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Abstract In this paper, we will concern the existence, asymptotics and sta-
bility of forced pulsating waves in a Lotka-Volterra cooperative system with
nonlocal diffusion under shifting habitats. By using alternatively-coupling
upper-lower solution method, we establish the existence of forced pulsating
waves for any given positive speed of the shifting habitat. The asymptotic be-
haviors of the forced pulsating waves are derived. Finally, with proper initial
value, the stability of the forced pulsating waves is studied by the squeezing
technique based on the comparison principle.
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1. Introduction

Climate change such as global warming is believed to be the greatest threat to
biodiversity [20]. Global warming has caused the destruction of Marine species
diversity near the equator, and species have shown a trend of migration to the
north and south poles. In the past, the tropics provided ideal temperatures for
many species. But as the equatorial waters get hotter, the outflow of the species that
originally lived there accelerates. Ocean warming is causing large scale changes in
the latitudinal gradient of Marine biodiversity. At the same time, creatures that live
on land would also move to the poles and colder elevations. Climate change drives
the shifts in species range and distribution, see [6, 24]. This impact on ecological
species has to be taken seriously.

For this phenomenon and its influence, many researchers have made very great
scientific research results, see [1,4,8,25,29,30,33]. Berestycki et al. in [2] proposed
a reaction-diffusion equation under shifting environment

ut(t, x) = duxx(t, x) + g(x− ct, u(t, x)), t ∈ R+, x ∈ R. (1.1)
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Here u(t, x) denotes the population density at time t and location x. The function
g represents the net effect of reproduction and mortality and d > 0 is the diffusion
rate for species. They have proved that the existence of the forced traveling waves
for (1.1). In [3], Berestycki and Fang established the existence and nonexistence of
forced waves for the Fisher-KPP equation in a shifting environment

ut(t, x) = duxx(t, x) + u(t, x)[r(x− ct)− u(t, x)], t ∈ R+, x ∈ R. (1.2)

Wu et al. in [36] concerned the existence and uniqueness of forced waves in a general
reaction-diffusion equation with time delay under climate change. They showed that
there exists a nondecreasing and unique wave front with the speed consistent with
the habitat shifting speed for (1.2).

Species interactions can influence the range sizes of populations. Both two
species follow the Logistic growth rate which is on the move to capture the key point
that the environment is both heterogeneous and directionally shifting over time with
a forced rate c > 0. As is well known, there are usually more than one biological
species sharing the same habitat and their typically interspecies relationships. Thus,
there is a growing interest in the study of two species in shifting habitat, for example,
competition [7, 31], cooperation [19,38] and predator-prey [10,12,37].

Subject to seasonal succession, climate change provides such a shifting and time
periodic environment for the species. Fang et al. [9] studied the nonautonomous
reaction-diffusion equation in a time-periodic shifting environment,

ut(t, x) = uxx(t, x) + u(t, x)g(t, x− ct, u(t, x)), t > 0, x ∈ R.

That is g(x− ct, u(t, x)) in (1.1) becomes g(t, x− ct, u(t, x)), it can be understood
as the functional response to the time periodic variation.

Periodicity frequently appears in mathematical modelings due to seasonal changes
typically related to climate changes. For example, Pang, Wu and Ruan [23] consid-
ered the dynamics of Lotka-Volterra competition system with time periodic. Zhou,
Wu and Bao [43] studied the propagation dynamics of a class of periodic degenerate
systems. In the case when ri(t) become ri(t, x− ct), i = 1, 2 in [38], we can get the
following time periodic Lotka-Volterra cooperative systemut(t, x) = d1uxx(t, x) + u(t, x)(r1(t, x− ct)− u(t, x) + a1v(t, x)), t ∈ R+, x ∈ R,

vt(t, x) = d2vxx(t, x) + v(t, x)(r2(t, x− ct)− v(t, x) + a2u(t, x)), t ∈ R+, x ∈ R,
(1.3)

where u(t, x) and v(t, x) are the population densities of two species competing for
common resource at time t and position x; d1 and d2 are the diffusive coefficients;
the parameters a1 and a2 reflect the strength of interspecies cooperation and ai >
0, i = 1, 2. Most importantly, the terms r1(t, x− ct) and r2(t, x− ct) are dependent
on time t and the climate shifting variable x− ct. ri(t, ·), i = 1, 2 are assumed to be
T -periodic in the first variable t for some positive number T . For the monostable
case, Zhao and Ruan [42] showed that system (1.2) possesses periodic traveling
waves, only when the wave speed is greater than or equal to a minimal wave speed
cmin. Liang, Yi and Zhao [18] investigated spreading speeds and traveling wave
solutions for general periodic evolution systems.

Note that the classical reaction-diffusion equation like (1.2) is based on the
assumption that the internal interaction of species is random and local, i.e., in-
dividuals move randomly between the adjacent spatial locations. However, it is
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not always the case in reality. The movements and interactions of many species
in ecology and biology can occur between non-adjacent spatial locations, see [14].
Thus, nonlocal dispersal equations have been presented to investigate the evolution
of species, see [5,17,40] and references therein. Recently, Li et al. in [15] considered
the following nonlocal dispersal population model to explore the species spread in
the context of climate change,

ut = d[J ∗ u− u] + u[r(x− ct)− u] (1.4)

are the nonlocal dispersal operators to describe the long range effects of spatial
structure. As we all know, the growth rate r(x − ct) of many populations may be
influenced greatly by the time varying environments (e.g., due to seasonal variation).
Therefore, Zhang et al. [41] studied a more general time-periodic nonlocal dispersal
Fisher-KPP equation

ut = d[J ∗ u− u] + u[r(t, x− ct)− u].

Furthermore, interspecies interactions include competition, cooperation, predation
and other types between two or more species. Motivated by previous studies, it
is natural to wonder how the seasonal succession, climate change and interspecific
competition affect the dynamic behaviors of two species under nonlocal dispersal
mechanisms. Many scholars have made study, see [11,13,21,26,32].

Inspired by the above study and combined with our previous work, we concern
the following equation

ut(t, x) = d1(J1 ∗ u− u)(t, x) + u(t, x)(r1(t, x− ct)− u(t, x) + a1v(t, x)),

t ∈ R+, x ∈ R,

vt(t, x) = d2(J2 ∗ v − v)(t, x) + v(t, x)(r2(t, x− ct)− v(t, x) + a2u(t, x)),

t ∈ R+, x ∈ R,

(1.5)

where

(J1 ∗ u)(t, x) =
∫
R
J1(x− y)u(t, y)dy =

∫
R
J1(y)u(t, x− y)dy,

(J2 ∗ v)(t, x) =
∫
R
J2(x− y)v(t, y)dy =

∫
R
J2(y)v(t, x− y)dy.

This paper is devoted to the existence and stability of forced pulsating waves of the
equation (1.5).

Through out the present paper, the following assumptions are valid.
(H1) Assume that ri(t, z), i = 1, 2 is continuous, T -periodic in t and increasing
in z. Moreover,

lim
z→−∞

ri(t, z) = βi(t) < 0, lim
z→∞

ri(t, z) = θi(t) > 0, i = 1, 2, (1.6)

uniformly in t, where θi(t), βi(t) ∈ Cγ(R,R) for some γ with γ ∈ (0, 1) and they
are T -periodic functions, that is βi(t+ T ) = β(t), θi(t+ T ) = θi(t) for all t ∈ R+.
(H2) There is

∥θi(t)− ri(t, z)∥ ∼ Aie
−αiz, z → ∞,

for some positive numbers αi, Ai(t), i = 1, 2. Here, the symbol “∼” is the standard
sign in asymptotic analysis.
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(H3) Ji(x) ∈ C(R,R+) are symmetric with

∫
R
Ji(y)dy = 1 and there exists some

λ0 > 0 such that

∫
R
Ji(y)e

λydy <∞, ∀λ ∈ (0, λ0].

Next we consider the following system of ordinary differential equationsu
′
(t) = u(θ1(t)− u+ a1v),

v
′
(t) = v(θ2(t)− v + a2u).

Let ri =
1

T

∫ T

0

θi(s)ds > 0 for i = 1, 2. According to Theorem 1 of [28], the above

equation has a unique and globally asymptotically stable periodic positive solution
(p(t), q(t)) under condition (H1).

By a forced pulsating wave solution of the system (1.5), we mean a particular
solution in the form of

(u, v)(t, x) = (ϕ, φ)(t, x− ct) =: (ϕ, φ)(t, z), z = x− ct, (1.7)

satisfying

(ϕ, φ)(t+ T, z) = (ϕ, φ)(t, z).

A substitution of (1.5) leads to the following wave profile systemϕt = d1(J1 ∗ ϕ− ϕ) + cϕz + ϕ(r1(t, z)− ϕ+ a1φ), t ∈ R+, z ∈ R,

φt = d2(J2 ∗ φ− φ) + cφz + φ(r2(t, z)− φ+ a2ϕ), t ∈ R+, z ∈ R,
(1.8)

subjected to

lim
z→−∞

(ϕ, φ)(t, z) = (0, 0), lim
z→∞

(ϕ, φ)(t, z) = (p(t), q(t)) (1.9)

uniformly in t.
To our knowledge, the heterogeneity caused by the shifting and periodic coeffi-

cients brings nontrivial difficulties. Our contributions in this paper can be summa-
rized as three parts. In Section 2, we establish the existence of the forced pulsating
waves by applying alternatively-coupling upper-lower solution method. In Section
3, we establish the asymptotic behaviors of the forced pulsating waves. In Section
4, with proper initial, the stability of the forced pulsating waves is studied by the
squeezing technique based on the comparison principle.

