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AMBROSETTI-PRODI TYPE RESULTS FOR
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OPERATORS WITH REPULSIVE
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Abstract In this work, we study an Ambrosetti-prodi type results for discrete
Minkowski-mean curvature operators with repulsive singularities

△
( △u(t− 1)√

1− (△u(t− 1))2

)
+ f(u)△u(t) + g(t, u(t)) = s, t ∈ [1, T ]Z,

u(0) = u(T ), △u(0) = △u(T ),

where f : (0,+∞) → R is a continuous T -periodic function, g : [1, T ]Z ×
(0,+∞) → R is a continuous T -periodic function with a repulsive singularity
at the origin, and s ∈ R is a parameter, T ≥ 2 is integer.

Keywords Repulsive singular, Ambrosetti-Prodi type results, degree theory,
Liénard equation, continuation theorem.
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1. Introduction

The problems related to the Minkowski-mean curvature equation have been greatly
developed in differential geometry, relativity theory and in theory of relativity, being
related to maximal and constant mean curvature spacelike hypesurfaces, see [2–4,
9, 14]. These authors considered a class of Minkowski-curvature equations with
Dirichlet, Neumann and periodic boundary value problems are investigated in [2,9,
10,14], [6,20] and [5,8], respectively. In particular, the mean curvature problem with
singularities has also been extensively studied, the types of singularity are divided
into attractive, repulsive and indefinite type, see [15, 17, 28], [8, 15, 25] and [18, 27],
respectively.

In recent years, the multiple results of Ambrosetti-Prodi type have attracted
attention of many researchers, see [3, 11–13, 22, 25, 26] and the references therein.
For the singular case, Fabry, Mawhin and Nkashama [11] considered the Ambrosetti-
Prodi type results of a class of regular Liénard equation of the type

x′′ + f(x)x′ + h(t, x) = s,
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where the nonlinear term h satisfies coercivity conditions

lim
|x|→∞

g(t, x) = +∞, uniformly on t ∈ [0, T ], (1.1)

a similar situation appeared in reference [3,8,13,21]. In [25,26], the authors consid-
ered the Ambrosetti-Prodi type results in the weakened case, that is, the nonlinear
term satisfies the local coercivity conditions:

lim
x→0+

g(t, x) = lim
x→+∞

g(t, x) = +∞, uniformly on t ∈ [0, T ]. (1.2)

Yu et.al [28] established the Ambrosetti-Prodi type results for the second-order
differential Liénard equation with repulsive singularities in the case of degeneracy

x′′ + f(x)x′ + h(t, x) = s.

On the other hand, Bereanu and Thompson [4], Chen, Ma and Liang [7] extended
the Ambrosetti-Prodi type results with singular to the discrete mean curvature
problem. For example, in [4], Bereanu and Thompson established the Ambrosetti-
Prodi type results for discrete Dirichlet problems

△
(
ϕ(△xk)

)
+ fk(xk) = s, k ∈ [2, n− 1]Z,

x1 = xn, △x1 = △xn−1,

where fk : R → R are continuous functions for all k ∈ [2, n− 1]Z, and satisfy

lim
|x|→∞

fk(xk) = +∞, uniformly k ∈ [2, n− 1]Z.

Through a comparative study of continuous and discrete problems, it is con-
cluded that the discretization of problems provides an iterative scheme and theo-
retical guidance for the numerical solution of continuous problems, see [1,19,23,24].

Based on the above research results, we consider the Ambrosetti-Prodi type
results of the discrete mean curvature problem with repulsive singularity

△
( △u(t− 1)√

1− (△u(t− 1))2

)
+ f(u)△u(t) + g(t, u) = s, t ∈ [1, T ]Z,

u(0) = u(T ), △u(0) = △u(T ), (1.3)

where g does not satisfy the coercivity conditions (1.1) or local coercivity conditions
(1.2). It is worth noting that the lack of uniformity lead to the constant lower
functions no longer exist, thus, a new method of constructing strict lower function
is needed to prove the multiplicity results of Ambrosetti-Prodi type.

2. Preliminaries

First, we introduce some notation that are used throughout the paper.
Let Z is the set of integer, a, b ∈ Z and a < b, [a, b]Z = {a, a + 1, · · · , b −

1, b},
b∑

s=a
u(s) = 0 when b < a. △u(t) = u(t + 1) − u(t) is the forward difference

operator. Denote [T2 ] to be the integer part of T
2 .
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Let X = {u : [0, T + 1]Z → R}, E = {u ∈ X : |u(0) = u(T ),△u(0) = △u(T )}
are Banach spaces with the norm ∥u∥∞ = max

t∈[1,T ]Z
{u(t)}. Obviously, E is a closed

subset of the X. For u ∈ X, set

∥△u∥∞ = max
t∈[1,T ]Z

|△u(t)|, ∥△u∥1 =

T∑
t=1

|△u(t)|, ∥△u∥ = (

T∑
t=1

|△u(t)|2) 1
2 .

It is not difficult to verify that the norms ∥ · ∥∞, ∥ · ∥1 and ∥ · ∥ are equivalent.
For u ∈ E, we define

u :=
1

T

T∑
t=1

u(t).

Next, let S is a set containing all possible positive T -periodic solutions of the
(1.3), more precisely, we set

S = {u ∈ E|∥△u∥∞ < 1}.

Definition 2.1. We say that the function g possesses a repulsive singularity at the
origin, if there exists a constant ε0 > 0, and functions w : [1, T ]Z → (0,+∞), q :
[1, T ]Z × (0,+∞) → [0,+∞) is non-increasing with respect to u, and satisfies

lim
t→0+

T∑
t=1

q(t, u(t)) = +∞, lim
t→+∞

T∑
t=1

q(t, u(t)) = 0, (2.1)

such that

g(t, u) ≤ −q(t, u) + w(t), for all t ∈ [1, T ]Z, u ∈ (0, ε0]. (2.2)

Before formulating the main result, we give a list of technical conditions guar-
anteeing the existence of positive T -periodic solution to the problem (1.3).

