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Abstract This paper is concerned with a class of nonlinear fractional differ-
ential equations with two-term κ-Caputo fractional derivatives. The existence
and uniqueness results are obtained for boundary value problems by using the
Banach fixed point theorem and Leray-Schauder nonlinear alternative. The
Hyers-Ulam stability is also considered. Some examples are discussed to illus-
trate the obtained results.
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1. Introduction

Fractional differential equations have gained considerable importance due to their
significant applications in various sciences such as physics, mechanics, chemistry,
engineering, etc. (see [4, 8, 13, 22]). Recently, some new definitions of fractional
integrals and fractional derivatives have been employed in the investigation of
fractional differential equations. For example, Samko et al. [15], Almeida [1, 2]
developed general definitions and studied some of their properties. Some out-
standing theoretical achievements have been gained in studying the existence and
uniqueness of fractional differential equations by applying the fixed point theorem
(see [5, 11,12,14,24,26]).

In the paper [2], Almeida constructed a new fractional derivative, the κ-Caputo
fractional derivative (see Definition 2.3 below), unifying some classical fractional
derivative concepts. Based on Leray-Schauder fixed point theorem, Almeida inves-
tigated the existence of a solution for fractional differential equations with mixed
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boundary conditions involving the κ-Caputo fractional derivative of the formCDα;κ
a+ µ(t) = f(t, µ(t)),

µ(a) = µa, µ
′(a) = µ1

a, µ(b) = KJα,κ
a+ x(τ),

where t ∈ [a, b],CDα;κ
a+ µ is the κ-Caputo fractional derivative of µ with α ∈ (2, 3)

(it is also called the Caputo-type fractional derivative with respect to the function
κ) and f ∈ C([a, b] × R,R), µa, µ

1
a,K ∈ R, τ ∈ (a, b], x ∈ C2([a, b],R) and Jα,κ

a+ is
the κ-Riemann-Liouville fractional integral.

Ho Vu et al. [24] discussed the uniqueness, existence, and stability results of
boundary value problems of fractional differential equations with κ-Caputo frac-
tional derivative 

CDα;κ
a+ µ(t) = f (t, µ(t), µ′(t)) ,

a1µ(a) + b1µ(T ) = c1,

a2µ
′(a) + b2µ

′(T ) = c2,

where t ∈ [a, T ],CDα;κ
a+ µ is the κ-Caputo fractional derivative of µ with α ∈ (1, 2) ;

f : [a, T ]×R×R → R is continuous, and a1, a2, b1, b2, c1, and c2 are constants such
that (a1 + b1) ̸= 0, |a1|+ |b1| ≠ 0, and |a2|+ |b2| ≠ 0.

The stability theory of mathematical models of dynamic systems is one of the
essential objectives of control theory. At present, the Hyers-Ulam stability theory
of differential equations was widely investigated [16, 17, 19, 20, 23, 25] and received
much attention because it is pretty significant in realistic problems in numerical
analysis, economics, and biology in which the exact solutions are not easy to seek.
Hyers-Ulam-Rassias stability is an advanced version of the Hyers-Ulam stability
theory, which was developed by Rassias. It goes beyond the linear assumptions of
the Hyers-Ulam stability theory and accommodates nonlinear perturbations. This
new theory also examines the stability of functional or differential equations with
specific domain or range characteristics under certain functionals. It is essential
to mention that this concept is mostly used in mathematical studies, and it has
become a significant reference point for professionals. Hyers-Ulam stability and
Hyers-Ulam-Rassias stability have found extensive applications in various fields,
such as numerical analysis, data analysis, control theory, and physics. The study
of Hyers-Ulam-type stability has also led to the development of new mathematical
tools and concepts that have proved helpful in solving some otherwise intractable
problems in these fields.

On the basis of these contents, we study a class of nonlinear fractional differential
equations involving κ-Caputo fractional derivative{(

CDα;κ − aCDβ;κ
)
µ(t) + f(t, µ(t)) = 0, 0 < t < 1,

µ(0) = 0, µ(1) = 0,
(1.1)

where α ∈ (1, 2), β ∈ (0, α), κ(0) = 0, κ(1) = 1, f : [0, 1]×R → R be continuous. We
first study the form of the mild solution to problem (1.1). By using Leray-Schauder
alternative theorem and Banach fixed point theorem, we discuss the existence and
uniqueness results of mild solutions to boundary value problem (1.1) under some
weak conditions, such as the Caratheodory condition. We also study the Hyers-
Ulam stability of the boundary value problem (1.1). We give two examples at the
end of the article to illustrate the conclusions.
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The rest of the paper is organized as follows. In Section 2, we introduce some
definitions and lemmas. In Section 3, we prove our main results(the existence and
uniqueness results). In Section 4, we discuss the Hyers-Ulam stability for boundary
value problem (1.1). Finally, two examples are given to illustrate the conclusions in
Section 5.

2. Preliminaries

Throughout the paper, we use the notation Kκ to express the set of the functions
κ : [a, T ] → R+ satisfying the properties: κ > 0 is an increasing and differentiable
function such that for all t ∈ (0, 1), κ′(t) ̸= 0. As an illustration, consider the
function κ defined as log(t + 1) for t ≥ 0, sin(t) for t ∈ [0, π/2], or t itself. We
set κ(0) = 0 and κ(1) = 1 throughout this paper. If κ(1) is not equal to 1, we

can use κ1(t)=
κ(t)
κ(1) instead of the previously defined κ(t) without loss of generality.

This approach makes the analysis more rigorous and applicable to a wide range of
scenarios.

Definition 2.1. [1] Let α > 0 and n ∈ N. Jα;κ
a+ µ(t), the fractional integral of µ

with respect to κ with the order α on [a, T ], is defined as

Jα;κ
a+ µ(t) :=

1

Γ(α)

∫ t

a

κ′(s)(κ(t)− κ(s))α−1µ(s)ds.

