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GLOBAL CLASSICAL SOLUTIONS TO 3D
COMPRESSIBLE NAVIER-STOKES
EQUATIONS WITH VACUUM IN PERIODIC
DOMAIN

Tiantian Zhang'f

Abstract This paper concerns the global well-posedness of classical solutions
to the Cauchy problem of the Navier-Stokes equations for viscous compressible
barotropic flows in three spatial dimensions with periodic initial data with
density allowed to vanish initially. We introduce the so-called the effective
viscous flux which is the key for time-uniform upper bound of density. Based
on these key ingredients, we are able to obtain the global solvability of classical
solutions in three spatial dimensions, provided the smooth initial data are
of small total energy. These results generalize previous results on classical
solutions for initial densities being strictly away from vacuum.
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1. Introduction
The time evolution of the density and the velocity of a general viscous isentropic

compressible fluid occupying a domain  C R? is governed by the compressible
Navier-Stokes equations:

pe + div(pu) =0, (11)
(pu); + div(pu ® u) — pAu — (u+ A\)V(divu) + VP(p) = 0, '

where p > 0, u = (u!,u?,u3) and P = ap”(a > 0,7 > 1) are the fluid density,

velocity and pressure, respectively. The constant viscosity coefficients p and A
satisfy the physical restrictions:

3
>0, u+§>\20. (1.2)

Let Q = R3/Z3 = T3 | we look for the solutions (p(z,t),u(x,t)) to the Cauchy
problem for (1.1) with initial data,

(p,w)|t=0 = (po,uo), = €L (1.3)
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There are extensive studies concerning on the existence and large time behavior
of solutions to (1.1). There are huge literatures on the one-dimensional problem, see
[13,24,33,34] and the references therein. For the multi-dimensional case, the local
well-posedness of classical solutions are demonstrated in [31,35], where they required
initial densities is strictly away from vacuum. Matsumura etc [30] first proved
the global classical solutions, Where the initial data have small oscillations from a
uniform non-vacuum state. Later, Hoff [14,15] studied the existence of solutions
with discontinuous initial data. Huang etc [22] obtained that the planar rarefaction
waves are asymptotically stable under periodic perturbations. Shlapunov etc [36]
established the existence theorems for the incompressible Navier-Stokes equations
in T3.

For the case that the initial density is allowed to vanish, the existence and
uniqueness of local strong and classical solutions were obtained by [5-7,32]. Li-
ons [29] and Feireisl [11] first obtained global existence of finite energy weak solu-
tions. The regularity and uniqueness of weak solutions and the global well-posedness
of classical solution [11,16,29] remain completely open in the presence of vacuum.
Wang etc [37] obtained the global existence for the incompressible Navier-Stokes
equations. Xin [38] showed that any smooth solution to the Cauchy problem of
compressible Navier-Stokes blows up in finite time under the assumption that ini-
tial density has compact support.However, for the case that the initial density is
allowed to vanish and even has compact support, Huang etc [20] and Li etc [2§]
established the quite surprising global existence and uniqueness of classical solu-
tions with vacuum to the Cauchy problem in 3D and 2D space with smooth initial
data which are of small total energy but possibly large oscillations. Choi etc [§]
presented the singularity formation for the compressible Vlasov/NaviersCStokes
equations with degenerate viscosities. Duan etc [9] showed that there is no global
regular solutions for the 3-D full compressible NaviersCStokes equations with de-
generate viscosities. Cao etc [4] derived that the spherically symmetric smooth
solutions to degenerate compressible Navier-Stokes equations are global well-posed.
Cai etc [3] derived global existence of both the weak and classical solutions to the
initial-boundary-value problem with small initial energy. Then a natural question
arises whether the theory of [3,20] remains valid for the case of T3. A positive
answer would yield immediately the regularity and uniqueness of weak solutions of
Lions-Feireis] provided the initial energy is suitably small, whose existence has been
proved for all v > 1, as discussed in [11].