2. Existence of forced pulsating waves for (1.5)

This section is devoted to establishing the existence of time-periodic forced pulsating
waves.

Firstly, we give some preliminaries. Let X = C(R,R2) ∩ L∞(R,R2) be the
set of uniformly continuous and bounded vector function from R to R2 equipped
with the norm ∥ ω ∥X:=∥ ω1 ∥ + ∥ ω2 ∥, where ∥ ωi ∥:= sup

x∈R
| ωi(x) |. Denote

X+ = {ω = (ω1, ω2) ∈ X : (ω1, ω2)(x) ≥ (0, 0),∀x ∈ R}. It follows that X+ is a
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closed core of X and X is a Banach lattice under the partial ordering induced by
X+. Further, we set

Xr1×r2 :=

{
(ω1, ω2) ∈ X+ : (ω1, ω2)(x) ≤

(
min

t∈[0,T ]
θ1(t), min

t∈[0,T ]
θ2(t)

)
,∀x ∈ R

}
.

Considering the Cauchy problem associated to (1.5)

ut(t, x) = d1(J1 ∗ u− u)(t, x) + u(t, x)(r1(t, x− ct)− u(t, x) + a1v(t, x)),

t ∈ R+, x ∈ R,

vt(t, x) = d2(J2 ∗ v − v)(t, x) + v(t, x)(r2(t, x− ct)− v(t, x) + a2u(t, x)),

t ∈ R+, x ∈ R,

(u(0, x), v(0, x)) = (u0(x), v0(x)) ∈ X+.

(2.1)

Define P (t) = (P1(t), P2(t)) by

P1(t)[u0](x) = e−d1t

∞∑
m=0

(d1t)
m

m!
am(u0)(x),

P2(t)[v0](x) = e−d2t

∞∑
m=0

(d2t)
m

m!
bm(v0)(x),

where a0(u0)(x) = u0(x), b0(v0)(x) = v0(x), and

am(u0)(x) =

∫
R
J1(x− y)am−1(u0)(y)dy,

bm(v0)(x) =

∫
R
J2(x− y)bm−1(v0)(y)dy, ∀m ≥ 1.

Then, the mild solution of equation (2.1) is satisfied
u(t, x) = P1(t)u0(x) +

∫ t

0

P1(t− s)[f1(s, ·, u(s, ·), v(s, ·))](x)ds,

v(t, x) = P2(t)v0(x) +

∫ t

0

P2(t− s)[f2(s, ·, u(s, ·), v(s, ·))](x)ds,
(2.2)

where  f1(t, x, u(t, x), v(t, x)) = u(t, x)(r1(t, x− ct)− u(t, x) + a1v(t, x)),

f2(t, x, u(t, x), v(t, x)) = v(t, x)(r2(t, x− ct)− v(t, x) + a2u(t, x)).

For any 0 ≤ u1(t, x), u2(t, x) ≤ p(t) and 0 ≤ v1(t, x), v2(t, x) ≤ q(t), we have

| fi(t, x, u1(t, x), v1(t, x))− fi(t, x, u2(t, x), v2(t, x)) |

≤ ρi(| u1 − u2 | + | v1 − v2 |), ∀x ∈ R,

where

ρi = max
[0,T ]

θi(t)− 2min
[0,T ]

βi(t) + ai

[
max
[0,T ]

θ1(t) + max
[0,T ]

θ2(t)

]
, i = 1, 2.
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Let ρ = max{ρ1, ρ2} and Fi(t, x, u1, u2) = ρui + fi(t, x, u1, u2), i = 1, 2. Then
Fi(t, x, u1, u2) is nondecreasing in ui ∈ [0, θi(t)]. Rewriting the Cauchy problem
(2.1) as 

ut(t, x) + ρu(t, x) = d1(J1 ∗ u(t, x)− u(t, x)) + F1(t, x, u, v),

vt(t, x) + ρv(t, x) = d2(J2 ∗ v(t, x)− v(t, x)) + F2(t, x, u, v),

u(0, x) = u0(x), v(0, x) = v0(x).

(2.3)

Then the solution of (2.1) satisfies the integral equation

u(t, x) = G1[u, v](t, x)

:= e−ρtP1(t)[u0](x) +

∫ t

0

e−ρ(t−s)P1(t− s)[F1(s, ·, u(s, ·), v(s, ·))](x)ds,

v(t, x) = G2[u, v](t, x)

:= e−ρtP2(t)[v0](x) +

∫ t

0

e−ρ(t−s)P2(t− s)[F2(s, ·, u(s, ·), v(s, ·))](x)ds.

(2.4)
It follows that any solution of (2.4) can be seen as a fixed-point of the operator
G = (G1, G2). To get the existence and uniqueness of solution (2.4), we first give
the definition of the upper and lower solutions.

Definition 2.1. A pair of vector functions (u1, u2), (u1, u2) ∈ C([0, T ),X+) with
0 < T < ∞ are called order upper and lower solutions of (2.4) if (u1, u2) ≥
(u1, u2) ≥ (0, 0) and further satisfyu1(t, x)−G1[u1, u2](t, x) ≥ 0 ≥ u1(t, x)−G1[u1, u2](t, x),

u2(t, x)−G2[u1, u2](t, x) ≥ 0 ≥ u2(t, x)−G2[u1, u2](t, x).
(2.5)

Remark 2.1. If (u1, u2), (u1, u2) ∈ ([0, T ) × R,R2) are C1 in t ∈ [0, T ) with
(u1, u2)(t, ·), (u1, u2)(t, ·) ∈ X+, and for t ∈ [0, T ), they satisfy

(ui)t(t, x)− di(J ∗ ui(t, x)− ui(t, x))− fi(t, x, ui(t, x), uj(t, x)) ≥ 0,

(ui)t(t, x)− di(J ∗ ui(t, x)− ui(t, x))− fi(t, x, ui(t, x), uj(t, x)) ≤ 0,

ui(0, x) ≥ ui(0, x), x ∈ R, i, j = 1, 2, i ̸= j.

Lemma 2.1. If (u0(x), v0(x)) ∈ Xr1×r2 , then system (2.1) has a unique solu-
tion (u(t, x), v(t, x)) with (u(0, x), v(0, x)) = (u0(x), v0(x)) and (u(t, x), v(t, x)) ∈
C(R+,X+).

Proof. The proof of Lemma 2.1 is similar to Lemma 2.3 of [26], which will not be
proved here.

Lemma 2.2. The following statements hold.
(i) Let (u1, u2) ≤ (p(t), q(t)), (u1, u2) ≤ (p(t), q(t)) be a pair of upper and lower solu-
tions of (2.4) with (u1, u2)(t, ·), (u1, u2)(t, ·) ∈ X+. If (u1, u2)(0, x) ≥ (u1, u2)(0, x),
then (u1, u2)(t, x) ≥ (u1, u2)(t, x) for all (t, x) ∈ R+ × R.



Propagation dynamics of forced pulsating waves 2811

(ii) Let (u1(t, x), u2(t, x)) and (v1(t, x), v2(t, x)) be two solutions of (2.4) with initial
function (u1, u2)(0, x), (v1, v2)(0, x) ∈ Xr1×r2 . If (u1, u2)(0, x) ≥ (v1, v2)(0, x) for
x ∈ R, then (u1, u2)(t, x) ≥ (v1, v2)(t, x) for all t > 0 and x ∈ R.

Proof. Lemma 2.1 in [35] can be utilized in a comparable manner to finish the
proof. Consequently, the details are omitted.

Based on the definition of time-periodic forced wave (ϕ(t, z), φ(t, z)) by (1.7),
noting that (ϕ(0, z), φ(0, z) = (u0(x), v0(x)) since z = x − ct = x when t = 0, we
see that

(ϕ(t, z), φ(t, z)) = (u(t, z + ct), v(t, z + ct)) = T−ct[(u(t, ·), v(t, ·))](z),

where T−ct is a translation operator defined by T−ct[χ] = χ(· + ct),∀χ ∈ X+, and
(u(t, x), v(t, x)) is the solutions of Cauchy problem (2.1).

For any (u0, v0) ∈ X+, denote

G(t)[(u0, v0)](x) := (G1(t),G2(t))[(u0, v0)](x)

= (T−ct ◦ (e−ρtP1(t)), T−ct ◦ (e−ρtP2(t)))[(u0, v0)](x).

It follows that the time-periodic forced wave satisfies that

(ϕ(t, z), φ(t, z))

= Ĝ[(ϕ(t, z), φ(t, z))]

= G(t)[ϕ(0, ·), φ(0, ·)](z)

+

∫ t

0

G(t− s)[(Q1(s, ·, ϕ(s, ·), φ(s, ·)),Q2(s, ·, ϕ(s, ·), φ(s, ·)))](z)ds,

where Q1(t, z, u, v) = u(t, z)[ρ+ r1(t, z)− u(t, z) + a1v(t, z)],

Q2(t, z, u, v) = v(t, z)[ρ+ r2(t, z)− v(t, z) + a2u(t, z)].