In this paper, we carray on the definition of κ-Caputo-type fractional derivative
by Almeida [2].

Definition 2.2. [2] If µ ∈ Cn([a, T ],R), then the κ-Caputo fractional derivative
of µ is defined by

CDα;κ
a+ µ(t) :=J

n−α;κ
a+

(
1

κ′(t)

d

dt

)n

µ(t)

=
1

Γ(n− α)

∫ t

a

κ′(s)(κ(t)− κ(s))n−α−1µ[n]
κ (s)ds,

where

n =

{
[α] + 1, if α /∈ N,
α, if α ∈ N,

and

µ[i]
κ (t) :=

(
1

κ′(t)

d

dt

)i

µ(t).

Some properties of the fractional integral and the κ-Caputo fractional derivative
are provided in the lemma below.

Lemma 2.1. [2] Let α > 0 and n ∈ N. The Caputo-type fractional derivative with
respect to κ (or the κ-Caputo fractional derivative) with the order α of µ is defined
by

CDα;κ
a+ µ(t) :=

RLDα;κ
a+

[
µ(t)−

n−1∑
i=0

µ
[i]
κ (a)

i!
(κ(t)− κ(a))i

]
,

where µ ∈ Cn−1([a, T ],R) and RLDα;κ
a+ µ exists.
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Lemma 2.2. [1, 6, 21] Let α > 0, β > −1, λ ∈ R\{0}. The following assertions
hold

1. If the function µ : [a, T ] → R is continuous, then

CDα;κ
a+ J

α;κ
a+ µ(t) = µ(t).

2. If µ ∈ Cn−1([a, T ],R) and RLDα;κ
a+ µ exists, then

Jα;κC
a+ Dα;κ

a+ µ(t) = µ(t)−
n−1∑
i=0

µ
[i]
κ (a)

i!
(κ(t)− κ(a))i.

3. If µ(t) = (κ(t)− κ(a))β and v(t) = Eα,1 (λ(κ(t)− κ(a))α), then

Jα;κ
a+ µ(t) =

Γ(1 + β)

Γ(β + α+ 1)
(κ(t)− κ(a))β+α,

Jα;κ
a+ v(t) =

1

λ
[Eα,1 (λ(κ(t)− κ(a))α)− 1] ,

CDα;κ
a+ µ(t) =

Γ(1 + β)

Γ(β − α+ 1)
(κ(t)− κ(a))β−α,

CDα;κ
a+ v(t) = λEα,1 (λ(κ(t)− κ(a))α) .

Remark 2.1. For the sake of convenience, we will use Dα;κ
a+ to denote the κ-Caputo

derivative operator instead of CDα;κ
a+ in the rest of the paper. If a = 0, we will omit

the subscript and employ the terminology Dα;κ.

Another fractional derivative is the Hadamard type which was introduced in
1892 [7]. This derivative differs from the derivatives mentioned above in that the
kernel of the integral in the definition of the Hadamard derivative contains the
logarithmic function of arbitrary exponent.

Definition 2.3. [7] Let (a, b)(0 ≤ a < b ≤ ∞) be a finite or infinite interval of
the half-axis R+, and the left-sided and right-sided Hadamard fractional integral of
order α > 0 is defined by(

Jα
a+f

)
(x) :=

1

Γ(α)

∫ x

a

(
log

x

t

)α−1 f(t)dt

t
, (a < x < b)

and (
Jα
b−f

)
(x) :=

1

Γ(α)

∫ b

x

(
log

t

x

)α−1
f(t)dt

t
, (a < x < b).

Definition 2.4. [7, 9] Provided that the integral in Definition 3 exists. Let
δ = xD(D = d/dx) be the δ-derivative. The left-sided and right-sided Hadamard
fractional derivatives of order α > 0 on (a, b) are defined by(

Dα
a+y

)
(x) :=δn

(
Jn−α
a+ y

)
(x)

=

(
x
d

dx

)n
1

Γ(n− α)

∫ x

a

(
log

x

t

)n−α+1 y(t)dt

t
, (a < x < b)

and (
Dα

b−y
)
(x) :=(−δ)n

(
Jn−α
b−α y

)
(x)
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=

(
−x d

dx

)n
1

Γ(n− α)

∫ b

x

(
log

t

x

)n−α+1
y(t)dt

t
, (a < x < b),

where n = [α] + 1.

Remark 2.2. If we take κ(t) = log(t+ 1), then the κ-Caputo fractional derivative
turns into Caputo-Hadamard fractional derivative.

We will use the Leray-Schauder alternative theorem and Banach fixed point
theorem to prove the existence and uniqueness results.

Lemma 2.3. [18] (Leray-Schauder nonlinear alternative). Let X be a Banach
space, C ⊂ X be a closed, convex subset of X, U be an open subset of C and 0 ∈ U .
Suppose that K : U → C is a continuous, compact (completely continuous) mapping.
Then, either

1. K has a fixed point in U , or

2. there is a u ∈ ∂U and λ ∈ (0, 1) with u = λK(u).

At the end of this section, we recall the definition of Hyers-Ulam stability.

Definition 2.5. [20] Boundary value problem (1.1) is called Hyers-Ulam stable
if there exists a constant Cf > 0 such that for each ε > 0 and for each solution
v ∈ C1([a, T ],R) of the following inequality∣∣(CDα;κ − aCDβ;κ

)
µ(t) + f(t, µ(t))

∣∣ ≤ ε, ∀t ∈ [a, T ], (2.1)

there exits a solution µ ∈ C1([a, T ],R) of boundary value problem (1.1) satisfying

|µ(t)− v(t)| ≤ Cfε, ∀t ∈ [a, T ].

