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A NEW PARAMETERIZED MATRIX
SPLITTING PRECONDITIONER FOR THE

SADDLE POINT PROBLEMS∗

Li-Tao Zhang1,† and Guang-Xu Zhu2

Abstract Recently, Zheng and Lu [International Journal of Computer Math-
ematics, 96(1): 1-17, DOI: 10.1080/00207160.2017.1420179] constructed a pa-
rameterized matrix splitting (PMS) preconditioner for the large sparse saddle
point problems, and gave the corresponding theoretical analysis and numeri-
cal experiments. In this paper, based on the parameterized matrix splitting,
we generalize the PMS algorithms and further present the new parameterized
matrix splitting (NPMS) preconditioner for the saddle point problems. More-
over, by similar theoretical analysis, we analyze the convergence conditions
of the corresponding matrix splitting iteration methods and preconditioning
properties of the NPMS preconditioned saddle point matrices. Finally, one
example is provided to confirm the effectiveness.
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1. Note to practitioners

This paper was motivated by different applications of scientific computing, such as
constrained optimization, the finite element method for solving the Navier-Stokes
equation, and constrained least squares problems and generalized least squares prob-
lems. In recent years, there has been a surge of interest in the saddle point problem
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of the form (2.1), and a large number of stationary iterative methods have been pro-
posed. In this paper, we will generalize the existing algorithms and further present
the new parameterized matrix splitting preconditioner for the saddle point prob-
lems. Moreover, by similar theoretical analysis, we will analyze the convergence
conditions of the corresponding matrix splitting iterative methods and precondi-
tioning properties of the new preconditioned saddle point matrices. Finally, one
example is provided to confirm the effectiveness.

2. Introduction

Consider the following 2× 2 block saddle point problems

A

x

y

 ≡

 A B

−BT 0

x

y

 =

 f

−g

 = b, (2.1)

where A ∈ Rm,m is a symmetric positive definite matrix, B ∈ Rm,n,m ≥ n, is
a matrix of full column rank, BT ∈ Rn,m is the conjugate transpose of B, and
f ∈ Cm, g ∈ Cn are two given vectors. It appear in many different applications
of scientific computing, such as constrained optimization [55], the finite element
method for solving the Navier-Stokes equation [1, 27, 28, 30], and constrained least
squares problems and generalized least squares problems [2,31,35,44,45] and so on;
see [9-17, 20,21,30,38,41-45,49-54] and references therein.

In recent years, there has been a surge of interest in the saddle point problem
of the form (2.1), and a large number of stationary iterative methods have been
proposed. For example, Santos et al. [35] studied preconditioned iterative methods
for solving the singular augmented system with A = I. Golub et al. [32] presented
SOR-like algorithms for solving linear systems (2.1). Darvishi et al. [26] studied
SSOR method for solving the augmented systems. Bai et al. [16,17,25,55] presented
GSOR method, parameterized Uzawa (PU) and the inexact parameterized Uzawa
(PIU) methods for solving linear systems (2.1). Zhang and Lu [46] showed the
generalized symmetric SOR method for augmented systems. Peng and Li [34] stud-
ied the unsymmetric block overrelaxation-type methods for saddle point. Bai and
Golub [3,7–9,18,33,38] presented splitting iteration methods such as Hermitian and
skew-Hermitian splitting (HSS) iteration scheme and its preconditioned variants,
Krylov subspace methods such as preconditioned conjugate gradient (PCG), pre-
conditioned MINRES (PMINRES) and restrictively preconditioned conjugate gra-
dient (RPCG) iteration schemes, and preconditioning techniques related to Krylov
subspace methods such as HSS, block-diagonal, block-triangular and constraint pre-
conditioners and so on.

Recently, based on a parameterized matrix splitting, Zheng and Lu [56] con-
structed a parameterized matrix splitting (PMS) preconditioner for the large sparse
saddle point problems, and gave the corresponding theoretical analysis and numer-
ical experiments.

