n ∈ N is the corresponding

eigenfunctions of λn. Then {en}∞n=1 is an orthonormal basis of L2(Ω).
Let us recall the Mittag-Leffler function

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, α > 0, β ∈ R, z ∈ C.

The function Eα,β(z) is an entire function, and so it is real analytic when it is
restricted to the real line, for more details, one can see [11,14]. For convenience, we
set Eα(z) := Eα,1(z) for z ∈ C.

Lemma 2.4. [24] Let 0 < α < 1. Then

0 < Eα(−x) ≤ 1, 0 < Eα,α(−x) ≤
1

Γ(α)
, for all x ≥ 0.

Lemma 2.5. [11] For α > 0, β ∈ R and s > 0. The Laplace transform of the
Mittag-Leffler function is given by∫ ∞

0

e−ztEα,β(−stα)dt =
zα−β

zα + s
, Re(z) > s1/α.
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By using the separation of variables method, the formal solution to (1.1) can be
expressed as

x(t, z) =

∞∑
n=1

(x(t, z), en)en(z).

For convenience, we set xn(t) = (x(t, ·), en), gn = (g(z), en) and fn(t, x) = (f(t, z, x),
en). By applying Aen = −λnen for all n ∈ N, and taking the Laplace transform
into (1.1), (1.1) can be rewritten as follows

(s+ λ)α−1((s+ λ)x̂n(s)− xn(0)) + λnx̂n(s) = f̂n(s, x),

where v̂ denotes the Laplace transform of function v, and so

x̂n(s) =
(s+ λ)α−1

(s+ λ)α + λn
xn(0) +

1

(s+ λ)α + λn
f̂n(s, x).

Noting that from Lemma 2.5 and the uniqueness of Laplace theorem, we have

(s+ λ)α−1

(s+ λ)α + λn
= L(e−λtEα(−λntα))(s),

1

(s+ λ)α + λn
= L(e−λttα−1Eα,α(−λntα))(s).

Therefore, we have

xn(t) = e−λtEα(−λntα)xn(0) +
∫ t

0

e−λ(t−s)(t− s)α−1Eα,α(−λn(t− s)α)fn(s, x)ds.

(2.2)
Consider the operators

(S1v)(t) =

∞∑
n=1

Eα(−λntα)vnen, (S2v)(t) =

∞∑
n=1

Eα,α(−λntα)vnen,

for any v ∈ L2(Ω). Then, the solutions of problem (1.1) which can be transformed
into the abstract form

x(t) = e−λtS1(t)x0 +

∫ t

0

e−λ(t−s)(t− s)α−1S2(t− s)f(s, x(s))ds. (2.3)

From this point of view, we introduce the following definition about mild solution
of problem (1.1).

Definition 2.3. A function u is called a mild solution of (1.1) if u ∈ C([0,∞);L2(Ω))
satisfies the integral equation (2.3).

Lemma 2.6. The operators S1 and S2 are bounded linear operators in X, i.e.,

∥(S1v)(t)∥ ≤ ∥v∥, ∥(S2v)(t)∥ ≤ 1

Γ(α)
∥v∥.

Moreover, they are also uniformly continuous operators in L2(Ω).

Proof. Clearly, from the proof of [18, Lemma 2.8], the linearity and boundedness
are obtained. The compactness can be founded in [25]. The strongly continuous is
obvious. So we omit it.

Definition 2.4. For all z ∈ Ω, if the solution x of problem (1.1) converges to 0 as
t→ ∞ in L2(Ω), then we call x(t) is global attractive.
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3. Main result

In this section, let X = L2(Ω) and λ > 0, we need the following assumptions.

(H1) For t ∈ (0,∞), x ∈ X, L ≥ 0, 0 < β < α < 1, σ ≥ 0, function ∥f(t, x)∥ ≤
Lt−β∥x∥σ holds.

(H2) ∥x0∥+ Lλ−(α−β)e−(α−β)(α− β)α−βΓ(β)Γ(1− β)/Γ(α) ≤ 1.

For any x ∈ C0([0,∞);X), define operator U as follows:

U(x)(t) = e−λtS1(t)x0 +

∫ t

0

e−λ(t−s)(t− s)α−1S2(t− s)f(s, x(s))ds, t ≥ 0.