(H1) Assume that there exists a constant ξ > 0 such that

g(t, u) ≤ g1(t, u)− g2(t, u), for all t ∈ [1, T ]Z, u > ξ, (2.3)

where g1, g2 : [1, T ]Z × (0,+∞) → [0,+∞) are continuous function, non-decreasing
with respect to u, satisfying

lim
u→+∞

ḡ2(u) = +∞, lim
u→+∞

ḡ1(u)

u
= 0. (2.4)

Further, assume that there exists a constant ς > 0, such that

L := lim sup
u→+∞

ḡ1(u)

ḡ2((1− ς)u)
< 1. (2.5)

(H2) Assume that for any R > 0, there exists positive continuous function
w(t;R) such that

g(t, u) ≤ −q(t, u) + w(t;R), for all t ∈ [1, T ]Z, u ∈ (0, R], (2.6)
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and w(t;R1) ≤ w(t;R2), R1 ≤ R2, where q is introduced in Definition 2.1.
Assume that the continuous function f satisfies

T∑
t=1

f(u(t))△u(t) = 0, (2.7)

and let F (u(t)) =
t∑

s=1
f(u(s))△u(s) and satisfies the following conditions.

(H3) Assume that sup{|F (u)| : u ∈ (0, 1]} = +∞.
(H4) Assume that sup{|F (u)| : u ∈ (0, 1]} < +∞, there holds

lim
u→s+

s+[T2 ]∑
τ=u

q(τ, τ − s) + lim
u→s−

s+T∑
τ=s+[T2 ]+1

q(τ, s+ T − τ) = +∞, s ∈ [1, T ]Z, (2.8)

where q is introduced in Definition 2.1.

Definition 2.2. A lower solution α of problem (1.3) is a function α ∈ X such that
∥△α∥∞ < 1, and satisfies

△
( △α(t− 1)√

1− (△α(t− 1))2

)
+ f(α(t))△α(t) + g(t, α) ≥ s, t ∈ [1, T ]Z,

α(0) = α(T ), △α(0) ≥ △α(T ). (2.9)

An upper solution β of problem (1.3) is a function β ∈ X such that ∥△β∥∞ < 1,
and satisfies

△
( △β(t− 1)√

1− (△β(t− 1))2

)
+ f(β(t))△β(t) + g(t, β) ≤ s, t ∈ [1, T ]Z,

β(0) = β(T ), △β(0) ≤ △β(T ). (2.10)

Such a lower and upper solution is called strict if the first inequality of problem
(2.9) and (2.10) are strict for all t ∈ [1, T ]Z.

Theorem 2.1. Assume (H1)-(H2) and (H3) or (H4) hold. Then there exists a
constant s0 ∈ R such that

(i) the problem (1.3) has no positive T -periodic solution if s > s0;

(ii) the problem (1.3) has at least one positive T -periodic solution if s = s0;

(iii) the problem (1.3) has at least two positive T -periodic solutions if s < s0.

In addition, for any R0 > 1, there exists sR0
∈ R such that problem (1.3) has

two positive T -periodic solutions u1(t) and u2(t) satisfying

min{u1(t) : t ∈ [1, T ]Z} > R0, min{u2(t) : t ∈ [1, T ]Z} <
1

R0
, for s < sR0

. (2.11)

3. Existence of solutions

By the same argument of [3], define two operators P,Q : E → E by

Pu(t) := u(0), Qu(t) :=
1

T

T∑
s=1

u(s).
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Define Nemytskii operator Ng associated to g by

(Ngu)(t) := −f(u)△u(t)− g(t, u(t)) + s, for t ∈ [1, T ]Z.

At this point, following [3], one has that u is a T -periodic solution to the problem
(1.3), if and only if u ∈ S is a fixed point of the completely continuous operator
As : E → E defines as

As := Pu+QNgu+ κNgu, u ∈ E,

where κ is the map, associates the unique T -periodic solution u(t) of the problem

△
(
ϕ(△u(t))

)
= v(t)− 1

T

T∑
t=1

v(t), u(0) = 0,

for any v ∈ E.
Let us consider the periodic parameter-dependent problem

△
( △u(t− 1)√

1− (△u(t− 1))2

)
+ λf(u)△u(t) + λg(t, u(t)) = λs, t ∈ [1, T ]Z,

u(0) = u(T ), △u(0) = △u(T ), (3.1)

where λ ∈ [0, 1].
Now, we introduce a continuation theorem of coincidence degree theory.

Lemma 3.1 (Theorem 2.1, [12]). Let Ω is an open bounded set in E such that the
following conditions hold:

(i) for every λ ∈ (0, 1], the equation (3.1) has no solution;

(ii) the equation g(τ) = 1
T

T∑
τ=1

g(t, τ) = s has no solution.

Then deg(I − Ng,S, 0) = −deg(g(τ) − s,S, 0). Moreover, if the Brouwer degree
deg(g(τ)− s,S, 0) ̸= 0, then the problem (1.3) has a solution.

Lemma 3.2 (Lemma 2.4, [16]). Let u ∈ E. Then

M −m ≤ T

2
,

where

M = max{u(t), t ∈ [1, T ]Z}, m = min{u(t), t ∈ [1, T ]Z}.

Proof. For any u ∈ E, there exists t0 ∈ [1, T ]Z and t1 ∈ [t0 + 1, t0 + T + 1]Z such
that

u(t0) = u(t0 + T ) = m, u(t1) = M.