For large, sparse or structure matrices, iterative methods are an attractive op-
tion. In particular, Krylov subspace methods apply techniques that involve orthog-
onal projections onto subspaces of the form

K(A, b) ≡ span
{
b,Ab,A2b, ...,An−1b, ...}.
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The conjugate gradient method (CG), minimum residual method (MINRES)
and generalized minimal residual method (GMRES) are common Krylov subspace
methods. The CG method is used for symmetric, positive definite matrices, MIN-
RES for symmetric and possibly indefinite matrices and GMRES for unsymmetric
matrices [37].

In this paper, based on the parameterized matrix splitting by Zheng and Lu [56],
we generalize the PMS algorithms and further present the new parameterized ma-
trix splitting (NPMS) preconditioner for the saddle point problems. Moreover, by
similar theoretical analysis, we analyze the convergence conditions of the corre-
sponding matrix splitting iteration methods and preconditioning properties of the
NPMS preconditioned saddle point matrices. Finally, one example is provided to
confirm the effectiveness.

3. New parameterized matrix splitting (NPMS)
preconditioner

Recently, for the coefficient matrix of the augmented system (2.1), Zheng and Lu [56]
made the following splitting

A =

βQ1 + αA αB

−αBT βQ2

−

βQ1 − βA −βB

βBT βQ2


= (βΩ+ αA)− (βΩ− βA)

= PPMS −RPMS ,

(3.1)

where Ω =

Q1 0

0 Q2

 , α, β > 0, α + β = 1. Here, Q1 ∈ Rm,m, Q2 ∈ Rn,n are

two symmetric positive definite matrices. Based on the iteration methods studied
in [56], we establish the new parameterized matrix splitting (NPMS) of the saddle
point matrix A, which is as follows:

A =

βQ1 + αA αB

−αBT βQ2

−

βQ1 − (1− α)A −(1− α)B

(1− α)BT βQ2


= (βΩ+ αA)− (βΩ− (1− α)A)

= PNPMS −RNPMS ,

(3.2)

where Ω =

Q1 0

0 Q2

 , α, β > 0. Here, Q1 ∈ Rm,m, Q2 ∈ Rn,n are two symmetric

positive definite matrices.

Remark 3.1. Since α, β > 0 and Q1, Q2 are two symmetric positive definite ma-
trices, we can see that PNPMS is a nonsingular matri x. Moreover, α, β are two
unrestricted parameters in the new parameterized matrix splitting (NPMS).
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By this special splitting, the new parameterized matrix splitting (NPMS) method
can be defined for solving the saddle point problem (2.1):

New parameterized matrix splitting (NPMS) method: Let Q1 and Q2

be two symmetric positive definite matrices. Give initial vectors x0 ∈ Rm, y0 ∈ Rn,
and two relaxation factors α, β which satisfy α, β > 0. For k = 0, 1, 2, ... until the
iteration sequence {[(xk)T , (yk)T ]T } converges to the exact solution of the saddle
point problem(2.1), computeβQ1 + αA αB

−αBT βQ2

xk+1

yk+1

 =

βQ1 − (1− α)A −(1− α)B

(1− α)BT βQ2

xk

yk

+

 f

−g

 .

(3.3)
It is easy to see that the iteration matrix of the NPMS iteration is

Γ =

βQ1 + αA αB

−αBT βQ2

−1 βQ1 − (1− α)A −(1− α)B

(1− α)BT βQ2

 . (3.4)

If we use a Krylov subspace method such as GMRES (Generalized Minimal
Residual) method or its restarted variant to approximate the solution of this system
of linear equations, then

PNPMS =

βQ1 + αA αB

−αBT βQ2

 , (3.5)

can be served as a preconditioner. We call the preconditioner PNPMS the NPMS
preconditioner for the generalized saddle point matrix A.

In every iteration of the NPMS iteration (3.3) or the preconditioned Krylov
subspace method, we need solve a residual equationβQ1 + αA αB

−αBT βQ2

 z = r (3.6)

needs to be solved for a given vector r at each step. Here, we may refer to Algo-
rithm 2.1 in [56] about the corresponding algorithmic version of the NPMS iteration
method.