Clearly, let M > 0 be given in Lemma 2.2, if T > 0 large enough, we have

e−λt∥x0∥+
LM

Γ(α)
t−β ≤ 1, for t ≥ T. (3.1)

Define
S = {x ∈ C0([0,∞);X) : ∥x(t)∥ ≤ 1, for t ≥ 0}.

It is easy to check that S ̸= ∅ is a bounded closed convex subset of C0([0,∞);X).

Lemma 3.1. If (H1) holds, then set {Ux : x ∈ S} is equicontinous, lim
t→∞

∥(Ux)(t)∥
= 0 is uniform for x ∈ S.

Proof. Since −β < 0, we find that there is a large enough T1 > 0, such that for
any ε > 0, and t ≥ T1, it holds

e−λt∥x0∥ <
ε

4
,

LM

Γ(α)
t−β <

ε

4
.

For any x ∈ S, and t1, t2 ≥ T1, by the assumption (H1) and Lemma 2.2, we have

∥(Ux)(t2)− (Ux)(t1)∥

≤e−λt2∥x0∥+
1

Γ(α)

∫ t2

0

(t2 − s)α−1e−λ(t2−s)∥f(s, x(s))∥ds

+ e−λt1∥x0∥+
1

Γ(α)

∫ t1

0

(t1 − s)α−1e−λ(t1−s)∥f(s, x(s))∥ds

≤e−λt2∥x0∥+
L

Γ(α)

∫ t2

0

(t2 − s)α−1e−λ(t2−s)s−β∥x(s)∥σds

+ e−λt1∥x0∥+
L

Γ(α)

∫ t1

0

(t1 − s)α−1e−λ(t1−s)s−β∥x(s)∥σds

≤e−λt2∥x0∥+ e−λt1∥x0∥+
LM

Γ(α)
t−β
2 +

LM

Γ(α)
t−β
1

<ε.

Therefore, by the arbitrariness of ε, we have ∥(Ux)(t2)− (Ux)(t1)∥ → 0 as t2 → t1.
For t1, t2 ∈ [0, T1] with t1 < t2, we have

∥(Ux)(t2)− (Ux)(t1)∥
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≤∥(e−λt2S2(t2)− e−λt1S2(t1))x0∥

+
1

Γ(α)

∥∥∥∥ ∫ t2

0

(t2 − s)α−1e−λ(t2−s)S2(t2 − s)f(s, x(s))ds

−
∫ t1

0

(t1 − s)α−1e−λ(t1−s)S2(t1 − s)f(s, x(s))ds

∥∥∥∥
≤∥(e−λt2S2(t2)− e−λt1S2(t1))x0∥

+
1

Γ(α)

∥∥∥∥∫ t1

0

((t2−s)α−1S2(t2−s)− (t1−s)α−1S2(t1− s))e−λ(t2−s)f(s, x(s))ds

∥∥∥∥
+

1

Γ(α)

∥∥∥∥∫ t1

0

(t1 − s)α−1S2(t1 − s)(e−λ(t2−s) − e−λ(t1−s))f(s, x(s))ds

∥∥∥∥
+

1

Γ(α)

∥∥∥∥∫ t2

t1

(t2 − s)α−1e−λ(t2−s)S2(t2 − s)f(s, x(s))ds

∥∥∥∥
≤∥(e−λt2S2(t2)− e−λt1S2(t1))x0∥+ I1 + I2 + I3,

where

I1 =
2L

Γ(α)

∫ t1

0

((t1 − s)α−1 − (t2 − s)α−1)s−βds,

I2 = max
s∈[0,t1]

(
e−λ(t2−s) − e−λ(t1−s)

) L

Γ(α)

∫ t1

0

(t1 − s)α−1s−βds,

I3 =
L

Γ(α)

∣∣∣∣∫ t2

0

(t2 − s)α−1s−βds−
∫ t1

0

(t1 − s)α−1s−βds

∣∣∣∣ .
Note that

((t1 − s)α−1 − (t2 − s)α−1)s−β ≤ 2(t1 − s)α−1s−β , s ∈ [0, t1],

and the mapping s 7→ (t1−s)α−1s−β is integral on [0, t1]. Therefore, by the Lebesgue
dominated convergence theorem, we have I1 → 0 as t2 → t1. Also, by the uniformly
continuity of exponent function and the boundedness of integral term in I2, we get