3. Existence and uniqueness results

To discuss the definition of the solution of the boundary value problem (1.1), the
corresponding linear equation is discussed first. Let α ∈ (1, 2), β ∈ (0, α), h : [0, 1] →
R be continuous and µ ∈ C1([0, 1],R). The corresponding linear equation of (1.1)
is 

(
Dα;κ − aDβ;κ

)
µ(t) + h(t) = 0, 0 < t < 1,

µ(0) = 0, µ(1) = 0.
(3.1)

We apply the integral operator Jα;κ to both sides of (3.1) to obtain

Jα;κDα;κµ(t) = aJα;κDβ,κµ(t)− Jα;κh(t).

We calculate the left-hand side of the equation to get

Jα:κDα;κµ(t) = µ(t)− µ(0)− (κ(t)− κ(0))

κ′(0)
µ′(0)

= µ(t)− µ′(0)

κ′(0)
κ(t)

= µ(t)− C1κ(t),
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where C1 = µ′(0)
κ′(0) . Then, the first term of the right-hand side equals

Jα−β;κJβ;κDβ;κµ(t) = Jα−β;κµ(t)− C1J
α−β;κκ(t)

= Jα−β;κµ(t)− C1
Γ(2)

Γ(α− β + 2)
κ(t)α−β+1,

which indicates that

µ(t) = C1κ(t) + aJα−β;κµ(t)− aC1
Γ(2)

Γ(α− β + 2)
κ(t)α−β+1 − Jα;κh(t)

for some constant C1. Take t = 1 and apply the boundary condition to get

µ(1) = 0 = C1 − C1
aΓ(2)

Γ(α− β + 2)
+ aJα−β,κµ(1)− Jα;κh(1).

Thus C1 = −aJα−β,κµ(1)+Jα;κh(1)

(1− aΓ(2)
Γ(α−β+2) )

. Consequently, µ satisfies the integral equation

µ(t) =
Jα;κh(1)− aJα−β;κµ(1)

1− aΓ(2)
Γ(α−β+2)

(
κ(t)− a

Γ(2)

Γ(α− β + 2)
κ(t)α−β+1

)
+ aJα−β;κµ(t)− Jα;κh(t).

Denote by m(t) =
κ(t)− aΓ(2)

Γ(α−β+2)
κ(t)α−β+1

1− aΓ(2)
Γ(α−β+2)

, we have

µ(t) =

∫ 1

0

G(t, s)h(s)ds− a

∫ 1

0

G∗(t, s)µ(s)ds, (3.2)

where

G(t, s) =
κ′(s)

Γ(α)

m(t)(κ(1)− κ(s))α−1 − (κ(t)− κ(s))α−1, 0 ≤ s ≤ t,

m(t)(κ(1)− κ(s))α−1, t ≤ s ≤ 1,
(3.3)

G∗(t, s) =
κ′(s)

Γ(α− β)

m(t)(κ(1)− κ(s))α−β−1 − (κ(t)− κ(s))α−β−1, 0 ≤ s ≤ t,

m(t)(κ(1)− κ(s))α−β−1, t ≤ s ≤ 1.

(3.4)

Definition 3.1. Let α ∈ (1, 2), β ∈ (0, α), f : [0, 1] × R → R be continuous. A
function µ ∈ C[0, 1] is called a mild solution of the boundary value problem (1.1) if
µ satisfies the integral equation

µ(t) =

∫ 1

0

G(t, s)f(s, µ(s))ds− a

∫ 1

0

G∗(t, s)µ(s)ds,

where G(t, s) and G∗(t, s) are defined in (3.3) and (3.4).

Remark 3.1. The function G(t, s) satisfies G(t, s) > 0 for all t, s ∈ (0, 1) if we take
κ(t) = t (see [3]). However, the function G∗(t, s) is not of constant sign.
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Remark 3.2. By a direct calculation we get that
∫ 1

0
G(t, s)ds = (k(t))α

Γ(α+1) ≤ 1
Γ(α+1)

and
∫ 1

0
G∗(t, s)ds = (k(t))α−β

Γ(α−β+1) ≤
1

Γ(α−β+1) . These results will be useful in the proofs

and calculations of the subsequent theorems.

In the following we investigate the existence and uniqueness results for the mild
solutions to the boundary value problem (1.1). For convenience, we list the assump-
tions.

(B1) There is a positive constant L such that |f(t, µ1)− f(t, µ2)| ≤ L|µ1 − µ2|, for
any t ∈ [0, 1] and µ1, µ2 ∈ R.

(H1) f : [0, 1]×R → R satisfies the Carathedory conditioni, i.e., f(·, s) is measurable
for every s ∈ R, and f(t, ·) is continuous for almost every t ∈ [0, 1].

(H2) There exist h ∈ LP ([0, 1];R+) with p > 1
α−β , Ω : [0,+∞) → [0,+∞) which

is nondecreasing locally bounded, such that for every t ∈ [0, 1], x ∈ R and
κ ∈ Kκ,

|f(t, x)| ≤ h(κ(t))Ω(| x |).

(H3) There exist positive functions a1, a2 ∈ C[0, 1] such that

|f(t, µ(t))| ≤ |a1(t)|+ |a2(t)||µ(t)|, ∀t ∈ [0, 1].

Based on Banach fixed point theorem and assumption (B1), we investigate the
existence of a unique solution for the boundary value problem (1.1) in the theorem
below.

Theorem 3.1. Suppose that f : [0, 1] × R → R satisfies assumption (B1) and the
inequality

L

∫ 1

0

G(t, s)ds+ a

∫ 1

0

G∗(t, s)ds < 1

holds. Then problem (1.1) has a unique mild solution on C ([0, 1],R).