Next, we establish the existence of time-periodic forced pulsating waves. In
order to construct the upper and lower solutions by using differential equations, we
consider the following systemut = d1[J1 ∗ u− u] + cuz + u[r1(t, z)− u+ a1v],

vt = d2[J2 ∗ v − v] + cvz + v[r2(t, z)− v + a2u].
(2.6)

Definition 2.2. A pair of vector functions (u, v), (u, v) ∈ (R,X+) are called order
upper and lower solutions of (2.6) if (u, v) ≥ (u, v) ≥ (0, 0) and further satisfy

ut ≥ d1[J1 ∗ u− v] + cuz + u[r1(t, z)− u+ a1v],

vt ≥ d2[J2 ∗ v − v] + cvz + v[r2(t, z)− v + a2u],

ut ≤ d1[J1 ∗ u− u] + cuz + u[r1(t, z)− u+ a1v],

vt ≤ d2[J2 ∗ v − v] + cvz + v[r2(t, z)− v + a2u]

for z ∈ R except for a finite number of points.



2812 Z. Gong, H. Cheng & R. Yuan

Lemma 2.3. If (u, v) and (u, v) are a pair of upper and lower solutions for (2.6),
then we have

u(t, z) ≥ G1(t)[u(0, ·)](z) +
∫ t

0

G1(t− s)[Q1(s, ·, u(s, ·), v(s, ·))](z)ds, (2.7)

v(t, z) ≥ G2(t)[v(0, ·)](z) +
∫ t

0

G2(t− s)[Q2(s, ·, u(s, ·), v(s, ·))](z)ds, (2.8)

u(t, z) ≤ G1(t)[u(0, ·)](z) +
∫ t

0

G1(t− s)[Q1(s, ·, u(s, ·), v(s, ·))](z)ds, (2.9)

v(t, z) ≤ G2(t)[v(0, ·)](z) +
∫ t

0

G2(t− s)[Q2(s, ·, u(s, ·), v(s, ·))](z)ds. (2.10)

Proof. The proof of Lemma 2.3 is similar to the Claim (3.30) of [16], which will
not be proved here.

Now we are in a position to give the general existence result.

Lemma 2.4. Let c > 0 and assume that (u, v) and (u, v) ∈ C(R,X+) are a pair
of upper and lower solutions of (2.6) with (p(t), q(t)) ≥ (u, v) ≥ (u, v) ≥ (0, 0).
Further, if (u, v)(t, z) and (u, v)(t, z) are periodic in t ∈ R, then (2.6) admits a
time-periodic forced wave (ϕ(t, z), φ(t, z)) satisfying that

(u, v)(t, z) ≤ (ϕ(t, z), φ(t, z)) ≤ (u, v)(t, z), z ∈ R.

Proof. Define the following set

Γ = {(u, v)(t, z) ∈ C(R2,R2) : (u, v)(t+ T, z) = (u, v)(t, z),

(u, v)(t, z) ≤ (u, v)(t, z) ≤ (u, v)(t, z)}.

Particularly, (u, v)(t, z), (u, v)(t, z) are in Γ. Now we consider the operator equation

(u, v)(t, x)

= Ĝ[(u, v)(t, x)]

= G(t)[(u, v)(0, ·)](x)

+

∫ t

0

G(t− s)[(Q1(s, ·, u(s, ·), v(s, ·)),Q2(s, ·, u(s, ·), v(s, ·)))](x)ds,

where

G(t) = (G1(t),G2(t)) = (T−ct ◦ (e−ρtP1(t)), T−ct ◦ (e−ρtP2(t))).

Let (u(0), v(0)) = (u, v) and (u(0), v(0)) = (u, v), then we define the iterations as
follows

u(n+1) = Ĝ1

[(
u(n), v(n)

)]
, v(n+1) = Ĝ2

[(
u(n), v(n)

)]
,

u(n+1) = Ĝ1

[(
u(n), v(n)

)]
, v(n+1) = Ĝ2

[(
u(n), v(n)

)]
.

It then follows from Lemma 2.3 that

u ≤ u(n) ≤ u(n+1) ≤ u(n+1) ≤ u(n) ≤ u,
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and

v ≤ v(n) ≤ v(n+1) ≤ v(n+1) ≤ v(n) ≤ v.

Together with the fact that u(n)(t, z), v(n)(t, z), u(n)(t, z), v(n)(t, z) are continuous
for z ∈ R, induce the following limits in the sense of point-to-point convergence
with respect to z ∈ R, for any fixed t ∈ (0, T ],

u(t, z) ≤ ϕ(t, z) := lim
n→∞

u(n)(t, z) ≤ u(t, z), (2.11)

v(t, z) ≤ φ(t, z) := lim
n→∞

v(n)(t, z) ≤ v(t, z). (2.12)

By Lebesgue’s dominated convergence theorem, we can get

(ϕ(t, z), φ(t, z))

= G(t)[ϕ(0, ·), φ(0, ·)](z)

+

∫ t

0

G(t− s)[(Q1(s, ·, ϕ(s, ·), φ(s, ·)),Q2(s, ·, ϕ(s, ·), φ(s, ·)))](z)ds.

(2.13)

In view of the fact that (u, v)(t, z), (u, v)(t, z) are time periodic in t, then we obtain
a pair of T -time periodic functions (ϕ(t, z), φ(t, z)).

In the following, we show that ϕ(t, z) and φ(t, z) are continuous in z ∈ R. Notice
that (ϕ(T, z), φ(T, z)) = (ϕ(0, z), φ(0, z)), ∀z ∈ R. By the definition of G(t), we see
that

ϕ(0, z) = ϕ(T, z) = G1(T )[ϕ(0, ·)](z) +
∫ T

0

G1(T − s)[Q1(s, ·, ϕ(s, ·), φ(s, ·))](z)ds,

φ(0, z) = φ(T, z) = G2(T )[φ(0, ·)](z) +
∫ T

0

G2(T − s)[Q2(s, ·, ϕ(s, ·), φ(s, ·))](z)ds,

which can be rewritten as

(I − G1(T ))[ϕ(0, ·)](z) =
∫ T

0

G1(T − s)[Q1(s, ·, ϕ(s, ·), φ(s, ·))](z)ds,

(I − G2(T ))[φ(0, ·)](z) =
∫ T

0

G2(T − s)[Q2(s, ·, ϕ(s, ·), φ(s, ·))](z)ds,

where I denote the identity map. By the similar argument in [16], we have ∥
Gi(t) ∥< 1 for each t > 0 and i = 1, 2. Thus,

[ϕ(0, ·)](z) = (I − G1(T ))
−1

∫ T

0

G1(T − s)[Q1(s, ·, ϕ(s, ·), φ(s, ·))](z)ds

=

∞∑
k=0

(G1(T ))
k

∫ T

0

G1(T − s)[Q1(s, ·, ϕ(s, ·), φ(s, ·))](z)ds,

[φ(0, ·)](z) = (I − G2(T ))
−1

∫ T

0

G2(T − s)[Q2(s, ·, ϕ(s, ·), φ(s, ·))](z)ds

=

∞∑
k=0

(G2(T ))
k

∫ T

0

G2(T − s)[Q2(s, ·, ϕ(s, ·), φ(s, ·))](z)ds.
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Further, we have

ϕ(t, z) = G1(t)

∞∑
k=0

(G1(T ))
k

∫ T

0

G1(T − s)[Q1(s, ·, ϕ(s, ·), φ(s, ·))](z)ds

+

∫ t

0

G1(t− s)[Q1(s, ·, ϕ(s, ·), φ(s, ·))](z)ds,
(2.14)

and

φ(t, z) = G2(t)

∞∑
k=0

(G2(T ))
k

∫ T

0

G2(T − s)[Q2(s, ·, ϕ(s, ·), φ(s, ·))](z)ds

+

∫ t

0

G2(t− s)[Q2(s, ·, ϕ(s, ·), φ(s, ·))](z)ds.
(2.15)

Inspired by Lemma 3.2 of [34], we next show that

∫ t

0

Gi(t−s)[Qi(s, ·, ϕ(s, ·), φ(s, ·))]

(z)ds is continuous in z ∈ R. Come back to the definition of Gi(t), we know that∫ t

0

Gi(t− s)[Qi(s, ·, ϕ(s, ·), φ(s, ·))](z)ds

=

∫ t

0

e−(ρ+di)(t−s)
∞∑
k=0

(d(t− s))k

k!
aik[Qi(s, ·, ϕ(s, ·), φ(s, ·))](z + cs)ds

=
1

c

∫ ct+z

z

e−(ρ+di)(t− η−z
c )

×
∞∑
k=0

(
d
(
t− η−z

c

))k
k!

aik

(
Q
(
η − z

c
, η, ϕ

(
η − z

c
, η

)
, φ

(
η − z

c
, η

)))
dη.