∥(e−λt2S2(t2)− e−λt1S2(t1))x0∥ → 0,

as t2 → t1, as well as I2 → 0 for t2 → t1. As for I3, by using the inequality

ap − bp ≤ (a− b)p, 0 ≤ a ≤ b, p ∈ [0, 1],

and the identity∫ t

0

(t− s)a−1sb−1ds =
Γ(a)Γ(b)

Γ(a+ b)
ta+b−1, t ≥ 0, a, b > 0. (3.2)

We thus have

I3 =
LΓ(1− β)

Γ(α+ 1− β)

(
tα−β
2 − tα−β

1

)
→ 0, t2 → t1.

Therefore ∥(Ux)(t2) − (Ux)(t1)∥ → 0 as t2 → t1. For 0 ≤ t1 < T1 < t2, by using
trigonometric inequalities, there also holds

∥(Ux)(t2)− (Ux)(t1)∥
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≤∥(Ux)(t2)− (Ux)(T1)∥+ ∥(Ux)(T1)− (Ux)(t1)∥
→0, t2 → t1.

Therefore, based on the above arguments, it can be concluded that the family of
functions {Ux : x ∈ S} is equicontinous.

We next check lim
t→∞

∥(Ux)(t)∥ = 0 uniformly for x ∈ S. In fact, by Lemma 2.2,

we have

∥(Ux)(t)∥ ≤e−λt∥x0∥+
1

Γ(α)

∫ t

0

(t− s)α−1e−λ(t−s)∥f(s, x(s))∥ds

≤e−λt∥x0∥+
L

Γ(α)

∫ t

0

(t− s)α−1e−λ(t−s)s−βds

≤e−λt∥x0∥+
LM

Γ(α)
t−β

→0,

as t → ∞. This indicates that lim
t→∞

∥(Ux)(t)∥ = 0 uniformly for x ∈ S. The proof

is complete.

Lemma 3.2. If (H1) and (H2) hold, then U maps S into S, and U is continuous
on S.

Proof. We check the first argument. For any x ∈ S, by using the similar proof in
Lemma 3.1, we can get that Ux ∈ C0([0,∞);X). Also, for t ≥ T , by (3.1), we have

∥(Ux)(t)∥ ≤e−λt∥x0∥+
1

Γ(α)

∫ t

0

(t− s)α−1e−λ(t−s)∥f(s, x(s))∥ds

≤e−λt∥x0∥+
L

Γ(α)

∫ t

0

(t− s)α−1e−λ(t−s)s−βds

≤e−λt∥x0∥+
LM

Γ(α)
t−β

≤1.

Note that function e−yyγ for γ ∈ (0, 1), y ≥ 0 has a maximum value at y = γ, then

e−λtyyγ ≤ (λt)−γ max
y=γ

e−yyγ =: (λt)−γyγ .

Hence, we have∫ t

0

(t− s)α−1e−λ(t−s)s−βds =tα−β

∫ 1

0

(1− s)α−1e−λt(1−s)s−βds

≤λ−γyγt
α−γ−β

∫ 1

0

(1− s)α−γ−1s−βds.

Let γ = α− β ∈ (0, 1), then γ < α and∫ t

0

(t− s)α−1e−λ(t−s)s−βds ≤λ−γyγΓ(β)Γ(1− β).
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Therefore, since Ux is equicontinuous on C([0, T ];X), for t ∈ [0, T ], it follows that

∥(Ux)(t)∥ ≤e−λt∥x0∥+
L

Γ(α)

∫ t

0

(t− s)α−1e−λ(t−s)s−βds

≤∥x0∥+
L

Γ(α)
λ−γyγΓ(β)Γ(1− β)

≤1.