Remark 3.2. On the new parameterized matrix splitting (NPMS) method method,
when α = 1

2 , Q1 = Q2 = γI(γ > 0), α + β = 1, the NPMS method reduces to the
shift-splitting (SS) method [21]; When α = 1

2 , Q1γI,Q2 = ξI(γ, ξ > 0), α + β =
1, the NPMS method reduces to the generalized shift-splitting (GS) method [24];
When α = β = 1

2 , the NPMS method reduces to the extended shift-splitting (ESS)
method [57]; When α + β = 1, the NPMS method reduces to the parameterized
matrix splitting (PMS) method [56]. So, the NPMS method is the generalization
of existing iterative algorithm.

4. Covergence of NPMS method

Now, we turn to study the convergence of the NPMS iteration for solving saddle
point problems (2.1). It is well known that the iteration method (3.3) is convergent
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for every initial guess if and only if ρ(Γ) < 1, where ρ(Γ) denotes the spectral radius
of Γ. In [56], based PMS method, Zheng and Lu established the spectral properties
of the iteration matrix and the preconditioned matrix P−1

PMSA. In this section,
by similar theoretical analysis, we will analyze the convergence conditions of the
corresponding matrix splitting iteration methods and preconditioning properties of
the NPMS preconditioned saddle point matrices.

Lemma 4.1. Let A ∈ Rm,m be symmetric positive definite, and B ∈ Rm,n be of full
column rank, with m ≥ n. Q1 and Q2 are two symmetric positive definite matrices.
If λ is an eigenvalue of the iteration matrix Γ of the NPMS iteration method, then
λ ̸= 1 and λ ̸= 1− 1

α .

Proof. Let λ be a nonzero eigenvalue of the iteration matrix and [u∗, v∗]∗ be the
corresponding eigenvector. Then we haveβQ1 − (1− α)A −(1− α)B

(1− α)BT βQ2

u

v

 = λ

βQ1 + αA αB

−αBT βQ2

u

v

 , (4.1)

or equivalently

(1− α+ αλ)Au+ (βλ− β)Q1u+ (1− α+ αλ)Bv = 0, (4.2)

and

(1− α+ αλ)BTu+ (β − βλ)Q2v = 0. (4.3)

If λ = 1, then from (4.2) and (4.3) we can obtainAu+Bv = 0,

BTu = 0.
(4.4)

By assumptions, we know that the coefficient matrix of (4.4) is nonsingular. Hence
u = 0 and v = 0, which contradicts with the assumption that [u∗, v∗]∗ is an eigen-
vector. So λ ̸= 1.

If λ = 1− 1
α , then from (4.2) and (4.3) we have

−β

α
Q1u = 0 and

β

α
Q2v = 0.

Hence, we have u = v = 0 because Q1 and Q2 are symmetric positive definite
matrices. This also contradicts that [u∗, v∗]∗ is an eigenvector of Γ. So λ ̸= 1− 1

α .

Lemma 4.2. [56] Let A ∈ Rm,m be symmetric positive definite, and B ∈ Rm,n be
of full column rank, with m ≥ n. Q1 and Q2 are two symmetric positive definite
matrices. Assume λ is an eigenvalue of the iteration matrix Γ of the NPMS method
and z = [u∗, v∗]∗ ∈ Cm+n, with u ∈ Cm and v ∈ Cn being two complex vectors, is
the corresponding eigenvector. Then u ̸= o. Moreover, if v = 0, then u ∈ null(BT ).