Proof. Let U0 = {µ|µ ∈ C([0, 1],R), µ(0) = 0)}. Then U0 is convex and closed.
For µ ∈ U0, we employ the following supremum norm

∥µ∥ = sup
t∈[0,1]

|µ(t)|.

Then U0 is a complete subspace in C([0, 1] with respect to the given norm. Define
an operator K : U0 → U0 as

(Kµ)(t) =
∫ 1

0

G(t, s)f(s, µ(s))ds− a

∫ 1

0

G∗(t, s)µ(s)ds (3.5)

for µ ∈ U0 and t ∈ [0, 1], where G(t, s) and G∗(t, s) are defined in (3.3) and (3.4).
We now prove that K has a unique fixed point by Banach’s fixed point theorem.
Take µ1, µ2 ∈ U0 arbitrary. According to (B1), we find

∥(Kµ2) (t)− (Kµ1) (t)∥

=

∫ 1

0

G(t, s) (f (s, µ2(s))− f (s, µ1(s))) ds −a
∫ 1

0

G∗(t, s) (µ2(s)− µ1(s)) ds

≤
∫ 1

0

G(t, s)f (s, µ2(s)− f (s, µ1(s)) ds + a

∫ 1

0

G∗(t, s) |µ2(s)− µ1(s)| ds
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≤L
∫ 1

0

G(t, s) |µ2(s)− µ1(s)| ds+ a

∫ 1

0

G∗(t, s) |µ2(s)− µ1(s)| ds

≤∥µ2 − µ1∥
(
L

∫ 1

0

G(t, s)ds+ a

∫ 1

0

G∗(t, s)ds

)
for any t ∈ [0, 1] . It follows that

∥Kµ2 −Kµ1∥ ≤
(
L

∫ 1

0

G(t, s)ds+ a

∫ 1

0

G∗(t, s)ds

)
∥µ2 − µ1∥ .

Since L
∫ 1

0
G(t, s)ds + a

∫ 1

0
G∗(t, s)ds < 1, K is a contractive operator. By Banach

fixed point theorem, K has a unique fixed point, which is the unique solution to
boundary value problem (1.1). This completes the proof.

In the theorems below, Leray-Schauder nonlinear alternative theorem is em-
ployed to verify the existence of mild solutions to the boundary value problem
(1.1).

Theorem 3.2. Suppose that the function f : [0, 1]×R → R satisfies the assumptions
(H1) and (H2), and

k1∥h∥p
1− |a|k2

lim sup
r→+∞

Ω(r)

r
< 1,

where k1 = sup
t∈[0,1]

(∫ t

0
G(t, s)qds

) 1
q

, k2 = sup
t∈[0,1]

(∫ 1

0
|G∗(t, s)|q ds

) 1
q

, p > 1
α−β , q >

1, 1
p + 1

q = 1. Then, problem (1.1) has at least a solution.

Proof. We also consider the operator K defined in (3.5). To utilize the Schauder
fixed point theorem, we prove the continuity and complete continuity of the operator
K in the following steps.

Step 1. K is continuous.

By (H1), (H2), and Lebesgue’s dominate convergence theorem, it is easy to prove
that K is continuous.

Step 2. K maps bounded sets into bounded sets in U0.

Let U1 = {µ ∈ U0 : ∥u∥ ≤ r} for r > 0. Then for any µ ∈ U1 and t ∈ [0, 1], we
have

∥Kµ(t)∥ ≤
∫ 1

0

G(t, s)∥f(s, µ(s)||ds+ |a|
∫ 1

0

|G∗(t, s)|∥µ(s)∥ds

≤
∫ 1

0

G(t, s)h(κ(s))Ω(∥µ(s)∥)ds+ |a|r
∫ 1

0

|G∗(t, s)| ds

≤ Ω(r)

∫ 1

0

G(t, s)h(κ(s))ds+ |a|r
∫ 1

0

|G∗(t, s)| ds.

It follows from Hölder inequality that

∥Kµ(t)∥ ≤ Ω(r)

(∫ 1

0

G(t, s)qds

) 1
q
(∫ 1

0

h(κ(s))pds

) 1
p

+ |a|r
∫ 1

0

|G∗(t, s)|ds

≤ Ω(r)k1∥h∥p + |a|rk2.
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Hence ∥Kµ∥ ≤ Ω(r)k1∥h∥p + |a|rk2. This indicates that K map bounded subsets
into bounded subsets within U0.

Step 3. K maps bounded subsets into equicontinuous subsets in U0.

Let U1 = {µ ∈ U0 : ∥µ∥ ≤ r} for some r > 0, and let µ ∈ U1 be arbitrary. Then
for any t1, t2 ∈ [0, 1] with t1 < t2 , we have

∥Kµ(t2)−Kµ(t1)∥

=

∥∥∥∥∫ 1

0

(G(t2, s)−G(t1, s))f(s, µ(s))ds− a

∫ 1

0

(G∗(t2, s)−G∗(t1, s))µ(s)ds

∥∥∥∥
≤
∥∥∥∥∫ 1

0

(G(t2, s)−G(t1, s))f(s, µ(s))ds

∥∥∥∥+ |a|
∥∥∥∥∫ 1

0

(G∗(t2, s)−G∗(t1, s))µ(s)ds

∥∥∥∥
≤ 1

Γ(α)

∥∥∥∥∫ 1

0

κ(s)(m(t2)−m(t1))(κ(1)− κ(s))α−1f(s, µ(s))ds

∥∥∥∥
+

1

Γ(α)

∥∥∥∥∫ t2

0

κ′(s)(κ(t2)− κ(s))α−1f(s, µ(s))ds

−
∫ t1

0

κ′(s)(κ(t1)− κ(s))α−1f(s, µ(s))ds

∥∥∥∥
+

|a|
Γ(α− β)