Then the following equality hold

M −m =

t1−1∑
s=t0

△u(s),
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M −m =

t0+T−1∑
s=t1

△u(s).

By using Hölder inequality, we have that

M −m ≤ (t1 − t0)
1
2

( t1−1∑
s=t0

|△u(s)|2
) 1

2

,

M −m ≤ (t0 + T − t1)
1
2

( t0+T−1∑
s=t1

|△u(s)|2
) 1

2

.

Then using the inequality AB ≤ 1
4 (A+B)2, we get that

(M −m)2 ≤ T

4

T∑
t=1

|△u(t)|2.

Thus

M −m ≤ T

2
.

For convenience, define Nλ as a set that contains all pairs (u, s) such that u is
a solution to problem (3.1) corresponding to s. Moreover, N1 expressed as all pairs
(u, s) such that u is a solution to problem (1.3) corresponding to s.

In this part, we consider the sequence {un, sn}+∞
n=1 ⊆ Nλ and denote

Mn := max{un(t), t ∈ [1, T ]Z}, mn := min{un(t), t ∈ [1, T ]Z}.

Lemma 3.3. Assume (H1) holds for any sequence {un, sn}+∞
n=1 ⊆ Nλ satisfying

lim
n→+∞

Mn = +∞, (3.2)

such that

lim
n→+∞

mn

Mn
= 1. (3.3)

Proof. According to Lemma 3.2, we have that

M − T

2
≤ m.

In view of Squeeze Theorem and (3.2), we infer that

lim
n→+∞

mn = +∞.

Therefore, (3.3) is true.

Lemma 3.4. Assume (H1) holds and there exists a constant ρ > 0 such that

u(t; s) < ρ(1 + s), for t ∈ [1, T ]Z, (u, s) ∈ Nλ, s > 0. (3.4)
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Proof. Assume that there exists a consequence {un, sn}+∞
n=1 ⊆ Nλ such that sn ∈

(0,+∞) and Mn > n(1 + sn) for n ∈ N. Then (3.3) is fulfilled. Therefore, there
exists n0 > 0 such that

mn > (1− ς)Mn > ξ, for n > n0, (3.5)

where ς and ξ were introduced in (H1).
Because of un is a positive T -periodic solution to problem (3.1) when s = sn, it

follows that

△
( △un(t− 1)√

1− (△un(t− 1))2

)
+ λf(un(t))△un(t) + λg(t, un(t)) = λsn,

un(0) = un(T ), △un(0) = △un(T ). (3.6)

Summing the equation (3.6) from 1 to T, it yields that

T∑
t=1

△
( △un(t− 1)√

1− (△un(t− 1))2

)
+

T∑
t=1

λf(un(t))△un(t) +

T∑
t=1

λg(t, un(t)) =

T∑
t=1

λsn.

Due to

T∑
t=1

△
( △un(t− 1)√

1− (△un(t− 1))2

)
=

T∑
t=1

( △un(t)√
1− (△un(t))2

− △un(t− 1)√
1− (△un(t− 1))2

)
=

△un(T )√
1− (△un(T ))2

− △un(0)√
1− (△un(0))2

= 0. (3.7)

Therefore, in view of (2.3), (2.7), (3.5), (3.7) and g1, g2 are nondecreasing with
respect to u, it follows that

0 < Tsn

=

T∑
t=1

g(t, un(t))

≤
T∑

t=1

g1(t, un(t))−
T∑

t=1

g2(t, un(t))

≤ T ḡ1(Mn)− T ḡ2(mn)

≤ T ḡ1(Mn)− T ḡ2
(
(1− ς)Mn

)
. (3.8)

Dividing both sides of (3.8) by T ḡ2((1− ς)Mn), it follows that

0 <
ḡ1(Mn)

ḡ2
(
(1− ς)Mn

) − 1, for n > n0.

Passing to the limit as n tends to +∞, on account of (2.4) and (2.5), we arrive at

0 < lim sup
n→+∞

ḡ1(Mn)

ḡ2((1− ς)Mn

) − 1 = L− 1 < 0, (3.9)

this is a contradiction.
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Lemma 3.5. Assume (H1) holds, then there exists γ1 : (0,+∞) → (0,+∞) such
that

u(t; s) ≤ γ1(s), for t ∈ [1, T ]Z, (u, s) ∈ Nλ, s ≤ 0.

Moreover, the function γ satisfies

γ1(s1) ≥ γ1(s2), when s1 ≤ s2 ≤ 0.

Proof. First, we show that for every s0 < 0 there exists γ̂1(s0) such that

u(t; s) ≤ γ̂1(s0), for t ∈ [0, T + 1]Z, (u, s) ∈ Nλ, s ∈ [s0, 0].

We assume that there exists {(un, sn)}+∞
n=1 ⊆ Nλ, such that sn ∈ [s0, 0] and Mn > n.

Obviously, (3.2) and (3.3) are fulfilled. Hence there exists n1 > 0 such that

mn > (1− ς)Mn > ξ, for n > n1. (3.10)

Summing the equation (3.6) from 1 to T, in view of (2.3), (2.8), (3.7) and (3.10), it
follows that

s0 ≤ sn ≤ ḡ1(Mn)− ḡ2((1− ς)Mn).

Dividing both sides of the inequations stated-above by ḡ2((1− ς)Mn), we get that

s0
ḡ2((1− ς)Mn)

≤ ḡ1(Mn)

ḡ2((1− ς)Mn)
− 1, for n > n1.

Passing to the limit as n tends to +∞, on account of (2.4) and (2.5), we arrive at

0 ≤ L− 1 < 0,

this is a contradiction. Choose

γ1(s) := inf{γ̂1(τ) : τ ≤ s}, for s ≤ 0.