Lemma 4.3. Let A ∈ Rm,m be symmetric positive definite, and B ∈ Rm,n be of
full column rank, with m ≥ n. Q1 and Q2 are two symmetric positive definite
matrices. Assume λ is an eigenvalue of the iteration matrix Γ of the NPMS method
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and z = [u∗, v∗]∗ ∈ Cm+n, with u ∈ Cm and v ∈ Cn being two complex vectors, is
the corresponding eigenvector. Denote

a =
u∗Au

u∗u
, b =

u∗Q1u

u∗u
and c =

u∗BQ−1
2 BTu

u∗u
, (4.5)

where a, b, c are real numbers. Then λ satisfies the following quadratic equation:

λ2−
[
1− aβ(1− α)− bβ2 − c(1− α)2 + c

aαβ + bβ2 + cα2

]
λ+

bβ2 + c(1− α)2 − aβ(1− α)

aαβ + bβ2 + cα2
. (4.6)

Proof. From Lemma 4.1 we can obtain that λ ̸= 1. Solving v from (4.3) and
substituting v = 1−λ+αλ

βλ−β Q−1
2 BTu into (4.2), we have

(1− α+ αλ)Au+ (βλ− β)Q1u+
(1− α+ αλ)2

βλ− β
BQ−1

2 BTu = 0. (4.7)

From Lemma 4.2, we also know that u ̸= 0. Multiplying (βλ− β) u∗

u∗u on both sides
of (4.7) and using the notation (4.5), we obtain the following complex quadratic
equation of λ

(βλ−β)(1−α+αλ)
u∗Au

u∗u
+(βλ−β)2

u∗Q1u

u∗u
+(1−α+αλ)2

u∗BQ−1
2 BTu

u∗u
= 0, (4.8)

which can be rewritten as

a(βλ− β)(1− α+ αλ) + b(βλ− β)2 + c(1− α+ αλ)2 = 0 (4.9)

⇐⇒λ2 −
[
1− aβ(1− α)− bβ2 − c(1− α)2 + c

aαβ + bβ2 + cα2

]
λ+

bβ2 + c(1− α)2 − aβ(1− α)

aαβ + bβ2 + cα2
.

(4.10)

The above two lemmas characterize the property of the eigenvalues and the
eigenvectors of the iteration matrix T of the NPMS method. Moreover, from Lemma
4.3, we can get the following result.

Corollary 4.1. From Equation (4.6) in Lemma 4.3, we can give the specific ex-
pression of the eigenvalue λ for the iteration matrix Γ of the NPMS method when
the conditions of Lemma 4.3 are satisfied. That is

λ =
bβ2 + c(1− α)2 − aβ(1− α)− c±

√
a2β(1− α)− 4bcβ(1− α)

aαβ + bβ2 + cα2
. (4.11)

Lemma 4.4. [36,58] Both roots of the real quadratic equation x2 − px+ q = 0 are
less than 1 in modulus if and only if |q| < 1 and |p| < 1 + q.

With Lemmas 4.3 and 4.4, we can get the following important theorem which
shows the convergence of the NPMS iteration method.

Theorem 4.1. Assume A ∈ Rm,m be symmetric positive definite, and B ∈ Rm,n

be of full column rank, with m ≥ n. Q1 and Q2 are two symmetric positive definite
matrices. Then the NPMS method is convergent if the following conditions are
satisfied:

λmin(Q1) ≥
1− α

β
λmax(A), α ≥ 1

2
, α+ β ≥ 1. (4.12)

Here, λmax(A) and λmin(Q1) are the largest and the smallest eigenvalues of A and
Q1, respectively.
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Proof. Assume λ is an eigenvalue of the iteration matrix Γ of the NPMS method
and z = [u∗, v∗]∗ ∈ Cm+n, with u ∈ Cm and v ∈ Cn being two complex vectors, is
the corresponding eigenvector. Then from Lemma 4.3, we know that λ satisfies the
real quadratic equation (4.6).