∥∥∥∥∫ 1

0

κ′(s)(m(t2)−m(t1))(κ(1)− κ(s))α−β−1µ(s)ds

∥∥∥∥
+

|a|
Γ(α− β)

∥∥∥∥∫ t2

0

κ′(s)(κ(t2)− κ(s))α−β−1µ(s)ds

−
∫ t1

0

κ′(s)(κ(t1)− κ(s))α−β−1µ(s)ds

∥∥∥∥ .
We take

I1 =
1

Γ(α)

∥∥∥∥∫ 1

0

κ(s)(m(t2)−m(t1))(κ(1)− κ(s))α−1f(s, µ(s))ds

∥∥∥∥ ,
I2 =

1

Γ(α)

∥∥∥∥∫ t2

0

κ′(s)(κ(t2)− κ(s))α−1f(s, µ(s))ds

−
∫ t1

0

κ′(s)(κ(t1)− κ(s))α−1f(s, µ(s))ds

∥∥∥∥ ,
I3 =

|a|
Γ(α− β)

∥∥∥∥∫ 1

0

κ′(s)(m(t2)−m(t1))(κ(1)− κ(s))α−β−1µ(s)ds

∥∥∥∥ ,
I4 =

|a|
Γ(α− β)

∥∥∥∥∫ t2

0

κ′(s)(κ(t2)− κ(s))α−β−1µ(s)ds

−
∫ t1

0

κ′(s)(κ(t1)− κ(s))α−β−1µ(s)ds

∥∥∥∥ .
Then ∥Kµ(t2) − Kµ(t1)∥ ≤ I1 + I2 + I3 + I4. According to assumption (H2) and
Hölder inequality, we have

I1 ≤|m(t2)−m(t1)|
Γ(α)

∫ 1

0

κ′(s)(κ(1)− κ(s))α−1h(κ(s))Ω(r)ds
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≤|m(t2)−m(t1)|Ω(r)
Γ(α)

(∫ 1

0

(κ(1)− κ(s))(α−1)qdκ(s)

) 1
q
(∫ 1

0

hp(κ(s))dκ(s)

) 1
p

=
|m(t2)−m(t1)|Ω(r)
Γ(α)((α− 1)q + 1)

1
q

∥h∥p.

Similarly,

I2 ≤Ω(r)

Γ(α)

(∫ t1

0

κ(s)
[
(κ(t2)− κ(s))α−1 − (κ(t1)− κ(s))α−1

]
h(κ(s))ds

+

∫ t2

t1

κ′(s)(κ(t2)− κ(s))α−1h(κ(s))ds

)

≤Ω(r)

Γ(α)

[(∫ t1

0

[
(κ(t2)− κ(s))α−1 − (κ(t1)− κ(s))α−1

]q
dκ(s)

) 1
q

×
(∫ t1

0

hp(κ(s))dκ(s)

) 1
p

+

(∫ t2

t1

(κ(t2)− κ(s))(α−1)qdκ(s)

) 1
q
(∫ t2

t1

hp(κ(s))dκ(s)

) 1
p

]

≤Ω(r)∥h∥p
Γ(α)

[(∫ t1

0

[
κ(t2)− κ(s))α−1 − (κ(t1)− κ(s))α−1

]q
dκ(s)

) 1
q

+

(∫ t

t1

(κ(t2)− κ(s))(α−1)qdκ(s)

) 1
q

]
.

For I3, we have

I3 ≤ |a||m(t2)−m(t1)|
Γ(α− β)

∥∥∥∥∫ 1

0

κ′(s)(κ(1)− κ(s))α−β−1µ(s)ds

∥∥∥∥
≤ |a|r

Γ(α− β + 1)
|m(t2)−m(t1)|.

As for I4, since the integral is absolutely continuous when α > 1 and α > β, it is
easy to find

I4 ≤ |a|r
Γ(α− β)

∥∥∥∥∫ t2

0

κ′(s)(κ(t2)− κ(s))α−β−1ds−
∫ t1

0

κ′(s)(κ(t1)−κ(s))α−β−1ds

∥∥∥∥
≤ |a|r

Γ(α− β + 1)
|(κ(t2))α−β − (κ(t1))

α−β |.

So we have I1 + I2 + I3 + I4 → 0 as t2 − t1 → 0. Hence ∥Kµ(t2) − Kµ(t1)∥ → 0.
The arbitrary choice of µ ∈ U1 shows that the operator K maps bounded sets into
equicontinuous sets of U0.

Due to Steps 1-3 and by Arzela-Ascoli theorem, the operator K is a completely
continuous mapping.

Step 4. There exists an open set U ⊂ U0 with µ ̸= λK(µ) for λ ∈ (0, 1) and µ ∈ ∂U.

According to the condition

k1∥h∥p
1− |a|k2

lim sup
r→+∞

Ω(r)

r
< 1,
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we can deduce that there exists a constant N > 0 such that

k1∥h∥pΩ(r) + |a|k2N < N.

Let U = {µ ∈ U0 : ∥u∥ ≤ N}. Then K : U → U0 is completely continuous. Suppose
that there exist λ ∈ (0, 1) and µ ∈ ∂U such that µ = λK(µ). Then for any t ∈ [0, 1],

|µ(t)| = |λKµ(t)|
≤ ∥Kµ(t)∥

≤
∫ 1

0

G(t, s)∥f(s, µ(s)∥ds+ |a|
∫ 1

0

|G∗(t, s)|∥µ(s)∥ds

≤
∫ 1

0

G(t, s)h(κ(s))Ω(∥µ(s)∥)ds+ |a|N
∫ 1

0

|G∗(t, s)| ds

≤ Ω(r)

∫ 1

0

G(t, s)h(κ(s))ds+ |a|N
∫ 1

0

|G∗(t, s)|ds

< N.