Recall from (2.13) that (ϕ(t, ·), φ(t, ·)) are continuously differentiable in t, it then

follows that aik

(
Q
(
η − z

c
, η, ϕ

(
η − z

c
, η

)
, φ

(
η − z

c
, η

)))
is continuous in z ∈

R. This together with the above expression implies that
∫ t

0
Gi(t− s)[Qi(s, ·, ϕ(s, ·),

φ(s, ·))](z)ds is continuous in z ∈ R. Further, we can obtain that ϕ(t, z) and φ(t, z)
are continuous in z ∈ R by (2.14) and (2.15).

Next, we defineu(t, z) = p(t)(1 + ϵ1e
−γz), v(t, z) = q(t)(1 + ϵ2e

−γz),

u(t, z) = max{0, p(t)(1− ϵ3e
−γz)}, v(t, z) = max{0, q(t)(1− ϵ4e

−γz)}

for (t, z) ∈ R2, where γ > 0, ϵ1, ϵ4 > 0 and ϵ2, ϵ3 > 1. Meanwhile, ϵi(i = 1, 2, 3, 4)
satisfy that

ϵ1p(t) ≥ ϵ2a1q(t), ϵ4q(t) ≥ ϵ3a2p(t), ϵ3p(t) > ϵ4a1q(t), ϵ2q(t) > ϵ1a2p(t) (2.16)

for all t ∈ [0, T ].

Lemma 2.5. Under the assumptions (H1) and (H2), there exist γ > 0, ϵi >
0, i = 1, 2 and ϵi > 1, i = 3, 4 with (2.16) being valid such that (u(t, z), v(t, z))
and (u(t, z), v(t, z)) are a pair of upper and lower solutions of (2.6) with any c > 0.
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Proof. We divide the proof by the following steps.

Step 1. Show L1[(u, v)](t, z) ≥ 0, where

L1[(u, v)](t, z) := ut(t, z)− d1[J1 ∗ u(t, z)− u(t, z)]− cuz(t, z)

−u(t, z)[r1(t, z)− u(t, z) + a1v(t, z)].

By u(t, z) = p(t)(1 + ϵ1e
−γz) and v(t, z) = q(t)(1 + ϵ2e

−γz), we have

L1[(u, v)](t, z)

= p′(t)(1 + ϵ1e
−γz)− ϵ1p(t)e

−γz

(
d1

∫
R
J1(y)e

γydy − d1

)
+ cγϵ1p(t)e

−γz

−p(t)(1 + ϵ1e
−γz)[r1(t, z)− p(t)(1 + ϵ1e

−γz) + a1q(t)(1 + ϵ2e
−γz)]

= p(t)(1 + ϵ1e
−γz)[r1(t,∞)− p(t) + a1q(t)]− ϵ1p(t)e

−γz

(
d1

∫
R
J1(y)e

γydy − d1

)
+cγϵ1p(t)e

−γz − p(t) [r1(t, z)− p(t)(1 + ϵ1e
−γz) + a1q(t)(1 + ϵ2e

−γz)]

−ϵ1p(t)e−γz [r1(t, z)− p(t)(1 + ϵ1e
−γz) + a1q(t)(1 + ϵ2e

−γz)]

= p(t)[r1(t,∞)− p(t) + a1q(t)− r1(t, z) + p(t)(1 + ϵ1e
−γz)− a1q(t)(1 + ϵ2e

−γz)]

+ϵ1p(t)e
−γz[−d1

∫
R
J1(y)e

γydy + d1 + cγ + r1(t,∞)− p(t) + a1q(t)

−r1(t, z) + p(t)(1 + ϵ1e
−γz)− a1q(t)(1 + ϵ2e

−γz)]

= p(t)[r1(t,∞)− r1(t, z) + ϵ1p(t)e
−γz − ϵ2a1q(t)e

−γz]

+ϵ1p(t)e
−γz[−d1

∫
R
J1(y)e

γydy + d1 + cγ + r1(t,∞) + r1(t,∞)− r1(t, z)

+ϵ1pe
−γz − ϵ2a1q(t)e

−γz].

By (H3), we see that

∫
R
J1(y)

eγy − 1

γ
dy → 0 as γ → 0. Hence, we can choose

sufficiently small γ > 0 such that

c > d1

∫
R
J1(y)

eγy − 1

γ
dy. (2.17)

This implies that

L1[(u, v)](t, z) ≥ p(t)(1 + ϵ1e
−γz)[r1(t,∞)− r1(t, z) + ϵ1p(t)e

−γz − ϵ2a1q(t)e
−γz]

≥ 0,

since r1(t, z) is nondecreasing with respect to z ∈ R and ϵ1p(t) ≥ ϵ2a1q(t).

Similarly, we can get

L2[(u, v)](t, z) ≥ q(t)(1 + ϵ2e
−γz)[r2(t,∞)− r2(t, z) + ϵ2q(t)e

−γz − ϵ1a2p(t)e
−γz]

≥ 0,
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where

L2[(u, v)](t, z) :=vt(t, z)− d2[J2 ∗ v(t, z)− v(t, z)]− cvz(t, z)

− v(t, z)[r2(t, z)− v(t, z) + a2u(t, z)].

Step 2. Show L1[(u, v)](t, z) ≤ 0. For z ≤ z3 = 1
γ ln ϵ3, since u(t, z) = 0 satisfies

the inequality above obviously, we only need to verify that L1[(u, v)](t, z) ≤ 0 for
z > z3. In fact, for z > z3, u(t, z) = p(t)(1− ϵ3e

−γz) and v(t, z) ≥ q(t)(1− ϵ4e
−γz).

Consequently, by (2.17), we have

L1[(u, v)](t, z) ≤ p′(t)(1− ϵ3e
−γz) + ϵ3p(t)e

−γz

(
d1

∫
R
J1(y)e

γydy − d1 − cγ

)
−p(t)(1− ϵ3e

−γz)[r1(t, z)− p(t)(1− ϵ3e
−γz) + a1q(t)(1− ϵ4e

−γz)]

≤ p(t)(1− ϵ3e
−γz)[r1(t,∞)− r1(t, z)− ϵ3p(t)e

−γz + ϵ4a1q(t)e
−γz].

Recall the facts that ϵ3p(t) > ϵ4a1q(t), ϵ3 > 1 and lim
z→∞

ri(t,∞)− ri(t, z)

e−αiz
= Ai.

Let γ > 0 be sufficiently small such that if z > z3, then r1(t,∞) − r1(t, z) ≤
(A1 + 1)e−α1z. This yields that for z > z3 and γ < α1,

L1[(u, v)](t, z) ≤ p(t)(1− ϵ3e
−γz)e−γz

[
(A1 + 1)e−(α1−γ)z − ϵ3p(t) + ϵ4a1q(t)

]
≤ p(t)(1− ϵ3e

−γz)e−γz
[
(A1 + 1)e−(α1−γ)z3 − ϵ3p(t) + ϵ4a1q(t)

]
.

Note that since ϵ3 > 1, there holds

(A1 + 1)

(
1

ϵ3

)α1−γ
γ

→ 0 as γ → 0.

Therefore, we can choose γ > 0 small enough such that

(A1 + 1)

(
1

ϵ3

)α1−γ
γ

< p(t)ϵ3 − a1q(t)ϵ4.

It follows that L1[(u, v)](t, z) ≤ 0. Similarly, we can get L2[(u, v)](t, z) ≤ 0.
The proof is completed.

Theorem 2.1. Under the assumptions (H1)-(H3), then for any c > 0, (1.5) admits
a time-periodic forced pulsating wave (u(t, x), v(t, x)) = (ϕ(t, x − ct), φ(t, x − ct))
connecting (0, 0) to (p(t), q(t)).

Proof. From Lemma 2.5, (u(t, z), v(t, z)) and (u(t, z), v(t, z)) are a pair of upper
and lower solutions of (1.5) with any c > 0. It then follows from Lemma 2.4 that
there is a time-periodic forced pulsating wave (ϕ(t, z), φ(t, z)) ∈ Γ of (1.5). Next,
we check that the boundary condition

lim
z→−∞

(ϕ, φ)(t, z) = (0, 0), lim
z→∞

(ϕ, φ)(t, z) = (p(t), q(t)).

Since

lim
z→−∞

(u, v) = lim
z→−∞

(u, v) = (0, 0),
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we have (ϕ(t,−∞), φ(t,−∞)) = (0, 0). Because (0, 0) ≤ (u, v) ≤ (ϕ, φ) ≤ (u, v),
taking the limit on z yields (0, 0) < (ϕ(t,∞), φ(t,∞)) ≤ (p(t), q(t)). Similar to
Theorem 2.5 in [42], we can get (ϕ(t, z), φ(t, z)) ∈ C1,2(R2,R2). By Barbǎlat′s
theorem, we have

lim
z→∞

(ϕzz, φzz)(t, z) = lim
z→∞

(ϕz, φz)(t, z) = (0, 0).

Therefore, (ϕ(t,∞), ψ(t,∞)) is a positive periodic solution to the following equationϕ
′
(t) = ϕ(θ1(t)− ϕ+ a1φ),

φ
′
(t) = φ(θ2(t)− φ+ a2ϕ).

Thus, (ϕ(t,∞), ψ(t,∞)) = (p(t), q(t)). This ends the proof.

3. Asymptotic behaviors of forced pulsating waves
for (1.5)

In this section, we investigate the asymptotic behaviors of (U, V )(t, z) of (1.8)-(1.9)
around (0,0).