The proof in Lemma 3.1 indicates that US ⊂ S.
We check the second argument. For any x, xm ∈ S, m = 1, 2, . . ., and xm → x

as m→ ∞. For any ε > 0, there is a large enough T2 > 0, such that

LM

Γ(α)
t−β <

ε

2
, t ≥ T2. (3.3)

Therefore, for t ≥ T2, we have

∥(Uxm)(t)−(Ux)(t)∥ ≤ 1

Γ(α)

∫ t

0

(t− s)α−1e−λ(t−s)∥f(s, xm(s))− f(s, x(s))∥ds

≤ 2

Γ(α)

∫ t

0

(t− s)α−1e−λ(t−s)(∥f(s, xm(s))∥+ ∥f(s, x(s))∥)ds

≤ 2L

Γ(α)

∫ t

0

(t− s)α−1e−λ(t−s)s−βds

≤2LM

Γ(α)
t−β

<ε.

By the arbitrariness of ε, we have ∥(Uxm)(t) − (Ux)(t)∥ → 0 as m → ∞. On the
other hand, for t ∈ [0, T2], by the continuity of f , Lebesgue dominated convergence
theorem shows that

∥(Uxm)(t)− (Ux)(t)∥ ≤ 1

Γ(α)

∫ t

0

(t− s)α−1e−λ(t−s)∥f(s, xm(s))− f(s, x(s))∥ds

→0, m→ ∞.

Therefore, we conclude that the operator U is continuous. This ends the proof.

Combining with the above lemmas, the main conclusions of this paper are pre-
sented.

Theorem 3.1. If (H1) and (H2) hold, then problem (1.1) has an attractive mild
solution.

Proof. By (H2), we know that for any x ∈ S, the set {f(t, x) : x ∈ S} is compact
in X. Together with Lemmas 3.2 and Lemma 3.1, set {Ux : x ∈ S} is relatively
compact in X. Thus, by using Lemma 2.1, we have U ⊂ C0([0,∞);X) is relatively
compact. According to Lemma 2.3, operator U has a fixed point given by

x∗(t) = e−λtS2(t)x0 +
1

Γ(α)

∫ t

0

(t− s)α−1e−λ(t−s)S2(t− s)f(s, x∗(s))ds.
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Obviously, based on the above discussions, we have x∗(t) → 0 as t → ∞. This
indicates that x∗(t) is an attractive mild solution to problem (1.1).

To verify our results, we next give an example below.

Example 3.1. Consider the following fractional diffusion equation on L2[0, π]
Dα,λ

0+ x(t, z)− xzz(t, z) = sin(z)t−β/Γ(1− β), t > 0, z ∈ [0, π],

x(t, 0) = x(t, π) = 0, t ≥ 0,

x(0, z) = 0, z ∈ [0, π],

(3.4)

where 0 < β < α < 1, λ > 0. Let f(t, x)(z) = sin(z)t−β/Γ(1− β), it is obvious that
(H1) holds, it follows that problem (3.4) has a mild solution

x(t, z) =
1

Γ(1− β)

∫ t

0

(t− s)−βS2(s)e
−λssα−1ds sin(z).

Lemma 2.2 shows that

∥x(t, ·)∥L2[0,π] ≤
√
2π

2Γ(α)Γ(1− β)

∫ t

0

(t− s)−βe−λssα−1ds ≤
√
2πM

2Γ(α)Γ(1− β)
t−β → 0,

as t→ ∞, which is global attractive.

Remark 3.1. Note that, the standard diffusion equation
xt(t, z)− xzz(t, z) = sin(z)t−β/Γ(1− β), t > 0, z ∈ [0, π],

x(t, 0) = x(t, π) = 0, t ≥ 0,

x(0, z) = 0, z ∈ [0, π],

has a solution

x(t, z) = sin(z)t1−βE1,2−β(t),

where E1,2−β(t) is the Mittag-Leffler function given by

E1,2−β(t) =

∞∑
k=0

tk

Γ(k + 2− β)
, t ≥ 0.

However x(t) → ∞ as t → ∞. This means that the results of this paper essen-
tially reveals that the relevant characteristics of solutions for the fractional order
differential equations is different from that of the integer order derivatives.

4. Conclusion

In this paper, we focus on the existence of global solution for a class of tempered
fractional diffusion equations, we use the operator theory and fixed point theorem
shows the main results, which reveals that the relevant characteristics of solutions
for the fractional order differential equations is different from that of the integer
order derivatives. The results and the approaches can be applied to establish the
existence of global solutions for the tempered fractional delay or tempered fractional
stochastic problems and so on.
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