Then

u(t; s) ≤ γ1(s), for t ∈ [1, T ]Z, (u, s) ∈ Nλ, s ≤ 0.

Let γ : R → (1,+∞) defined by

γ(s) :=

{
ρ(1 + s) + 1, for s > 0,

γ1(s) + 1, for s ≤ 0.
(3.11)

Hence the following conclusion holds.
According to (H1), for any given c ≥ 0, the following inequation holds

ḡ(γ(s) + c) < s, for s ∈ R. (3.12)

Lemma 3.6. Assume (H1) holds. Then

u(t) ≤ γ(s), for t ∈ [1, T ]Z, (u, s) ∈ Nλ, s ∈ R. (3.13)

Further, the function γ satisfies

γ(|s1|) ≤ γ(|s2|), |s1| ≤ |s2|. (3.14)
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Now, we shall show that the solution of problem (1.3) has the lower bounds.
In view of the assumption of (H2), there exists a positive continuous function

w(t; s) such that

g(t, u) ≤ −q(t, u) + w(t; s), for t ∈ [1, T ]Z, u ∈ (0, γ(s)], s ∈ R. (3.15)

According to (H2), w(t; s) is non-decreasing and satisfies

w(t; s1) ≤ w(t; s2), for t ∈ [1, T ]Z, s1 ≤ s2. (3.16)

For any given s ∈ R, we define

Q(s) := {u > 0 : q̄(u) = |s|+ w̄(s)}, (3.17)

and

F(s) := max{|F (u)| : u ∈ [infQ(s), γ(s)]}+ Tw̄(s) + T |s|.

According to the function q̄ is non-increasing, (3.16) and (3.17), it follows that
infQ(s) is non-increasing with respect to |s|, thus

infQ(|s1|) ≥ infQ(|s2|), provided |s1| ≤ |s2|. (3.18)

Therefore, F(s) satisfies

F(|s1|) ≤ F(|s2|), provided |s1| ≤ |s2|. (3.19)

Next, we discuss the cases where F is bounded or unbounded near the origin,
respectively.

Lemma 3.7. Assume (H1)-(H2) and (H3) hold. Then there exists γ0 : R →
(0,+∞) such that

u(t; s) > γ0(s), for t ∈ [1, T ]Z, (u, s) ∈ Nλ, s ∈ R. (3.20)

Moreover, the function γ0 satisfies

γ0(|s1|) ≥ γ0(|s2|), provided |s1| ≤ |s2|. (3.21)

Proof. From the assume condition (H3), for s ∈ R, there exists γ̂0(s) ∈ (0, 1) such
that

|F (γ̂0(s))| > F(s). (3.22)

We shall show that

u(t; s) ≥ γ̂0(s), for t ∈ [1, T ]Z, (u, s) ∈ Nλ, s ∈ R. (3.23)

We assume that there exists (u0, s0) ∈ Nλ such that min{u0(t) : t ∈ [1, T ]Z} <
γ̂0(s0). Let tM ∈ [1, T ]Z be such that

u0(tM ) = max{u0(t) : t ∈ [1, T ]Z} = M0, (3.24)

then

△u0(tM ) = u0(tM + 1)− u0(tM ) ≤ 0, △u0(tM − 1) = u0(tM )− u0(tM − 1) ≥ 0.
(3.25)
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Due to u0 is a T -periodic solution of problem (3.1) with s = s0, there holds

△
( △u0(t− 1)√

1− (△u0(t− 1))2

)
+ λf(u0(t))△u0(t) + λg(t, u0(t)) = λs0, t ∈ [1, T ]Z.

(3.26)

Summing (3.26) from 1 to T, we have

T∑
t=1

△
( △u0(t− 1)√

1− (△u0(t− 1))2

)
+

T∑
t=1

λf(u0(t))△u0(t) +

T∑
t=1

λg(t, u0(t)) =

T∑
t=1

λs0.

(3.27)

According to (2.7), (3.15), (3.24) and q is non-increasing with respect to u, it follows
that

s0 =
1

T

T∑
t=1

g(t, u0(t))

≤ 1

T

T∑
t=1

(
− q(t, u0(t)) + w(t; s0)

)
= − 1

T

T∑
t=1

q(t, u0(t)) + w̄(t; s0)

≤ −q̄(M0) + w̄(s0),

then

q̄(M0) ≤ w̄(s0) + |s0|.

In view of lim
u→+∞

T∑
t=1

q(t, u(t)) = 0 and (3.17), it follows that

M0 ≥ infQ(s0). (3.28)

According (3.22), there exists γ̂0(s0) ∈ (0,min{1, infQ(s0)}) such that |F (γ̂0(s0))| >
F(s0).

Firstly, in the case of F (γ̂0(s0)) > F(s0), there exists t1 ∈ [tM − T, tM ]Z, such
that

F (u0(t1 − 1)) ≥ F (γ̂0(s0)), △u0(t1 − 1) ≥ 0.

Summing (3.26) from t1 and tM , it follows that

tM∑
t=t1

△(
△u0(t− 1)√

1− (△u0(t− 1))2
) +

tM∑
t=t1

λf(u0(t))△u0(t) +

tM∑
t=t1

λg(t, u0(t)) =

tm∑
t=t1

λs0.