The main aim of this paper is to study the global well-posedness of classical
solutions for the isentropic compressible Navier-Stokes equations (1.1) in T? with
density allowed to vanish initially. Before stating the main results, we introduce
the notations and conventions in this paper. Let

/fda:é A fdzx,

and

_ 1
IR
7 |Q|/Qfx,

which is the average of a function f over Q. Integrating (1.1); over Q x (0,7"), one

has ) )
D= — = — =D =1. 1.4
p 0] /P(x’t)dx 0] /podl“ o, /Podﬂf (1.4)
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For 1 <r < oo and 8 > 0, the standard homogeneous and inhomogeneous Sobolev
spaces are denoted as follows:

LT = L/(T%), DU = {ue Ly ()] [V¥ulir <00}, fullpnr £ [IV¥ullr
=W"2 DF=DF2 D'= {u e LS | ||Vu||L2 < oo},

flx
Hﬁ{f TMR‘nanﬂ/ | |3+25 @) = FWP 0 < oo

The initial energy is defined as:

Co = / (;pOUOQ + G(po)) dz, (1.5)
where G denotes the potential energy density given by G(p) £ p f r %ds.
It is clear that
c(p,p)(p = p)* < G(p), 0 < p<p, (1.6)
and
|P = Pll72 < C|IP = P(p)||z= < C/G(p)dx- (1.7)

Then the main results in this paper can be stated as follows:

Theorem 1.1. Assume that (1.2) holds. For given numbers M > 0 (not necessarily
small), B € (1/2,1], suppose that the initial data (po,uo) satisfy

poluol® + G(po) + P(po) € L', wg € HP N D' ND?  (po, P(po)) € H*, (1.8)
0 <infpy <suppo < p, |uollgys < M, (1.9)

and the compatibility condition

—plug — (p+ A)Vdivug + VP(po) = pog, (1.10)

for some g € D' with pé/Qg € L2. Then there exists a positive constant ¢ depending
on N, a,v, p, S and M such that if

Co<e, (1.11)

the initial-boundary-value problem (1.1)-(1.3) has a unique global classical solution
(p,u) in T3 x (0,00) satisfying for any 0 < 7 < T < oo,
0<plxt)<2p, ze€T t>0, (1.12)

(p, P(p)) € C([0,T]; H?),
we C([0,T]; D* N D3) N L2(0, T; D*) N L=(7, T; DY),

1.13
ug € L*°(0,T; DY) N L?(0,T; D?) N L*°(7,T; D*) N H(7,T; D'), (1.13)
Vpur € L=(0, T L?),
and the following large-time behavior:
lim | (|p— pol? + |Vul|?)(z,t)dz = 0, q € [1,0). (1.14)

t—o0

A few remarks are in order:
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Remark 1.1. It follows from Sobolev’s inequality and (1.13); that
p,Vp e C(Q x[0,7T)). (1.15)

Moreover, it also follows from (1.13)5 and (1.13)3 that

u, Vu, Viu,uy € C(Q x [1,T)), (1.16)
due to the following simple fact that

L(r,T;HY)YNHY(r,T;H ") < C([r,T); L*).
Finally, by (1.1)1, we have
pt = —u-Vp — pdivu € C(Q x [r,T)),

which together with (1.15) and (1.16) shows that the solution obtained by Theorem
1.1 is a classical one.

Similar to previous studies on the Stokes approximation equations in [27], we can
obtain from (1.14) the following large time behavior of the gradient of the density
when vacuum states appear initially , which is completely in contrast to the classical
theory [17,30].

Theorem 1.2. In addition to the conditions of Theorem 1.1, assume further that
there exists some point xg € T3 such that po(xg) = 0. Then the unique global
classical solution (p,u) to the Cauchy problem (1.1)-(1.3) obtained in Theorem 1.1
has to blow up as t — oo, in the sense that for any r > 3,

Jim IVo(-,t)||Lr = . (1.17)

We now outline the main idea to the proof. Based on the local arguments [6]
of solutions to (1.1)-(1.3), we need priori estimates to obtain the global solution.
Similarly to [20], the key point is to derive both the time-independent upper bound
for the density and the time-depending higher norm estimates of the solution (p, u),
so some basic ideas used in [20] will be adapted here, yet new difficulties arises in
case of T3. To overcome these difficulties, we introduce the effective viscous flux F
playing an important role in our following analysis. The new estimates of F along
with Zlotnik’s inequality (see Lemma 2.5)show the time-uniform upper bound for
density, which is essential to obtain the global solutions. Then we can estimate the
gradients of the density and the velocity as in [18,19]. Finally, with the bounds of
the gradients of the density and the velocity at hand, we can use the same arguments
in [21] to obtain the estimates of the higher order derivatives.