Lemma 3.1. Assume that (H1), (H2) and c > 0 hold. Then the asymptotic behav-
iors of the forced pulsating wave solution (U, V )(t, z) as z → −∞ can be described
as below  U(t, z)

V (t, z)

 ∼

 A1ϕ̌0(t)e
−µ1z

A2ψ̌0(t)e
−µ2z

 , z → −∞, (3.1)

where Ai, i = 1, 2 are positive numbers, and µ1, µ2 are solutions of

d1

(∫
R
J1(y)e

µ1ydy − 1

)
− cµ1 + β1(t) = 0,

d2

(∫
R
J2(y)e

µ2ydy − 1

)
− cµ2 + β2(t) = 0.

(3.2)

Proof. We concentrate the case z → −∞. When z → −∞, both U and V tend to
zero. Therefore, the terms U2 and UV can be regarded as higher-order smallness
and thus can be discarded. This indicates that we need work on the linear system
first.

By z → −∞ in (1.8) and by virtue of the boundary conditions (1.9) as well as
the assumptions on ri(t, z), i = 1, 2, the limiting system that follows can be deduced Ǔt = d1(J1 ∗ Ǔ − Ǔ) + cǓz + Ǔβ1(t), t ∈ R+, x ∈ R,

V̌t = d2(J2 ∗ V̌ − V̌ ) + cV̌z + V̌ β2(t), t ∈ R+, x ∈ R.
(3.3)

Making an ansatz Ǔ(t, z) = A1ϕ̌0(t)e
−µ1z with ϕ̌0(t) being a T -periodic function.

When it is substituted into the first equation of (3.3), the corresponding eigenvalue
problem arises

ϕ̌′0(t)

ϕ̌0(t)
= d1

(∫
R
J1(y)e

µ1ydy − 1

)
− cµ1 + β1(t). (3.4)
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From (3.4), we can obtain

ϕ̌0(t) = ϕ̌0(0)exp

[∫ t

0

(
d1

(∫
R
J1(y)e

µ1ydy − 1

)
− cµ1 + β1(s)

)
ds

]
,

where µ1 is the solution of

d1

(∫
R
J1(y)e

µ1ydy − 1

)
− cµ1 + β1(t) = 0.

Similarly, making an ansatz V̌ (t, z) = A2ψ̌0(t)e
−µ2z with ψ̌0(t) being a T -

periodic function. When it is substituted into the second equation of (3.4), the
corresponding eigenvalue problem arises

ψ̌′
0(t)

ψ̌0(t)
= d2

(∫
R
J2(y)e

µ2ydy − 1

)
− cµ2 + β2(t). (3.5)

From (3.5), we have

ψ̌0(t) = ψ̌0(0)exp

[∫ t

0

(
d2

(∫
R
J2(y)e

µ2ydy − 1

)
− cµ2 + β2(s)

)
ds

]
,

where µ2 is the solution of

d2

(∫
R
J2(y)e

µ2ydy − 1

)
− cµ2 + β2(t) = 0.

Thus, the proof is completed.

4. Stability of forced pulsating waves for (1.5)

In this section, we study the stability of the forced pulsating wave of the equation
(1.5). First we consider the initial value problem

∂u(t, x)

∂t
= d1(J1 ∗ u− u)(t, x) + u(t, x)(r1(t, x− ct)− u(t, x) + a1v(t, x)),

∂v(t, x)

∂t
= d2(J2 ∗ v − v)(t, x) + v(t, x)(r2(t, x− ct)− v(t, x) + a2u(t, x)),

(u(0, x), v(0, x)) = (u0(x), v0(x)),

(4.1)
where (u0(x), v0(x)) ∈ C(R,R2) satisfy

(0, 0) ≤ (u0(x), v0(x)) ≤ (p(0), q(0)), x ∈ R.

Inspired by Theorem 2.5 of [42], in the process of studying the stability of the
forced pulsating waves, we assume the conditions

a1q(t)− p(t) < 0, a2p(t)− q(t) < 0

are always true.
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Lemma 4.1. For any x ∈ R, t ∈ R+, the mild solution of equation (4.1) is satisfied
u(t, x, u0(x), v0(x)) = P1(t)u0(x) +

∫ t

0

P1(t− s)[f1(s, ·, u(s, ·), v(s, ·))](x)ds,

v(t, x, u0(x), v0(x)) = P2(t)v0(x) +

∫ t

0

P2(t− s)[f2(s, ·, u(s, ·), v(s, ·))](x)ds.

Remark 4.1. Assume that (u(t, x, u0(x), v0(x)), v(t, x, u0(x), v0(x))), (u(t, x,
φ0(x), ψ0(x)), v(t, x, φ0(x), ψ0(x))) are mild solutions to (4.1). If

(0, 0) ≤ (u0(x), v0(x)) ≤ (φ0(x), ψ0(x)), t ∈ R+, x ∈ R,

then

(0, 0) ≤ (u(t, x, u0(x), v0(x)), v(t, x, u0(x), v0(x)))

≤ (u(t, x, φ0(x), ψ0(x)), v(t, x, φ0(x), ψ0(x))), t ∈ R+, x ∈ R.

In the following study, we abbreviate u0(x), v0(x), φ0(x), ψ0(x) as u0, v0, φ0, ψ0.

Lemma 4.2. Assume that (u(t, x, u0, v0), v(t, x, u0, v0)), (u(t, x, φ0, ψ0), v(t, x, φ0,
ψ0)) are mild solutions to (4.1). If (u0, v0), (φ0, ψ0) ∈ C(R,R), (φ0, ψ0) ≤ (u0, v0),

then there exists a positive continuous function θ̂(·), φ̂(·) defined on [0,+∞) such
that

u(t, x, u0, v0)− u(t, x, φ0, ψ0) ≥ θ̂(M̂)

∫ z+1

z

[u(t0, y, u0, v0)− u(t0, y, φ0, ψ0)]dy ≥ 0,

v(t, x, u0, v0)− v(t, x, φ0, ψ0) ≥ φ̂(M̂)

∫ z+1

z

[v(t0, y, u0, v0)− v(t0, y, φ0, ψ0)]dy ≥ 0

for any M̂ > 0, x ∈ R and t > t0 ≥ 0.

The proof of Lemma 4.2 is similar to Lemma 3.3 of [22], which will not be proved
here.

Lemma 4.3. Assume that (u(t, x, u0, v0), v(t, x, u0, v0)), (u(t, x, φ0, ψ0), v(t, x, φ0,
ψ0)) are mild solutions to (4.1). If (φ0, ψ0) ≤ (u0, v0) ≤ (p(0), q(0)), then

∥ u(t, x, u0, v0)− u(t, x, φ0, ψ0) ∥≤ min{eµt(∥ u0 − φ0 ∥ + ∥ v0 − ψ0 ∥), p(t))},

∥ v(t, x, u0, v0)− v(t, x, φ0, ψ0) ∥≤ min{eµt(∥ u0 − φ0 ∥ + ∥ v0 − ψ0 ∥), q(t))},

where ∥ · ∥ is the maximum value norm of C(R,R), µ = 2max{M1,M2} > 0, and

M1 = max{ max
(t,u,v)∈[0,T ]×[0,p(t)]×[0,q(t)]

| ∂uf1 |, max
(t,u,v)∈[0,T ]×[0,p(t)]×[0,q(t)]

| ∂vf1 |},

M2 = max{ max
(t,u,v)∈[0,T ]×[0,p(t)]×[0,q(t)]

| ∂uf2 |, max
(t,u,v)∈[0,T ]×[0,p(t)]×[0,q(t)]

| ∂vf2 |}.

Proof. Assume d = min{d1, d2}, we have

∥ u(t, x, u0, v0)− u(t, x, φ0, ψ0) ∥
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≤
∫ t

0

P1(t) ∥ f1(u(s, x, u0, v0), v(s, x, u0, v0))−f1(u(s, x, φ0, ψ0), v(s, x, φ0, ψ0)) ∥ ds

+ ∥ P1(t)u0 − P1(t)φ0 ∥

≤
∫ t

0

e−d(t−s)(max | ∂uf1 | · ∥ u(s, x, u0, v0)− u(s, x, φ0, ψ0) ∥

+max | ∂vf1 | · ∥ v(s, x, u0, v0)− v(s, x, φ0, ψ0) ∥)ds+ P1(t) ∥ u0 − φ0 ∥

≤M1

∫ t

0

e−d(t−s)(∥ u(s, x, u0, v0)− u(s, x, φ0, ψ0) ∥ + ∥ v(s, x, u0, v0)

− v(s, x, φ0, ψ0) ∥)ds+ e−dt ∥ u0 − φ0 ∥,

where

M1 = max{ max
(t,u,v)∈[0,T ]×[0,p(t)]×[0,q(t)]

| ∂uf1 |, max
(t,u,v)∈[0,T ]×[0,p(t)]×[0,q(t)]

| ∂vf1 |}.