Hence ∥µ∥ < N holds, which contradicts the fact that ∥µ∥ = N . Thus we get
µ ̸= λKµ for any µ ∈ ∂U and λ ∈ (0, 1). By the Leray-Schauder alternative
theorem, we infer that there exists at least one fixed point µ of K. The fixed point
is a solution to the boundary value problem (1.1). This completes the proof.

Theorem 3.3. Suppose that the function f satisfies conditions (H1) and (H3).
Further suppose that

N1 = sup
t∈[0,1]

(∫ 1

0

G(t, s)|a1(s)|ds
)
> 0,

N2 = sup
t∈[0,1]

(∫ 1

0

G(t, s)|a2(s)|+ |aG∗(t, s)| ds
)

∈ (0, 1).

Then problem (1.1) has at least one solution.

Proof. We still consider the operator K in (3.5). The conclusion can be verified
analogously in the following four steps as well.

Step 1. K is continuous.

Let {µn} ⊂ U0 be a sequence such that µn → µ as n→ ∞. By assumption (H3)
and the continuity of f we have

lim
n→∞

|Kµn(t)−Kµ(t)| ≤ lim
n→∞

∫ 1

0

G(t, s)|f(s, µn(s))− f(s, µ(s))|ds

+ |a| lim
n→∞

∫ 1

0

|G∗(t, s)| |µn(s)− µ(s)|ds

≤
∫ 1

0

G(t, s) lim
n→∞

|f(s, µi(s))− f(s, µ(s))|ds

+ |a|
∫ 1

0

|G∗(t, s)| lim
n→∞

|µn(s)− µ(s)|ds

=0.
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Hence K is continuous.

Step 2. K maps bounded subsets into bounded subsets in U0.

Let U2 = {µ ∈ U0 : ∥µ∥ ≤ r} for some r > 0. Then for every µ ∈ U2, ∥µ∥ ≤ r.
So we have

|Kµ(t)| ≤
∫ 1

0

G(t, s)|f(s, µ(s))|ds+ |a|
∫ 1

0

|G∗(t, s)| |µ(s)|ds

≤
∫ 1

0

G(t, s)|a1(s)|ds+
∫ 1

0

G(t, s)|a2(s)||µ(s)|ds+ |aG∗(t, s)||µ(s)|ds

≤N1 +N2r.

Therefore, K maps bounded subsets into bounded subsets.

Step 3. K maps bounded subsets into equicontinuous subsets of U0.

Let µ ∈ U2 = {µ ∈ U0 : ∥µ∥ ≤ r} and suppose that t1, t2 ∈ [0, 1] with t1 ≤ t2.
Then

∥Kµ(t1)−Kµ(t2)∥

≤ 1

Γ(α)

∥∥∥∥∫ 1

0

κ′(s)(m(t2)−m(t1))(κ(1)− κ(s))α−1f(s, µ(s))ds

∥∥∥∥
+

1

Γ(α)

∥∥∥∥∫ t2

0

κ′(s)(κ(t2)− κ(s))α−1f(s, µ(s))ds

−
∫ t1

0

κ′(s)(κ(t1)− κ(s))α−1f(s, µ(s))ds

∥∥∥∥
+

|a|
Γ(α− β)

∥∥∥∥∫ 1

0

κ′(s)(m(t2)−m(t1))(κ(1)− κ(s))α−β−1µ(s)ds

∥∥∥∥
+

|a|
Γ(α− β)

∥∥∥∥∫ t2

0

κ′(s)(κ(t2)− κ(s))α−β−1µ(s)ds

−
∫ t1

0

κ′(s)(κ(t1)− κ(s))α−β−1µ(s)ds

∥∥∥∥
=I5 + I6 + I7 + I8,

I5≤
|m(t2)−m(t1)|

Γ(α)

∥∥∥∥∫ 1

0

(κ(1)− κ(s))α−1 [a1(κ(s)) + a2(κ(s)) ∥µ(s)∥] dκ(s)
∥∥∥∥

≤ |m(t2)−m(t1)|
Γ(α)

×

∥∥∥∥∥
(∫ 1

0

(κ(1)− κ(s))(α−1)qdκ(s)

) 1
q
(∫ 1

0

[a1(κ(s)) + a2(κ(s)r)]
1
p dκ(s)

) 1
p

∥∥∥∥∥
≤ |m(t2)−m(t1)| (∥a1∥p + r∥a2∥p)

Γ(α)((α− 1)q + 1)
1
q

,

I6≤
∥a1∥p + r ∥a2∥p

Γ(α)

[(∫ t2

0

(κ(t2)− κ(s))(α−1)qdκ(s)

) 1
q

−
(∫ t1

0

(κ(t1)− κ(s))(α−1)qdκ(s)

) 1
p

]
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≤
∥a1∥p + r ∥a2∥p

Γ(α)((α− 1)q + 1)
1
q

[
(κ(t2))

(α−1)q+1
q − (κ(t1))

(α−1)q+1)
q

]
,

I7+ I8 ≤ |a|r
Γ(α− β + 1)

(
|m(t2)−m(t1)|+ |(κ(t2))α−β − (κ(t1))

α−β |
)
.

Since α > 1 and α > β, the integral is absolutely continuous. Hence I5 + I6 +
I7 + I8 → 0, and thus ∥Kµ(t2)−Kµ(t1)∥ → 0 as t2 − t1 → 0, and the convergence
is independent on µ ∈ U2. Therefore the operator K maps bounded subsets into
equicontinuous subsets in U0.