(3.29)

In view of (3.15) and (3.25), the equality (3.29) leads to

0 ≥
tM∑
t=t1

△(
△u0(t− 1)√

1− (△u0(t− 1))2
)
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= λ(−
tM∑
t=t1

f(u0(t))△u0(t)−
tM∑
t=t1

g(t, u0(t)) +

tM∑
t=t1

s0)

= λ(−F (M0) + F (u0(t1 − 1))−
tM∑
t=t1

g(t, u0(t)) + (tM − t1)s0)

≥ λ(−F (M0) + F (γ̂0(s0))−
tM∑
t=t1

g(t, u0(t)) + (tM − t1)s0)

≥ λ(−F (M0) + F (γ̂0(s0))− Tw̄(s0)− T |s0|).

Due to λ > 0, we have

F (γ̂0(s0)) ≤ F (M0) + Tw̄(s0) + T |s0|
≤ max{|F (u)| : u ∈ [infQ(s0), γ(s0))]}+ Tw̄(s0) + T |s0|
= F(s0),

this is a contradiction.
Secondly, in the case of F (γ̂0(s0)) < −F(s0), there exists t2 > tM such that

F (u0(t2)) ≤ F (γ̂0(s0)), △u0(t2) ≤ 0.

Summing (3.26) from tM and t2, it follows that

t2∑
t=tM

△(
△u0(t− 1)√

1− (△u0(t− 1))2
)

+

t2∑
t=tM

λf(u0(t))△u0(t) +

t2∑
t=tM

λg(t, u0(t)) =

t2∑
t=tM

λs0.

According to Lemma 3.6, (3.15) and (3.25), we have that

0 ≥
t2∑

t=tM

△(
△u0(t− 1)√

1− (△u0(t− 1))2
)

= λ(−F (u0(t2)) + F (u0(tM − 1))−
t2∑

t=tM

g(t, u0(t)) + (t2 − tM )s0)

≥ λ(−F (γ̂0(s0)) + F (u0(tM − 1))− Tw̄(s0)− T |s0|),

which implies

F (γ̂0(s0)) ≥ F (u0(tM − 1))− Tw̄(s0)− T |s0|
≥ −max{|F (u)| : u ∈ [infQ(s0), γ(s0))]} − Tw̄(s0)− T |s0|
= −F(s0),

this is a contradiction. Therefore, the conclusion holds by γ0(s) :=
1
2 γ̂0(s).

Based on the above arguments and (3.19), it is not difficult to verify that

γ0(|s1|) ≥ γ0(|s2|), provided |s1| ≤ |s2|

is true.
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Lemma 3.8. Assume (H1)-(H2) and (H4) hold. Then there exists a function γ0 :
R → (0,+∞) such that (3.20) and (3.21) hold.

Proof. First, we show that (3.23) is true. From (2.8), there exists γ̂0(s) > 0 such
that for all u ∈ (0, γ̂0(s)), s ∈ R, there holds

T (w(s) + |s|) <
tm+[T2 ]∑
t=tm

q(t, u+ (t− tm)) +

tm+T∑
t=tm+[T2 ]+1

q(t, u+ (tm + T − t)).

(3.30)

Suppose on the contrary that there exists (u0, s0) ∈ Nλ such that m0 := min{u0(t) :
t ∈ [1, T ]Z} < γ̂0(s0). Obviously, u0 ∈ E and (3.26) holds. Moreover, there exists
tm ∈ [1, T ]Z such that u0(tm) = m0. Summing (3.26) from tm+1 to t, we have that

t∑
τ=tm+1

△
( △u0(τ − 1)√

1− (△u0(τ − 1))2

)
+

t∑
τ=tm+1

λf(u0(τ))△u0(τ) +

t∑
τ=tm+1

λg(τ, u0(τ)) =

t∑
τ=tm+1

λs0.

Because of u0(tm) = m0, it yields that

t∑
τ=tm+1

△
( △u0(τ − 1)√

1− (△u0(τ − 1))2

)
=

△u0(t)√
1− (△u0(t))2

− △u0(tm)√
1− (△u0(tm))2

=
△u0(t)√

1− (△u0(t))2
.

Then

△u0(t)√
1− (△u0(t))2

= λ
(
− F (u0(t)) + F (m0)−

t∑
τ=tm+1

g(τ, u0(τ)) + (t− tm)s0

)
.

(3.31)

In view of (3.13), (3.15) and q is nonnegative, we get that

t∑
τ=tm+1

(g(τ, u0(τ))− w(τ ; s0)) ≤
t∑

τ=tm+1

g(τ, u0(τ)) ≤
t∑

τ=tm+1

w(τ ; s0).

According to g(t, u)− w(t; s) ≤ −q(t, u) ≤ 0, we have that

−T |s0| − Tw̄(s0) ≤
t∑

τ=tm+1

g(τ, u0(τ)) ≤ Tw̄(s0).

Since u ∈ S, it follows that

−1 < △u(t− 1) < 1, for t ∈ [1, T ]Z. (3.32)

Summing (3.32) from t+1 to tm+T and from tm+1 to t respectively, which implies

u0(t) < m0 + tm + T − t, for t ∈ [tm + [
T

2
] + 1, tm + T ]Z,
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u0(t) < m0 + t− tm, for t ∈ [tm, tm + [
T

2
]]Z. (3.33)

Summing (3.26) from 1 to T , in view of (3.15), we have that

Ts0 ≤
T∑

t=1

g(t, u0(t)) ≤ −
T∑

t=1

q(t, u0(t)) + Tw̄(s0). (3.34)

In view of (3.33), (3.34) and q is non-increasing, it follows that

T |s0|+ Tw̄(s0) ≥
T∑

t=1

q(t, u0(t))

=

tm+T∑
t=tm

q(t, u0(t))

≥
tm+[T2 ]∑
t=tm

q(t,m0 + t− tm) +

tm+T∑
t=tm+[T2 ]+1

q(t,m0 + tm + T − t),

this contradicts (3.30).
According to the above Lemma 3.6-3.8, there exist positive functions γ0, γ : R →

(0,+∞) satisfy (3.21) and (3.14), respectively, such that

γ0(s) < u(t) < γ(s), for t ∈ [1, T ]Z, (u, s) ∈ Nλ, s ∈ R,

provided (H1)-(H2), and (H3) or (H4) are fulfilled.