2. Preliminaries
There are some elementary inequalities and known facts used frequently later. We

begin with the local well-posedness of classical solutions wit Theorem 3 h the non-
negative initial density .
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Lemma 2.1 (Theorem 3, [6]). Assume that the initial data (po > 0,ug) satisfy
(1.8)-(1.10) except ug € HfB then there exist a small time T, > 0 and a unique
classical solution (p,u) to the problem (1.1)-(1.3) on T3 x (0,T.] such that

(ps P(p)) € C([0,T.); H?),

u € C([0,T,]; D' N D?)N L?(0, T,; D%),

up € L>=(0,Ty; DY) N L2(0,Ty; D?), \/pus € L=(0,T,; L?),
Vpuw € L2(0,T,; L?), Y2y € L*°(0,Ty; D),

tY2 /puy € L=(0,T,; L?), tu, € L>(0,Ty; D?),

tug € L°°(0,Ty; DY) N L%(0,Ty; D?).

(2.1)

Next, the following well-known Gagliardo-Nirenberg inequality will be used later
frequently.

Lemma 2.2 (Theorem 2.2, [26]). For p € [2,6],q € (1,00), and r € (3,00), there
exists some generic constant C > 0 which may depend on q,r such that for f €
HY(T3) and g € LI(T3) N DY (T3), we have

1£12, < ClIAIS 2w 130 4 o) f)2., (2.2)

r—3)/(3r r—3)) 3r/(3r r—3
||g||c(']1‘3)<||g||L )/ (Brta( (C||Vg||L/( +q(r—3))

3r/(3r r—3
+ Gy g|f3/ Crratr=3y, (2.3)

Moreover, if either f|lsgo = 0 or f = 0, we can choose C; = 0. Similarly, the
constant Cy = 0 provided g|lsgo =0or g=0
We now state some elementary estimates which follow from (2.2) and the stan-
dard LP-estimate for the following elliptic system derived from the momentum equa-
tions in (1.1):
AF =div(pa), plw =V x (pu), (2.4)
where

f2fi+u-Vf F2@u+Ndivu—(P-P), w2Vxu, (2.5)

are the material derivative of f, the effective viscous flux and the vorticity respec-
tively.

Lemma 2.3. Let (p,u) be a smooth solution of (1.1)-(1.3). Then there ezists a
generic positive constant C depending only on u and A such that for any p € [2, 6]

IVFo + IVellzr < Clpillzo, (2.6)
I 2o + llwllze S llpal =@ (|Vu] g2 + [|P = Pl ), (2.7)
IVullzr < C (IF||Lr + |@llzr) + CILP = Pz, (2.8)
IVullze S IVallS P (lpill 12 + 1P — Pl|s) * =P, (2.9)

Proof. The standard LP-estimate for the elliptic system (2.4) yields directly (2.6),
which, together with (2.2) and (2.5), gives (2.7).
Note that —Au = —Vdivu + V x w, which implies that

Vu = -V(=A)"'Vdivu + V(=A) "'V x w.
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Thus the standard LP estimate shows that
IVullze < C(||divulze + [lw|[zr), for p € [2,6],
which, together with (2.5), gives (2.8). Now (2.9) follows from (2.2), (2.8) and

(2.6). O
The following Poincaré type inequality can be found in Lemma 3.2, [10].

Lemma 2.4 (Lemma 3.2, [10]). Let v € H'(T3), and let p be a non-negative func-
tion such that

0< M; < / pdz, / pldr < M,
T3 T3

with v > 1. Then there is a constant C' depending solely on Mi, My such that
[0l es) < C [ poPdo+ ClIVolfagrs. (2.10)

Next, the following Zlotnik inequality will be used to get the uniform (in time)
upper bound of the density p.

Lemma 2.5 (Lemma 1.3, [39]). Let the function y satisfy
y'(t) = g(y) +V'(t) on [0,T], y(0) =",
with g € C(R) and y,b € WHH0,T). If g(c0) = —oo and
b(te) — b(t1) < No + Ni(t2 —t1) (2.11)
for all 0 <ty < to <T with some Ny >0 and N1 > 0, then
y(t) < max {yO,Z} + Ny < o0 on [0,T],
where  is a constant such that
9(¢Q) < —N1 for (>C (2.12)

Finally, we state the following Beal-Kato-Majda type inequality which was first
proved in [1] when divu = 0 and will be used later to estimate |Vu|p~ and

vaHLZmLG.
Lemma 2.6 (Lemma, [1]). For 3 < g < oo, there is a constant C(q) such that the
following estimate holds for all Vu € L?(T3) N D9(T3),