By making use of Lemma 4.4, both roots λ of the real quadratic equation (4.4)
satisfy |λ| < 1 if and only if∣∣∣∣bβ2 + c(1− α)2 − aβ(1− α)

aαβ + bβ2 + cα2

∣∣∣∣ < 1 (4.13)

and∣∣∣∣1− aβ(1− α)− bβ2 − c(1− α)2 + c

aαβ + bβ2 + cα2

∣∣∣∣ < 1 +
bβ2 + c(1− α)2 − aβ(1− α)

aαβ + bβ2 + cα2
. (4.14)

When α > 0, β > 0, c > 0, inequalities (4.13) and (4.14) hold true if and only if the
following conditions are satisfied:

aβ + (2α− 1)c > 0,

a(2α− 1)β + 2bβ2 + c[(1− α)2 + α2] > 0,

a(2α− 1)β + 4bβ2 + c(2α− 1)2 > 0.

(4.15)

If α ≥ 1
2 , then we can obtain that Equation (4.15) holds true. So we have |λ| < 1.

For the case α > 0, β > 0, c = 0, from the result of Corollary 4.1, we can obtain

λ1 =
bβ2 − aβ(1− α) + a

√
β(1− α)

aαβ + bβ2
, λ1 =

bβ2 − aβ(1− α)− a
√
β(1− α)

aαβ + bβ2
.

(4.16)
First, |λ1| < 1 if and only if∣∣∣∣∣bβ2 − aβ(1− α) + a

√
β(1− α)

aαβ + bβ2

∣∣∣∣∣ < 1 (4.17)

⇐⇒− aαβ − bβ2 < bβ2 − aβ(1− α) + a
√
β(1− α) < aαβ + bβ2. (4.18)

So, the following conditions are satisfied−aαβ − bβ2 < bβ2 − aβ(1− α) ⇒ a(1− 2α) < 2bβ,

−aβ(1− α) + a
√
β(1− α) ≤ aαβ ⇒ α+ β ≥ 1.

(4.19)

Since α ≥ 1
2 , then we have 1 − 2α ≤ 0, so the first equation of formula (4.19) is

valid.
Next, |λ2| < 1 if and only if∣∣∣∣∣bβ2 − aβ(1− α)− a

√
β(1− α)

aαβ + bβ2

∣∣∣∣∣ < 1 (4.20)

⇐⇒− aαβ − bβ2 < bβ2 − aβ(1− α)− a
√
β(1− α) < aαβ + bβ2. (4.21)
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So, the following conditions are satisfied

−aαβ − bβ2 < bβ2 − aβ(1− α)− a
√
β(1− α)

⇒ aβ(1− 2α) < 2bβ2 − a
√
β(1− α),

bβ2 − aβ(1− α)− a
√
β(1− α) < aαβ + bβ2

⇒ −a
√
β(1− α) < aαβ.

(4.22)

Obviously, the second equation of formula (4.22) is valid. On the first equation
of formula (4.22), since α + β ≥ 1, then we have −a

√
β(1− α) ≥ −aβ. So, the

following conditions are satisfied

aβ(1− 2α) ≤ 2bβ2 − aβ. (4.23)

This implies

a(1− α) ≤ bβ ⇒ b ≥ 1− α

β
a. (4.24)

If λmin(Q1) ≥ 1−α
β λmax(A), then b ≥ bmin ≥ 1−α

β amax ≥ 1−α
β a. Hence, the first

equation of formula (4.22) holds true. So |λ| < 1.

Remark 4.1. On the one hand, the NPMS method is the generalization of the
PMS method. On the other hand, when the appropriate parameters are selected,
the NPMS method will have better convergence than the PMS method.

5. Numerical examples

In this section, we give numerical experiments to demonstrate the conclusions drawn
above. The numerical experiments were done by using MATLAB 7.1 and the matrix
of the numerical experiments were generated based on a two-dimensional time-
harmonic Maxwell equations in mixed form, respectively. In all our runs we used
as a zero initial guess and stopped the iteration when the relative residual had been
reduced by at least six orders of magnitude (i.e, when ∥b−Axk∥2 ≤ 10−6∥b∥2).