4. Proof of main results

The following Lemmas are introduced before proving the main result, all of which
satisfy the assumptions (H1)-(H2), and (H3) or (H4).

Lemma 4.1. Let α(t) is a strict lower function of the problem (1.3), moreover,
As(·; s) is the completely continuous operator associates with (1.3). Let

Ωs := {u ∈ E : α(t) < u(t) < γ(s) + ∥α∥∞, |△u(t)| < 1, for t ∈ [1, T ]Z},

then deg(I −As(·; s),Ωs, 0) is well-defined, and the following conclusion holds

deg(I −As(·; s),Ωs, 0) = 1. (4.1)

Proof. Assume that α(t) is a strict lower solution of the problem (1.3), then we
get that

△
( △α(t− 1)√

1− (△α(t− 1))2

)
+ f(α(t))△α(t) + g(t, α(t)) > s,

α(0) = α(T ), △α(0) ≥ △α(T ). (4.2)

Let β(t) = γ(s) + ∥α∥∞. Obviously, in view of Lemma 3.6, we have that β(t) is
the strict upper solution to problem (1.3), it follows that u(t) ≤ β(t).
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Let ϖ(u(t)) : R → R(t ∈ [1, T ]Z) be a continuous function defined in the follow-
ing form

ϖ(u(t)) =


γ(s) + ∥α∥∞, β(t) ≤ u(t),

u(t), α(t) < u(t) < β(t),

α(t), u(t) ≤ α(t),

(4.3)

and define F(t,ϖ(u(t))) = f(ϖ(u(t))△ϖ(u(t)) + g(t,ϖ(u(t))− s, t ∈ [1, T ]Z.
Let us consider the auxiliary problem

△ϕ(△u(t− 1)) + F(t,ϖ(u(t)))− [u(t)−ϖ(u(t))] = 0, t ∈ [1, T ]Z,

u(0) = u(T ), △u(0) = △u(T ). (4.4)

Clearly, u(t) is a solution of the auxiliary problem (4.4) and satisfies u(t) ≥
α(t), then u(t) is also a solution to problem (1.3). By the similar arguments of

Section 3, we can define compact operator Ãs(ϖ(u(t))) = Pϖ(u(t))+QNgϖ(u(t))+

κNgϖ(u(t)). Then Ãs : Ωs → Ωs is a completely continuous operator. According

to Schauder fixed-point theorem, we have that Ãs(ϖ(u(t))) = u has at least one
fixed point, that is, the problem (4.4) has at least one solution.

Suppose by contradiction that there exists t ∈ [0, T+1]Z, such that α(t)−u(t) ≥
0, then there exists t∗ ∈ [0, T+1]Z, such that α(t∗)−u(t∗) = max

t∈[0,T+1]Z
(α(t)−u(t)) ≥

0. The following only needs to prove that α(t) < u(t) < γ1(s) + ∥α∥∞.
When t∗ ∈ [1, T ]Z, we infer that

α(t∗ + 1)− α(t∗) ≤ u(t∗ + 1)− u(t∗), α(t∗)− α(t∗ − 1) ≥ u(t∗)− u(t∗ − 1).

That is,

△α(t∗) ≤ △u(t∗), △α(t∗ − 1) ≥ △u(t∗ − 1).

Applying ϕ to both sides of the above inequalities, since ϕ is monotonically increas-
ing, we have that

△ϕ(△α(t∗ − 1)) ≤ △ϕ(△u(t∗ − 1))

= −F(t∗, ϖ(u(t∗))) + [u(t∗)−ϖ(u(t∗))]

≤ −f(α(t∗))△α(t∗)− g(t∗, α(t∗)) + s

< △ϕ(△α(t∗ − 1)),

this is a contradiction.
When t∗ = 0, we get that α(t∗)− u(t∗) = α(0)− u(0) = α(T )− u(T ), therefore,

the results are consistent when t∗ = 0 and t∗ = T.
When t∗ = T + 1, that is

α(t∗)− u(t∗) = α(T + 1)− u(T + 1) = max
t∈[0,T+1]Z

(α(t)− u(t)). (4.5)

By the periodic boundary value conditions of problems (4.2) and (4.4), we obtain
that

u(0) = u(T ), u(1) = u(T + 1),



2740 Y. Li & Y. Lu

α(0) = α(T ), α(1) ≥ α(T + 1).

(i) If α(1) = α(T +1), then α(1)− u(1) = α(T +1)− u(T +1), this means that
when t∗ = T + 1, we have that u(t) > α(t).

(ii) If α(1) > α(T +1), then α(1)−u(1) > α(T +1)−u(T +1), which contradicts
(4.5).

Therefore, u(t) > α(t) holds, moreover, α(t) < u(t) < β(t), which means u(t) is
a solution of problem (1.3).

Set ρ0(s) :=
1
2 min{α(t) : t ∈ [t1, t2]Z} and

Ω̃s := {u ∈ E : ρ0(s) < u(t) < γ(s) + ∥α∥∞, |△u(t)| < 1, t ∈ [1, T ]Z}.

Obviously, Ωs ⊆ Ω̃s. Moreover, according to Lemma 3.6 and 3.7, we have that
deg(I − Ãs(u; s),Ωs, 0) and deg(I − Ãs(u; s), Ω̃s, 0) are well-defined, and

deg(I −As(u; s),Ωs, 0) = deg(I − Ãs(u; s),Ωs, 0) = deg(I − Ãs(u; s), Ω̃s, 0).