Similarly, we can see

∥ v(t, x, u0, v0)− v(t, x, φ0, ψ0) ∥

≤M2

∫ t

0

e−d(t−s)(∥ u(s, x, u0, v0)− u(s, x, φ0, ψ0) ∥ + ∥ v(s, x, u0, v0)

− v(s, x, φ0, ψ0) ∥)ds+ e−dt ∥ v0 − ψ0 ∥,

where

M2 = max{ max
(t,u,v)∈[0,T ]×[0,p(t)]×[0,q(t)]

| ∂uf2 |, max
(t,u,v)∈[0,T ]×[0,p(t)]×[0,q(t)]

| ∂vf2 |}.

Further, we can obtain

∥ u(t, x, u0, v0)− u(t, x, φ0, ψ0) ∥ + ∥ v(t, x, u0, v0)− v(t, x, φ0, ψ0) ∥

≤ µ

∫ t

0

e−d(t−s)(∥ u(s, x, u0, v0)− u(s, x, φ0, ψ0) ∥ + ∥ v(s, x, u0, v0)

−v(s, x, φ0, ψ0) ∥)ds+ e−dt(∥ u0 − φ0 ∥ + ∥ v0 − ψ0 ∥),

i.e.,

edt(∥ u(t, x, u0, v0)− u(t, x, φ0, ψ0) ∥ + ∥ v(t, x, u0, v0)− v(t, x, φ0, ψ0) ∥)

≤ µ

∫ t

0

eds(∥ u(s, x, u0, v0)− u(s, x, φ0, ψ0) ∥ + ∥ v(s, x, u0, v0)

−v(s, x, φ0, ψ0) ∥)ds+ ∥ u0 − φ0 ∥ + ∥ v0 − ψ0 ∥,

where µ = 2max{M1,M2}. By Gronwall’s inequality, we can establish

∥ u(t, x, u0, v0)− u(t, x, φ0, ψ0) ∥ + ∥ v(t, x, u0, v0)− v(t, x, φ0, ψ0) ∥

≤ eµt(∥ u0 − φ0 ∥ + ∥ v0 − ψ0 ∥).

Therefore,

∥ u(t, x, u0, v0)− u(t, x, φ0, ψ0) ∥≤ eµt(∥ u0 − φ0 ∥ + ∥ v0 − ψ0 ∥),

∥ v(t, x, u0, v0)− v(t, x, φ0, ψ0) ∥≤ eµt(∥ u0 − φ0 ∥ + ∥ v0 − ψ0 ∥).
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Thus, the proof is completed.

Definition 4.1. For any t ∈ [0, T ), x ∈ R, if the continuous function (u(t, x),
v(t, x)), (u(t, x), v(t, x)) satisfy

ut(t, x) ≥ d1(J1 ∗ u− u)(t, x) + u(t, x)[r1(t, x− ct)− u(t, x) + a1v(t, x)], (4.2)

vt(t, x) ≥ d2(J2 ∗ v − v)(t, x) + v(t, x)[r2(t, x− ct)− v(t, x) + a2u(t, x)], (4.3)

ut(t, x) ≤ d1(J1 ∗ u− u)(t, x) + u(t, x)[r1(t, x− ct)− u(t, x) + a1v(t, x)], (4.4)

vt(t, x) ≤ d2(J2 ∗ v − v)(t, x) + v(t, x)[r2(t, x− ct)− v(t, x) + a2u(t, x)], (4.5)

then (u(t, x), v(t, x)), (u(t, x), v(t, x)) are a pair of upper and lower solutions of the
system (4.1).

Lemma 4.4. Assume that (u(t, x), v(t, x)), (u(t, x), v(t, x)) are a pair of upper
and lower solutions of the system (4.1). If (u(0, x), v(0, x)) ≤ (u(0, x), v(0, x)) ≤
(u(0, x), v(0, x)), then (u(t, x), v(t, x)) and (u(t, x), v(t, x)) satisfy (u(t, x), v(t, x)) ≤
(u(t, x), v(t, x)) for any t ∈ [0, T ), x ∈ R. Therefore, (4.1) has a unique classical so-
lution (u(t, x), v(t, x)) satisfies (u(t, x), v(t, x)) ≤ (u(t, x), v(t, x)) ≤ (u(t, x), v(t, x)).

Lemma 4.5. Assume that (u(t, x), v(t, x)), (µ(t, x), ν(t, x)), (w(t, x), ω(t, x)) are
the upper solutions of (4.1) and (u(t, x), v(t, x)), (µ(t, x), ν(t, x)), (w(t, x), ω(t, x))
are the lower solution of the system (4.1). They satisfy (u(0, x), v(0, x)) ≤ (u(0, x),
v(0, x)) ≤ (u(0, x), v(0, x)), (µ(0, x), ν(0, x)) ≤ (µ(0, x), ν(0, x)) ≤ (µ(0, x), ν(0, x)),
(w(0, x), ω(0, x)) ≤ (w(0, x), ω(0, x))
≤ (w(0, x), ω(0, x)). If

(u(0, x), v(0, x)) ≤ min{(µ(0, x), ν(0, x)), (w(0, x), ω(0, x))},

then (µ(t, x), ν(t, x)), (w(t, x), ω(t, x)) and (u(t, x), v(t, x)) satisfy (u(t, x), v(t, x))
≤ min{(µ(t, x), ν(t, x)), (w(t, x), ω(t, x))} for any t ∈ [0, T ), x ∈ R. Therefore, (4.1)
has a unique classical solution (u(t, x), v(t, x)) satisfies (u(t, x), v(t, x)) ≤ (u(t, x),
v(t, x)) ≤ min{(µ(t, x), ν(t, x)), (w(t, x), ω(t, x))}.

Lemma 4.4 and Lemma 4.5 can be derived from the classical theory of parabolic
equation mixed quasi-monotonic systems in Smoller [27] and Ye et al. [39], the proof
is omitted here.

Remark 4.2. By Lemma 4.5, min{(µ(t, x), ν(t, x)), (w(t, x), ω(t, x))} is still the
upper solution of the equation (4.1).

Theorem 4.1. If the initial function (u0(x), v0(x)) satisfies
(i) (0, 0) ≤ (u0(x), v0(x)) ≤ (p(0), q(0));
(ii) (u, v) ≤ (u0(x), v0(x)) ≤ (u, v), where (u, v), (u, v) are a set of lower and upper
solutions defined by Definition 4.1;
(iii) lim inf

x→∞
u0(x) > 0, lim inf

x→∞
v0(x) > 0;

(iv) lim
x→−∞

u0(x)

K1eλ1x
= 1, lim

x→−∞

v0(x)

K2eλ2x
= 1.

Let (Φc,Ψc) be a solution defined by Theorem 2.1, then we have

lim
t→∞

sup
x∈R

∣∣∣∣u(t, x, u0, v0)Φc(t, x− ct)
− 1

∣∣∣∣ = 0, lim
t→∞

sup
x∈R

∣∣∣∣v(t, x, u0, v0)Ψc(t, x− ct)
− 1

∣∣∣∣ = 0.
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Next we use the following lemmas to prove Theorem 4.1.

Lemma 4.6. (Φc(t, z),Ψc(t, z)) is strictly monotonically increasing with respect to
z, i.e.

Φc
z(t, z) > 0,Ψc

z(t, z) > 0.

Proof. The proof of Lemma 4.6 is similar to Lemma 2.4 of [42], which will not be
proved here.

Lemma 4.7. Assume ξ+ ∈ R and ε ∈ (0, ε], where ε ∈ (0, 1). If γ > 0 is sufficiently
small, σ > 0 and σγ is sufficiently large, then (u, v)(t, x) is an upper solution of
(4.1), where

u(t, x) = (1 + εe−γt)Φc(t, x− ct− ξ+ − εσe−γt),

v(t, x) = (1 + εe−γt)Ψc(t, x− ct− ξ+ − εσe−γt).

Proof. We only prove that u(t, x) satisfies inequality (4.2), since v(t, x) satisfies
inequality (4.3) that can be handled similarly.

Let τ = x− ct− ξ+ − εσe−γt, u(t, x) = (1 + εe−γt)Φc(t, τ), we can get

∂u(t, x)

∂t
= −εγe−γtΦc(t, τ) + (1 + εe−γt)Φc

t(t, τ)

− c(1 + εe−γt)Φc
τ (t, τ) + εσγe−γt(1 + εe−γt)Φc

τ (t, τ),

J1 ∗ u− u = (1 + εe−γt)(J1 ∗ Φc(t, τ)− Φc(t, τ)),

and

u(r1(t, x− ct)− u+ a1v)

= (1 + εe−γt)Φc(t, τ)[r1(t, x− ct)− (1 + εe−γt)Φc(t, τ) + a1(1 + εe−γt)Ψc(t, τ)]

= (1 + εe−γt)Φc(t, τ)(r1(t, x− ct)− Φc(t, τ) + a1Ψ
c(t, τ))

+εe−γt(1 + εe−γt)Φc(t, τ)(−Φc(t, τ) + a1Ψ
c(t, τ)).