As a consequence of Steps 1-3 and by Arzela-Ascoli theorem, the operator K is
a completely continuous mapping.

Step 4. There exists an open set U ⊂ U0 with µ ̸= λK(µ) for λ ∈ (0, 1) and µ ∈ ∂U.

According to the assumption

0 < N1 < +∞, 0 < N2 < 1,

we can deduce that there exists a constant N > 0 such that

N1 +N2N < N.

Let U = {µ ∈ U0 : ∥u∥ ≤ N}. Then K : U → U0 is completely continuous. Suppose
that there exist λ ∈ (0, 1) and µ ∈ ∂U such that µ = λK(µ). Then, for any t ∈ [0, 1],

|µ(t)| =|λKµ(t)|
≤∥Kµ(t)∥

≤
∫ 1

0

G(t, s)|a1(s)|ds+
∫ 1

0

G(t, s)|a2(s)||µ(s)|ds+ |aG∗(t, s)||µ(s)|ds

<N.

Hence ∥µ∥ < N holds, which contradicts ∥µ∥ = N . Thus, we get µ ̸= λKµ for any
µ ∈ U and λ. By the Leray-Schauder alternative theorem, we infer that there exists
at least one fixed point µ of K. The fixed point is a solution to the boundary value
problem (1.1). This completes the proof.

Remark 3.3. Consistent with findings from prior research (refer to [1] [21]), the
benefit of employing the fractional differential operator in equation (1.1) lies in the
flexibility to select the appropriate function κ. Observing the problem (1.1), we
note that

1. Consider κ(t) = t. Then problem (1.1) becomes the problem studied in [10]
with the Caputo fractional derivative. The problem is given byTµ(t) + f(t, µ(t)) = 0, 0 < t < 1,

µ(0) = 0, µ(1) = 0,

where T = Dα− aDβ . Therefore, we can get the existence results as in [10]
for Caputo fractional derivatives.
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2. Let κ(t) = log2(t + 1). Applying the logarithmic bottom exchange formula
yields κ(t) = log(t+ 1)/log(2). Problem (1.1) can be transformed into a
boundary value problem involving the Caputo-Hadamard fractional deriva-
tive, which is an Hadamard -type fractional derivative (as defined in Definition
2.3 and 2.4). Thus, problem (1.1) can be transformed into problem (3.6).

(
CHDα − aCHDβ

)
µ(t) + f(t, u(t)) = 0, 0 < t < 1,

µ(0) = 0, µ(1) = 0.
(3.6)

To the best of our knowledge, this fractional system has not yet been investi-
gated. However, some corollaries can be inferred from the results we have obtained.

Corollary 3.1. Suppose that assumption (B1) is satisfied and

L

∫ 1

0

G(t, s)ds+ a

∫ 1

0

G∗(t, s)ds < 1,

then, the boundary value problem (3.6) has a unique mild solution in C1([0, 1],R).

Corollary 3.2. Suppose that assumptions (H1) and (H2) are satisfied and

k1∥h∥p
1− |a|k2

lim sup
r→+∞

Ω(r)

r
< 1,

where k1 = sup
t∈[0,1]

(∫ t

0
G(t, s)qds

) 1
q

, k2 = sup
t∈[0,1]

(∫ 1

0
|G∗(t, s)|q ds

) 1
q

, p > 1
α−β , q >

1, 1
p +

1
q = 1. Then the boundary value problem (3.6) has at least one mild solution

in C1([0, 1],R).

Corollary 3.3. Suppose that assumptions (H1) and (H3) hold, and

N1 = sup
t∈[0,1]

(∫ 1

0

G(t, s)|a1(s)|ds
)
> 0,

N2 = sup
t∈[0,1]

(∫ 1

0

G(t, s)|a2(s)|+ |aG∗(t, s)| ds
)

∈ (0, 1).

Then there exists at least a mild solution of the boundary value problem (3.6).

4. Hyers-Ulam stability analysis

This section presents the analysis of Hyers-Ulam stability of the fractional differen-
tial equation (1.1).

Theorem 4.1. Suppose that the assumptions of Theorem 3.1 are satisfied and
L

Γ(α+1) + |a|
Γ(α−β+1) < 1. Then the boundary value problem (1.1) is Hyers-Ulam

stable.

Proof. For each given ε > 0 and the function µ satisfing the inequality∣∣cDα;κµ(t)− aDβ;κµ(t) + f(t, µ(t))
∣∣ ≤ ε, t ∈ [0, 1],
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we set a function

g(t) = cDα;κµ(t)− acDα;κµ(t) + f(t, µ(t)).

Then we have |g(t)| ≤ ε, which implies

Jα;κg(t)

=µ(t)− C1κ(t)− aJα−β;kµ(t) + aC1
Γ(2)

Γ(α− β + 2)
κ(t)α−β+1 + Jα;κf(t, µ(t)),

where C1 are defined as in Lemma 3.1. Let θ(t) = C1
Γ(2)

Γ(α−β+2) (κ(t))
α−β+1−C1κ(t),

then
µ(t) = θ(t) + Jα;κg(t) + aJα−β;κµ(t)− Jα;κf(t, µ(t)).

According to Theorem 3.1, it has been verified that there is a unique solution v(t)
of problem (1.1). The function v can be expressed as

v(t) = θ(t) + aJα−β;κµ(t)− Jα;κf(t, µ(t)).