On the other hand, from (3.12), (4.2) and (4.3), it follows that

ḡ(ϖ(ρ0(s)))− s > 0 > ḡ(γ(s) + ∥α∥∞)− s = ḡ(ϖ(γ(s) + ∥α∥∞))− s.

In view of Lemma 3.1, we have that

deg(I − Ãs(u; s), Ω̃s, 0) = −deg(ḡ(ϖ)− s, Ω̃s ∩ R, 0) = 1.

Hence, (4.1) is fulfilled.

Lemma 4.2. There exists s∗ > 0 such that the problem (1.3) with s > s∗ has no
positive T -periodic solution.

Proof. Assume on the contrary that there exists {(un, sn)}+∞
n=1 ⊆ N1 and sn > 0

satisfying

lim
n→+∞

sn = +∞. (4.6)

Obviously, un ∈ E and satisfies

△(
△un(t− 1)√

1− (△un(t− 1))2
) + f(un(t))△un(t) + g(t, un(t)) = sn, for t ∈ [1, T ]Z.

(4.7)

On account of (H2), we can find a positive continuous function w(t; ξ) such that

g(t, un(t)) ≤ w(t; ξ), for t ∈ [1, T ]Z, u ∈ (0, ξ]. (4.8)

According to (H1), we have that

g(t, un(t)) ≤ g1(t, un(t))− g2(t, un(t)) ≤ g1(t, un(t)), for t ∈ [1, T ]Z, u > ξ.

Summing (4.7) from 1 to T, in view of (2.7), (3.7), (4.8) and the above inequality,
we infer that

Tsn =

T∑
t=1

g(t, un(t)) ≤
T∑

t=1

g1(t, un(t)) +

T∑
t=1

w(t; ξ), n ∈ N.
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In view of Lemma 3.4 and g1 is nondecreasing, it follows that

sn ≤ ḡ1(ρ(1 + sn)) + w̄(ξ), n ∈ N. (4.9)

Dividing both sides of the inequality (4.9) by sn, we arrive at

1 ≤ ḡ1(ρ(1 + sn))

sn
+

w̄(ξ)

sn

=
ḡ1(ρ(1 + sn))

ρ(1 + sn)
· ρ(1 + sn)

sn
+

w̄(ξ)

sn
.

Passing to the limit as n tends to +∞, on account of (2.4) and (4.6), we arrive at
1 ≤ 0 ·ρ+0 = 0, this is a contradiction. Therefore (4.6) does not hold, which means
sn is bounded.

Lemma 4.3. Let ϵ > 0 is a constant, denote

G(ϵ) := min{g(t, ϵ) : t ∈ [1, T ]Z}. (4.10)

Then the problem (1.3) has at least one positive T -periodic solution u(t) with s <
G(ϵ), that satisfies

u(t) > ϵ, for t ∈ [1, T ]Z.

Proof. Let s ∈ R such that s < G(ϵ) and α(t) = ϵ, for t ∈ [1, T ]Z, then △α(t) = 0

and △( △α(t−1)√
1−(△α(t−1))2

) = 0. Therefore

△(
△α(t− 1)√

1− (△α(t− 1))2
) + f(α(t))△α(t) + g(t, α(t))

=g(t, ϵ) ≥ G(ϵ) > s, for t ∈ [1, T ]Z.

This implies α ≡ ϵ is a strict lower solution of the problem (1.3). Set

Ωs(ϵ) := {u ∈ E : ϵ < u(t) < γ(s) + ϵ, |△u(t)| < 1, t ∈ [1, T ]Z}. (4.11)

According to Lemma 4.1 and deg(I−As(u; s),Ωs(ϵ), 0) = 1, the conclusion follows.

According to Lemma 4.2 and 4.3, the problem (1.3) has no or at least one positive
T -periodic solution with s > s∗ or s < G(ϵ), respectively. The following proves the
existence of critical point s∗.

Lemma 4.4. There exists s∗ ∈ R such that the problem (1.3) with s > s∗ or s < s∗
has no or at least one positive T -periodic solution, respectively.

Proof. Let s∗ ∈ R such that us∗(t) is a T -periodic solution of the problem (1.3).
Then for any given s < s∗, we have that

△(
△us∗(t− 1)√

1− (△us∗(t− 1))2
) + f(us∗(t))△us∗(t) + g(t, us∗(t)) = s∗ > s, for t ∈ [1, T ]Z.

This implies us∗(t) is a strict lower solution to (1.3) with s < s∗. Therefore, it
follows from Lemma 4.1 that the conclusion holds.
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Lemma 4.5. The problem (1.3) with s = s∗ has at least one positive T -periodic
solution.

Proof. According to Lemma 4.4, define a set of S by

S :={s0 ∈ R,problem (1.3) has at least one positive T-periodic solution for every

s < s0}. (4.12)

Obviously, by Lemma 4.3, there exists s∗ = G(ϵ) ∈ S, thus S is nonempty. On the
other hand, according to Lemma 4.2, there exists a constant s∗ ≥ s∗ such that the
problem (1.3) has no positive T -periodic solution with s > s∗. Then the set S is
bounded. Set

s∗ := supS. (4.13)

Let a sequence {un, sn}+∞
n=1 be such that

sn < s∗, lim
n→+∞

sn = s∗. (4.14)

On account of (4.12)-(4.14), there exists a sequence un(t) = usn(t) is the positive
T -periodic solution to (1.3). According to Lemma 3.6-3.8, there exist constants K1

and K2, such that

K1 ≤ un(t) ≤ K2, for t ∈ [1, T ]Z, n ∈ N,

which combining ∥△u(t)∥ < 1, it’s easy to see that the sequence {un, sn}+∞
n=1 is

uniformly bounded and equicontinuous, thus, according to Arzela-Ascoli theorem,
we can assume that there exists u0(t) ∈ E such that

lim
n→∞

un(t) = u0(t), uniformly on t ∈ [1, T ]Z. (4.15)

Because of the solution un(t) satisfies

un(t) = Asn(un; sn), for n ∈ N.