Therefore, we can get

d1(J1 ∗ u− u) + u(r1(t, x− ct)− u+ a1v)− ut

= d1(1 + εe−γt)(J1 ∗ Φc(t, τ)− Φc(t, τ))

+(1 + εe−γt)Φc(t, τ)(r1(t, x− ct)− Φc(t, τ) + a1Ψ
c(t, τ))

+εe−γt(1 + εe−γt)Φc(t, τ)(−Φc(t, τ) + a1Ψ
c(t, τ)) + εγe−γtΦc(t, τ)

−(1 + εe−γt)Φc
t(t, τ) + c(1 + εe−γt)Φc

τ (t, τ)− εσγe−γt(1 + εe−γt)Φc
τ (t, τ)

= (1 + εe−γt)[d1(J1 ∗ Φc − Φc)(t, τ) + cΦc
τ (t, τ)− Φc

t(t, τ) + Φc(t, τ)(r1(t, x− ct)

−Φc(t, τ) + a1Ψ
c(t, τ))] + εe−γt(1 + εe−γt)Φc(t, τ)(−Φc(t, τ) + a1Ψ

c(t, τ))

+εγe−γtΦc(t, τ)− εσγe−γt(1 + εe−γt)Φc
τ (t, τ).

From the definition of the forced pulsating wave solution, we have

d1(J1 ∗ Φc − Φc)(t, τ) + cΦc
τ (t, τ)− Φc

t(t, τ)
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+Φc(t, τ)[r1(t, x− ct)− Φc(t, τ) + a1Ψ
c(t, τ)] = 0.

In order to get (4.2), we need to prove

(1 + εe−γt)Φc(t, τ)[−Φc(t, τ) + a1Ψ
c(t, τ)] + γΦc(t, τ)− σγ(1 + εe−γt)Φc

τ (t, τ)≤ 0,

in other words,

(1 + εe−γt)Φc(t, τ)[−Φc(t, τ) + a1Ψ
c(t, τ)]

≤ −γΦc(t, τ) + σγ(1 + εe−γt)Φc
τ (t, τ).

(4.6)

Take a sufficiently large positive integer H and verify it in two steps.

(I) Assume | τ |≥ H, when τ → ∞,

−Φc(t, τ) + a1Ψ
c(t, τ) → −p(t) + a1q(t).

For −p(t) + a1q(t) < 0, so we have

(1 + εe−γt)Φc(t, τ)[−Φc(t, τ) + a1Ψ
c(t, τ)] < 0.

Since γ > 0 is sufficiently small, σγ > 0 is sufficiently large and ε ∈ (0, 1),
Φc

τ (t, τ) > 0, then −γΦc(t, τ) → 0 and σγ(1 + εe−γt)Φc
τ (t, τ) → ∞. i.e.,

−γΦc(t, τ) + σγ(1 + εe−γt)Φc
τ (t, τ) → ∞.

Thus, (4.6) is true.

(II) Choose | τ |≤ H, we can get −γΦc(t, τ) + σγ(1 + εe−γt)Φc
τ (t, τ) → ∞ by the

same proof as (I). Due to Φc(t, τ), Ψc(t, τ) are bounded, then (1+εe−γt)Φc(t, τ)[−Φc

(t, τ) + a1Ψ
c(t, τ)] are bounded. Therefore, (4.6) is true, i.e., u(t, x) satisfies in-

equality (4.2).

The similar method shows that if a2p(t)−q(t) < 0, then v(t, x) satisfies inequality
(4.3). Thus, (u, v)(t, x) is an upper solution of (4.1).

Lemma 4.8. Assume ξ− ∈ R and ε ∈ (0, ε] for ε ∈ (0, 1). If γ > 0 is sufficiently
small, σ > 0 and σγ is sufficiently large, then (u, v)(t, x) is a lower solution of
(4.1), where

u(t, x) = (1− εe−γt)Φc(t, x− ct+ ξ− + εσe−γt),

v(t, x) = (1− εe−γt)Ψc(t, x− ct+ ξ− + εσe−γt).

Proof. We only prove that u(t, x) satisfies inequality (4.4), since v(t, x) satisfies
inequality (4.5) that can be handled similarly.

Let ς = x− ct+ ξ− + εσe−γt. When u(t, x) = (1− εe−γt)Φc(t, ς), we can obtain

∂u(t, x)

∂t
= εγe−γtΦc(t, ς) + (1− εe−γt)Φc

t(t, ς)

− c(1− εe−γt)Φc
ς(t, ς)− εσγe−γt(1− εe−γt)Φc

ς(t, ς),

J1 ∗ u− u = (1− εe−γt)(J1 ∗ Φc(t, ς)− Φc(t, ς)),
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and

u(r1(t, x− ct)− u+ a1v)

= (1− εe−γt)Φc(t, ς)[r1(t, x− ct)− (1− εe−γt)Φc(t, ς) + a1(1− εe−γt)Ψc(t, ς)]

= (1− εe−γt)Φc(t, ς)(r1(t, x− ct)− Φc(t, ς) + a1Ψ
c(t, ς))

−εe−γt(1− εe−γt)Φc(t, ς)(−Φc(t, ς) + a1Ψ
c(t, ς)).

Therefore, we can get

d1(J1 ∗ u− u) + u(r1(t, x− ct)− u+ a1v)− ut

= d1(1− εe−γt)(J1 ∗ Φc(t, ς)− Φc(t, ς))

+(1− εe−γt)Φc(t, ς)(r1(t, x− ct)− Φc(t, ς) + a1Ψ
c(t, ς))

−e−γt(1− εe−γt)Φc(t, ς)(−εΦc(t, ς) + a1εΨ
c(t, ς))− εγe−γtΦc(t, ς)

−(1− εe−γt)Φc
t(t, ς) + c(1− εe−γt)Φc

ς(t, ς) + εσγe−γt(1− εe−γt)Φc
ς(t, ς)

= (1− εe−γt)[d1(J1 ∗ Φc − Φc)(t, ς) + cΦc
ς(t, ς)− Φc

t(t, ς) + Φc(t, ς)(r1(t, x− ct)

−Φc(t, ς) + a1Ψ
c(t, ς))]− εe−γt(1− εe−γt)Φc(t, ς)(−Φc(t, ς) + a1Ψ

c(t, ς))

−εγe−γtΦc(t, ς) + εσγe−γt(1− εe−γt)Φc
ς(t, ς).

From the definition of the forced pulsating wave solution, we have

d1(J1 ∗ Φc − Φc)(t, ς) + cΦc
ς(t, ς)− Φc

t(t, ς)

+ Φc(t, ς)[r1(t, x− ct)− Φc(t, ς) + a1Ψ
c(t, ς)] = 0.

In order to get (4.4), we need to prove

−(1− εe−γt)Φc(t, ς)[−Φc(t, ς) + a1Ψ
c(t, ς)]− γΦc(t, ς) + σγ(1− εe−γt)Φc

ς(t, ς)≥ 0,

in other words,

(1− εe−γt)Φc(t, ς)[−Φc(t, ς) + a1Ψ
c(t, ς)]

≤ −γΦc(t, ς) + σγ(1− εe−γt)Φc
ς(t, ς).

(4.7)

Take a sufficiently large positive integer N and verify it in two steps.
(I) Assume | ς |≥ N , when ς → ∞,

−Φc(t, ς) + a1Ψ
c(t, ς) → −p(t) + a1q(t).

For −p(t) + a1q(t) < 0, so we have

(1− εe−γt)Φc(t, ς)[−Φc(t, ς) + a1Ψ
c(t, ς)] < 0.

Since γ > 0 is sufficiently small, σγ > 0 is sufficiently large and ε ∈ (0, 1), Φc
ς(t, ς) >

0, then −γΦc(t, ς) → 0 and σγ(1− εe−γt)Φc
ς(t, ς) → ∞. i.e.,

−γΦc(t, ς) + σγ(1− εe−γt)Φc
ς(t, ς) → ∞.
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Thus, (4.7) is true.
(II) Choose | ς |≤ N , we can get −γΦc(t, ς) + σγ(1 − εe−γt)Φc

ς(t, ς) → ∞ by the
same proof as (I). Since Φc(t, ς), Ψc(t, ς) are bounded, then (1− εe−γt)Φc(t, ς)[−Φc

(t, ς) + a1Ψ
c(t, ς)] are bounded. Therefore, (4.7) is true, i.e., u(t, x) satisfies in-

equality (4.4).
The similar method shows that for a2p(t)− q(t) < 0, v(t, x) satisfies inequality

(4.5). Thus, (u, v)(t, x) is a lower solution of (4.1).

Lemma 4.9. For ε > 0, there is τ1 = τ1(ε), for any τ ≤ τ1, such that

inf
t≥0

u(t, τ − ct− 2ε, u0, v0) ≤ Φc(t, τ) ≤ sup
t≥0

u(t, τ − ct− 2ε, u0, v0),

inf
t≥0

v(t, τ − ct− 2ε, u0, v0) ≤ Ψc(t, τ) ≤ sup
t≥0

v(t, τ − ct− 2ε, u0, v0).
(4.8)

Proof. We know that

inf
t≥0

Φc(t, τ) ≤ Φc(t, τ) ≤ sup
t≥0

Φc(t, τ)

for any τ ∈ R. Since (Φc,Ψc) is a solution of (4.1), there is τ1 = τ1(ε), for any
τ ≤ τ1, such that

inf
t≥0

u(t, τ − ct− 2ε, u0, v0) ≤ inf
t≥0

Φc(t, τ),

sup
t≥0

u(t, τ − ct− 2ε, u0, v0) ≥ sup
t≥0

Φc(t, τ).