We can get the inequality

|µ(t)− v(t)| ≤ 1

Γ(α)

∫ t

0

κ′(s)(κ(t)− κ(s))α−1|f(s, µ(s))− f(s, v(s))|ds

+
|a|

Γ(α− β)

∫ t

0

κ′(s)(κ(t)− κ(s))α−β−1|µ(s)− v(s)|ds

+
1

Γ(α)

∫ t

0

κ′(s)(k(t)− k(s))α−1|g(s)|ds

≤ L

Γ(α)

∫ t

0

κ′(s)(κ(t)− κ(s))α−1|µ(s)− v(s)|ds

+
|a|

Γ(α− β)

∫ t

0

κ′(s)(κ(t)− κ(s))α−1|µ(s)− v(s)|ds+ ε

≤∥µ− v∥
(
L(κ(t))α

Γ(α+ 1)
+

|a|(κ(t))α−β

Γ(α− β + 1)

)
+ ε

≤∥µ− v∥
(

L

Γ(α+ 1)
+

|a|
Γ(α− β + 1)

)
+ ε.

After taking the supremum norm on both sides of the equation, we obtain the
following result

∥µ− v∥ ≤ ∥µ− v∥
(

L

Γ(α+ 1)
+

|a|
Γ(α− β + 1)

)
+ ε.

Therefore,

∥µ− v∥ ≤ ε(
1− L

Γ(α+1) −
|a|

Γ(α−β+1)

) = Cfε,

where Cf = 1

1− L
Γ(α+1)

− |a|
Γ(α−β+1)

, which implies that Hyers-Ulam stability of problem

(1.1) is proved.
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5. Example

Two examples are presented in this section to illustrate the conclusions. The asser-
tion of Theorem 3.1, 3.3 and 4.1 are shown by Example 5.1 below.

Example 5.1. Consider the following nonlinear κ-Caputo-type fractional differen-
tial equationD1.8;κµ(t)− 1

2
D1.4,κµ(t) =

e−t

10

(
µ(t) +

1

2
cos t

)
, t ∈ [0, 1],

µ(0) = 0, µ(1) = 0.
(5.1)

According to the given data, it can be found that assumption (B1) is satisfied with

L ≤ e−t

10 ≤ 1
10 . So we can take L = 1

10 , then

L

∫ 1

0

G(t, s)ds+ a

∫ 1

0

G∗(t, s)ds ≤ 1

10Γ(2.8)
+

1

2Γ(1.4)
≈ 0.41 < 1.

Furthermore, we have

|f(t, µ)| =
∣∣∣∣e−t

10

(
µ(t) +

1

2
cos t

)∣∣∣∣
≤ |e

−t

20
cos(t)|+ |e

−t

10
||µ(t)|

= |a1(t)|+ |a2(t)||µ(t)|,

N1 = sup
t∈[0,1]

(∫ 1

0

G(t, s) |a1(s)| ds
)
> 0,

N2 = sup
t∈[0,1]

(∫ 1

0

G(t, s) |a2(s)|+ |aG∗(t, s)| ds
)

≤ L

∫ 1

0

G(t, s)ds+ a

∫ 1

0

G∗(t, s)ds

< 1,

where a1(t) = e−t

20 cos(t), a2(t) = e−t

10 . Therefore, all the assumptions (B1), (H1)
and (H3) hold. Thus it follows from Theorem 3.1 and 3.3 that the problem (5.1)
has a mild solution.

We further discuss the Hyers-Ulam stability of the problem (5.1). For each given
ε > 0 and function µ satisfing the inequality

|D1.8;κµ(t)− 1

2
D1.4,κµ(t)− e−t

10

(
µ(t) +

1

2
cos t

)
| ≤ ε, t ∈ [0, 1].

Now let v(t) be the unique solution of the problem (5.1). Then by Theorem 4.1 we
have

∥µ− v∥ ≤ ε(
1− L

Γ(α+1) −
|a|

Γ(α−β+1)

) = Cfε.

A deract calculation shows that Cf = 1

1− 0.1
Γ(1.8+1)

− |0.5|
Γ(1.8−1.4+1)

≈ 2.5, which implies

the Hyers-Ulam stability of problem (5.1).

Example 5.2. We now investigate the following nonlinear κ-Caputo-type fractional
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differential equation{
D1.7µ(t)− 1

3D
1.5µ(t) = c̃etµ(t)

(et+e−t)(1+µ(t)) , t ∈ [0, 1],

µ(0) = 0, µ(1) = 0,
(5.2)

where c̃ is a given positive constant. Set

f(t, µ) =
c̃etµ

(et + e−t) (1 + µ)
, (t, µ) ∈ [0, 1]× R.

For any µ1, µ2, we have

|f(t, µ1)− f(t, µ2)| =
etc̃

(et + e−t)

∣∣∣∣ µ1

1 + µ1
− µ2

1 + µ2

∣∣∣∣
≤ et|µ1 − µ2|c̃

(et + e−t) |(1 + µ1)(1 + µ2)|

≤ et|µ1 − µ2|c̃
(et + e−t)

≤ c̃|µ1 − µ2|.

Assuming c̃ <
(
1− 1

3Γ(2.2)

)
Γ(2.7) ≈ 1.09, we have c̃

∫ 1

0
G(t, s)ds+ 1

3

∫ 1

0
G∗(t, s)ds <

1. Therefore, the conditions of Theorem 3.1 are all satisfied. So the boundary value
problem (5.2) has a unique solution.

6. Conclusion

In general, exact solutions to the majority of nonlinear fractional differential equa-
tions in boundary value problems are difficult to obtain. However, some mild so-
lutions can be found. With the assistance of the κ-Caputo derivative, we focus on
investigating a more general two-term fractional differential equation in the bound-
ary value problem. Drawing upon the properties of the Green function, we provide
the form of a mild solution to the problem. We utilize the fixed point theorem to
explore the uniqueness and existence results of the mild solution, and verify that
these results also apply to some specific cases in our corollaries. Moreover, we verify
that the boundary value problem is Hyers-Ulam stable. We present two examples
to illustrate our conclusions.
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