Passing to the limit as n tends to +∞, on account of (4.14) and (4.15), we arrive
at

u0(t) = As∗(u0; s∗),

thus, u0(t) ∈ Ωs and it’s a positive T -periodic solution of problem (1.3) with s = s∗.

Lemma 4.6. The problem (1.3) with s < s∗ has at least two positive T -periodic
solutions.

Proof. Let s < s∗ is arbitrary. Set

Ω :={u ∈ E : min{γ0(s), γ0(s∗ + 1)} < u(t) < max{γ(s), γ(s∗ + 1)}, |△u(t)| < 1,

for t ∈ [1, T ]Z},

in view of Lemma 3.6-3.8, deg(I −As(u; s),Ω, 0) is well-defined with s ∈ [s, s∗ +1].
On account of Lemma 4.2 and 4.4, the problem (1.3) has no positive T -periodic
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solution in Ω for s = s∗+1. Combining with the homotopy invariance of topological
degree, we get that

deg(I −As(u; s̄),Ω, 0) = deg(I −As(u; s∗ + 1),Ω, 0) = 0.

Let ε ∈ (0, s∗ − s̄), from Lemma 4.4, the problem (1.3) has at least one positive
T -periodic solution us(t) with s = s∗ − ε. Further, us(t) is a strict lower solution of
the problem (1.3) with s = s. Set

Ω1 := {u ∈ E : us(t) < u(t) < max{γ(s̄), γ(s∗ + 1)}, |△u(t)| < 1, for t ∈ [1, T ]Z}.

Obviously, Ω1 ⊆ Ω, and in view of Lemma 4.1, we have that deg(I−As(u; s̄),Ω1, 0) =
1. Set Ω2 := Ω\Ω̄1. According to the additivity property of topological degree yields

deg(I −As(u; s̄),Ω2, 0) = deg(I −As(u; s̄),Ω \ Ω1, 0)

= deg(I −As(u; s̄),Ω, 0)− deg(I −As(u; s̄),Ω1, 0)

= 0− 1

= −1.

Consequently, there exists another positive T -periodic solution to problem (1.3)
with s = s in Ω2. Since s̄ is arbitrary, the conclusion follows.

Lemma 4.7. There exists sR0
∈ R such that the problem (1.3) for any R0 > 1 has

at least two positive T -periodic solutions u1(t) and u2(t) satisfying (2.11).

Proof. Let ϵ > 0. Ωs(ϵ) is defined by (4.11). Set

Ω̂s := {u ∈ E : min{γ0(s),
1

2
ϵ} < u(t) < γ(s) + ϵ, |△u(t)| < 1, for t ∈ [1, T ]Z}.

Then, in view of Lemma 4.3 and 4.5, the problem (1.3) has at least two positive

T -periodic solutions u1(t) ∈ Ωs(ϵ) and u2(t) ∈ Ω̂s/Ω̄s(ϵ), this implies

min{u1(t) : t ∈ [1, T ]Z} > ϵ, min{u2(t) : t ∈ [1, T ]Z} < ϵ.

Thereby, since ϵ is arbitrariness, the conclusion hold by setting

sR0
= min{G(R0), G(

1

R0
)}.

From the above discussion process, Lemma 4.4-4.7 can prove that Theorem 2.1
is true.

Here is an examples to illustrate our conclusion:

Example 4.1. Let us consider the Ambrosetti-Prodi type results of the following
periodic boundary value problem

△(
△u(t− 1)√

1− (△u(t− 1))2
) +

1

2
u(t)△u(t)− u(t)− 4 = s, t ∈ [1, 8]Z,

u(0) = u(8), △u(0) = △u(8),

where f(u(t)) = 1
2u(t) g(t, u(t)) = −u(t)− 4.
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Let g1(t, u(t)) =
√
u(t), g2(t, u(t)) = u(t), q(t, u(t)) = 1

10u2(t) , w(t;R) =

| sin π
2 t|+ 1.

Fix ε0 = 1
4 , it is easy to verify that lim

u→0+

T∑
t=1

1
10u(t) = ∞, lim

u→+∞

T∑
t=1

1
10u(t) = 0,

and −u(t) − 4 ≤ − 1
10u(t) + | sin π

2 t| + 1, for u ∈ (0, 1
4 ]. Which means the function

g(t, u(t)) has a repulsive singularity at the origin. Obviously, for ξ = 1
4 , we have that

−u(t) − 2 ≤
√

u(t) − u(t), for u ≥ 1
4 , lim

u→+∞

8∑
t=1

u(t) = +∞, lim
u→+∞

8∑
t=1

√
u(t)

u(t) = 0,

and L = lim sup
u→+∞

8∑
t=1

√
u(t)

8∑
t=1

(1− 1
10 )u(t)

< 1, for ς = 1
10 , hence (H1) holds. When w(t;R) = 2,

it follows that −u(t)− 4 ≤ − 1
10u(t) +1+2, for u ∈ (0, 1

4 ]. it means that (H2) holds.

At the same time, we get that
8∑

t=1

1
2u(t)△u(t) = 0 holds. According to Theorem 2.1,

there exists a constant s0 ∈ R, such that the above problem has no positive solution,
at least one positive solution or at least two positive solutions with s > s0, s = s0,
or s < s0, respectively.
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