Thus, the first equation of (4.8) is true. The second inequality of (4.8) can be proved
similarly.

Lemma 4.10. There exist positive constants ε ∈ (0, 1), γ, σ, z0, such that

(1− εe−γt)Φc(t, ξ − z0 + εσe−γt) ≤ u(t, x, u0, v0)

≤ (1 + εe−γt)Φc(t, ξ + z0 − εσe−γt),

(1− εe−γt)Ψc(t, ξ − z0 + εσe−γt) ≤ v(t, x, u0, v0)

≤ (1 + εe−γt)Ψc(t, ξ + z0 − εσe−γt)

(4.9)

for all t ≥ 1, x ∈ R.
Then for all t > 1, we have

1− εe−γt ≤ inf
R

u(t, · − ct, u0, v0)

Φc(t, ·+ z0)
≤ sup

R

u(t, · − ct, u0, v0)

Φc(t, · − z0)
≤ 1 + εe−γt,

1− εe−γt ≤ inf
R

v(t, · − ct, u0, v0)

Ψc(t, ·+ z0)
≤ sup

R

v(t, · − ct, u0, v0)

Ψc(t, · − z0)
≤ 1 + εe−γt.

Proof. According to Lemma 4.2 and 4.7-4.9, there exist constants ε ∈ (0, 1),
γ > 0, σ > 0, z0 ≥ 0, such that

(1− εe−γt)Φc(t, ξ + z0 + εσe−γt) ≤ u(t, x, u0, v0)

≤ (1 + εe−γt)Φc(t, ξ − z0 − εσe−γt),

(1− εe−γt)Ψc(t, ξ + z0 + εσe−γt) ≤ v(t, x, u0, v0)

≤ (1 + εe−γt)Ψc(t, ξ − z0 − εσe−γt)
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for all ξ ∈ R. At the same time, these constants also satisfy the conditions of
Lemma 4.7-4.8 when z0 are sufficiently large. Therefore, the conclusion can be
obtained from Lemma 4.4.

Lemma 4.11. For all ε ∈ (0, 1), there exists a positive integer H0, such that

(1− ε)Φc(t, ξ + 3εσ) ≤ Φc(t, ξ) ≤ (1 + ε)Φc(t, ξ − 3εσ), ξ ≥ H0,

(1− ε)Ψc(t, ξ + 3εσ) ≤ Ψc(t, ξ) ≤ (1 + ε)Ψc(t, ξ − 3εσ), ξ ≥ H0.
(4.10)

Proof. Considering the function (1 + η)Φc(t, ξ − 3ησ), we can obtain

d

dη
{(1 + η)Φc(t, ξ − 3ησ)} = Φc(t, ξ − 3ησ)− 3σ(1 + η)Φc

η(t, ξ − 3ησ).

From the asymptotic behavior of the forced pulsating wave solution, there exists
a constant H0 > 0, such that

Φc(t, ξ − 3ησ)− 3σ(1 + η)Φc
η(t, ξ − 3ησ) ≥ 0

for any ξ ≥ H0. Therefore, we have

(1− ε)Φc(t, ξ + 3εσ) ≤ Φc(t, ξ) ≤ (1 + ε)Φc(t, ξ − 3εσ).

The second inequality of (4.10) can be proved similarly.

Lemma 4.12. Let z,H be the positive constants and (u+(t, x), v+(t, x)), (u−(t, x),
v−(t, x)) be solutions to the initial value problem of (4.1). Define χ(y)=min{max{0,
−y}, 1} for any y ∈ R, and assume that the initial values satisfy

(u±(0, x− c), v±(0, x− c))

= (Φc(0, x± z)χ(x+H) + Φc(0, x± 2z)[1− χ(x+H)],

Ψc(0, x± z)χ(x+H) + Ψc(0, x± 2z)[1− χ(x+H)]).

Then there is a constant ε ∈ (0,min{ 1
2 ,

z
3σ}) such that

(u+(1, x− c), v+(1, x− c))

≤ ((1 + ε)Φc(t, x+ 2z − 3εσ), (1 + ε)Ψc(t, x+ 2z − 3εσ)),

(u−(1, x− c), v−(1, x− c))

≥ ((1− ε)Φc(t, x− 2z + 3εσ), (1− ε)Ψc(t, x− 2z + 3εσ))

(4.11)

for any x ∈ [−H,∞).

Proof. According to the definition of χ(y), we can see (u+(0, x − c), v+(0, x −
c)) ≤ (Φc(0, x + 2z),Ψc(0, x + 2z)). On the nonempty subset of R, we can obtain
(u+(1, x − c), v+(1, x − c)) ≤ (Φc(1, x + 2z),Ψc(1, x + 2z)) from the regularity of
T (t) and the comparison principle. Let H0 satisfy the condition of Lemma 4.12.
Since u+, v+,Φc,Ψc are continuous functions, they are uniformly continuous on a
bounded set. Then there exists a constant ε ∈ (0,min{ 1

2 ,
z
3σ}) such that

(u+(1, x− c), v+(1, x− c)) ≤ ((1 + ε)Φc(t, x+2z− 3εσ), (1 + ε)Ψc(t, x+2z− 3εσ))
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for x ∈ [−H,H0 − 2z].
From Lemma 4.11, we have that

(u+(t, x− c), v+(t, x− c))

<(Φc(t, x+ 2z),Ψc(t, x+ 2z))

≤((1 + ε)Φc(t, x+ 2z − 3εσ), (1 + ε)Ψc(t, x+ 2z − 3εσ))

for x ∈ [H0 − 2z,∞).
The similar method can be used to prove the second inequality of (4.11). Thus,

the proof is completed.

Now let us prove Theorem 4.1, we only proof lim
t→∞

sup
x∈R

∣∣∣∣u(t, x, u0, v0)Φc(t, x− ct)
− 1

∣∣∣∣ = 0.

The rest can be proved similarly.
Proof. Define z+ := inf{z | z ∈ D+}, z− := inf{z | z ∈ D−}, where

D+ = {z ≥ 0 | lim sup
t→∞

sup
ξ∈R

u(t, ξ − ct, u0, v0)

Φc(t, ξ + 2z)
≤ 1},

D− = {z ≥ 0 | lim inf
t→∞

inf
ξ∈R

u(t, ξ − ct, u0, v0)

Φc(t, ξ − 2z)
≥ 1}.

According to Lemma 4.10, we can obtain [ 12z0,∞) ⊂ D±, z± ∈ [0, 12z0]. If
z± = 0, the proof is completed.

Assume z+ > 0, let z = z+, H = z+(1 − ξ1
2 ), ε ∈ (0,min{ 1

2 ,
z
3σ}). Since

z+ ∈ D+, there exists t′ ≥ 0 such that

sup
R

u(t′, ξ − ct′, u0, v0)

Φc(t′, ξ + 2z+)
≤ 1 +

ε

max
t∈[0,T )

p(t)
,

where 4ε = εe−µ min

{
min

t∈[0,T )
Φc(t,−H − 3εσ), min

t∈[0,T )
Ψc(t,−H − 3εσ)

}
, µ =

2max{M1,M2} > 0.
From Lemma 4.12, for ξ ∈ [−H,∞), we can obtain

u(t′, ξ − ct′, u0, v0) ≤ Φc(t′, ξ + 2z+) + ε = u+(0, ξ − c) + ε.

For ξ ∈ (−∞,−H], we can see

u(t′, ξ − ct′, u0, v0) ≤ Φc(t′, ξ + z+) ≤ u+(0, ξ − c).

Thus,

u(t′+1, ξ− c(t′+1), u0, v0) ≤ u+(1, ξ− c)+4εeµ ≤ u+(1, ξ− c)+ εΦc(t′,−H−3εσ).

By Lemma 4.12, we have that

u(t′ + 1, ξ − c(t′ + 1), u0, v0)

≤u+(1, ξ − c) + εΦc(t′,−H − 3εσ)

≤(1 + ε)Φc(t′, ξ + 2z+ − 3εσ) + εΦc(t′,−H − 3εσ)

≤(1 + 2ε)Φc(t′, ξ + 2z+ − 3εσ)
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for e−γt ≥ 1, ξ ∈ [−H,∞). Since 3εσ ≤ z+, we can see that

u(t′ + 1, ξ − c(t′ + 1), u0, v0) ≤ Φc(t′, ξ + z+) ≤ Φc(t′, ξ + 2z+ − 3εσ)

for ξ ∈ (−∞,−H]. Thus,

u(t′ + 1, ξ − c(t′ + 1)) ≤ min{(1 + 2ε)Φc(t′, ξ + 2z+ − 3εσ), p(t)}.

By the comparison principle, we can obtain

u(t′ + 1 + t, ξ − c(t′ + 1 + t), u0, v0)

≤min{(1 + 2εe−γt)Φc(t′, ξ + 2z+ − εσ − 2εσe−γt), p(t)}.

If t ≥ 0, ξ ∈ R, we have

lim sup
t→∞

sup
ξ∈R

u(t, ξ − ct, u0, v0)

Φ(t, ξ + 2z+ − εσ)
≤ 1.

So we can see z+ − εσ
2 ∈ D+ from the inequality. It is a contradiction. Therefore,

z+ = 0. For the case z− = 0, we can prove it similarly.
Thus, the proof is completed.
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