Example 5.1. In this section, to further assess the effectiveness of the iterative
matrix P−1

NPMSRNPMS , we present a sample of numerical examples which are based
on a two-dimensional time-harmonic Maxwell equations in mixed form in a square
domain (−1 ≤ x ≤ 1,−1 ≤ y ≤ 1). For the simplicity, we take the generic source:
f = 1 and a finite element subdivision such as Figure 1 based on uniform grids of

triangle elements. Three mesh sizes are considered: h =
√
2
8 ,

√
2

12 ,
√
2

18 . The solutions
of the preconditioned systems in each iteration are computed exactly. Information
on the sparsity of relevant matrices on the different meshes is given in Table 1,
where nz(A) denote the nonzero elements of matrix A.

Since the new preconditioners have two parameters, in numerical experiments we
will test different values. Numerical experiments show the spectrum of the iterative
matrix P−1

NPMSRNPMS when choosing different parameters, which coincides with
theoretical analysis.

In Figures 2, 3 and 4 we display the eigenvalues of the iteration matrix P−1
NPMS

RNPMS in the case of h =
√
2
8 , h =

√
2

12 and h =
√
2

18 for different parameters.
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Figure 1. A uniform mesh with h =
√

2
4 .

In Table 2, we show the Spectral radius of iterative matrix P−1
NPMSRNPMS when

choosing different parameters.

Remark 5.1. Figures 2 ∼ 4 show that the distribution of eigenvalues of the itera-
tion matrix confirm our above theoretical analysis.

Table 1. Datasheet for different grids.

Grid m n nz(A) nz(B) nz(W ) order of A
8× 8 176 49 820 462 217 225

16× 16 736 225 3556 2190 1065 961

32× 32 3008 961 14788 9486 4681 3969

64× 64 12160 3969 60292 39438 19593 16129
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Figure 2. The eigenvalue distribution for the NPMS iteration matrix Γ = P−1
NPMSRNPMS when

α = 0.8, β = 0.5(the first), α = 0.9, β = 0.3(the second),α = 0.95, β = 0.1(the third) and α = 0.98, β =

0.03(the fourth), respectively. Here, h =
√

2
8 .

6. Conclusion

In this study, we introduced a new parameterized matrix splitting (NPMS) precon-
ditioner for addressing large sparse saddle point problems. This method generalizes
existing parameterized matrix splitting (PMS) approaches by incorporating addi-
tional flexibility through unrestricted parameters, which enhance the convergence
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Figure 3. The eigenvalue distribution for the NPMS iteration matrix Γ = P−1
NPMSRNPMS when
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Figure 4. The eigenvalue distribution for the NPMS iteration matrix Γ = P−1
NPMSRNPMS when α =

0.8, β = 0.5(the first), α = 0.9, β = 0.3(the second), α = 0.95, β = 0.1(the third) and α = 0.98, β = 0.03

(the fourth), respectively. Here, h =
√

2
18 .

Table 2. Spectral radius of iterative matrix P−1
NPMSRNPMS when choosing different parameters. Here,

h =
√

2
8 , h =

√
2

12 , h =
√

2
18 denote the size of the corresponding grid, respectively. ρ denotes spectral

radius of iterative matrix P−1
NPMSRNPMS .

α β ρ(h =
√
2
8 ) ρ(h =

√
2

12 ) ρ(h =
√
2

18 )

0.8 0.5 0.9832 0.9961 0.9990

0.9 0.3 0.9449 0.9875 0.9971

0.95 0.1 0.6786 0.8992 0.9764

0.98 0.03 0.2608 0.5176 0.8039

properties of the iterative methods. Through rigorous theoretical analysis, we es-
tablished the convergence conditions and eigenvalue distribution for the NPMS
method, demonstrating its superiority over traditional PMS techniques under spe-
cific parameter settings. Numerical experiments validated the theoretical findings,
showing that the NPMS preconditioner achieves a significant reduction in spectral
radius compared to other preconditioners, leading to faster convergence in solving
saddle point problems. The results highlight the NPMS method’s potential for
applications in constrained optimization, finite element methods, and other compu-
tational problems involving saddle point structures.
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