IVull = (r2y < C (ldivell poe rs) + lwll 2= (12 ) log (e + [ V2ull Lacrs)) (2.13)
+C||VUHL2(T3) +C '

3. The priori estimates

Let T > 0 be a fixed time and (p,u) be the smooth solution to (1.1)-(1.3) on
T3 x (0, 7] in the class (2.1) with smooth initial data (po, ug) satisfying (1.8)-(1.10).
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To extend the local classical solution guaranteed by Lemma 2.1, some necessary a
priori bounds will be established in this section. Let o(t) £ min{1,¢} and define

T
A(T) =& sup (of|Vull72) +/ /ap\mzdxdt, (3.1)
t€[0,T] 0
T
Ay(T) & sup Js/p\u|2dx+/ /03|V1’L|2dxdt, (3.2)
t€[0,T] 0

and

A3(T) 2 sup / plul(z, t)dz.
0<t<T

The key priori estimates on (p,u) as follows:
Proposition 3.1. Under the conditions of Theorem 1.1, for
8o 2 (28— 1)/(48) € (0,1/4], (3.3)
there exists some positive constant € depending on u, X\, a, v, p, B and M such that

if (p,u) is a smooth solution of (1.1)-(1.3) on T3 x (0,T] satisfying

sup p<2p, AT)+ Ay(T) <2CY%  As(o(T)) <200,  (3.4)
T3 % [0,T]

the following estimates hold

sup p < Tp/4, AL(T)+ A(T) < Cy/%, As(o(T)) <O, (3.5)
T3 x[0,7T]

provided Cy < €.
Proof. The proof of proposition 3.1 is completed after the following Lemmas 3.3,
3.4 and 3.5 below.

In the following, we will use the convention that C' denotes a generic positive
constant depending on u, A, a, 7, p, § and M, and we write C(a) to emphasize
that C' depends on a.

We begin with the standard energy estimate for (p, u) and preliminary L? bounds
for Vu and pa. O

Lemma 3.1. Let (p,u) be a smooth solution of (1.1)-(1.3) on T3 x (0,T] with
0 < p(x,t) < 2p. Then there is a positive constant C = C(p) such that

1
s [ (G +60)) do
T
+/O / (,u|Vu|2 + A+ u)(divu)z) dzdt < Cy, (3.6)

T
A (T) < CCy + c/ /0|Vu|3dxdt, (3.7)
0

and

T
Ao(T) < CCy + CA(T) +C / / o3| Vul*dadt. (3.8)
0
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Proof. Multiplying the first equation in (1.1) by G’(p) and the second by u/ and
integrating, one shows easily the energy inequality (3.6).

The proof of (3.7) and (3.8) is due to Hoff [14]. For m > 0, multiplying (1.1)s
by o™ and then integrating the resulting equality over T2 lead to

/amp\ﬂ|2dx = /(—amu VP +po"Au -0+ (A + p)o"Vdive - 4)dx

3
23" M.
=1

Using (1.1); and integrating by parts give

(3.9)

M, =— /Jmu~Vde

= / o™ P divus dx — /amu -Vu-VPdz

= (/ a’”Pdivudm) —momfla'/Pdivuda:—i—/amPVu : Vudz  (3.10)
t

+(y-1) / o™ P(divu)?dz

< (/ Udeivuda:> + C||Vul2z + Cm?o* ™= Vo' ||P — P(p)|2..

t
Integration by parts implies
My = /uamAu - udx

= ,g (o™ |Vull22), + %awlc/nwu; - uam/aiujai(ukakuj)dx (3.11)

N

<~ (0" IVulls), + Cmo™ Vulfta + C [ a"|Vufdz,

and similarly,

_A+u
2

— (A +p)o™ / divudiv(u - Vu)dz (3.12)

m()\2—|— i) ”

M; = (om||divu||%2)t + " dive|3.

A
= _# (0m||divu||%2)t + Cma™ | Vul|7: + 0/0m|Vu|3dx.

Combining (3.9)-(3.12) leads to

1d
Sq o™ (u|Vul* + (p+ Ap))| div ul?) dz + o™ /p|u|2dz
< o2mVg'Cy + (mo™ ' + 1) |[Vul|72 + o™ (|Vul|3s + % /UmP(p)(div u)dx.

(3.13)
The last term on the right-hand side of (3.13) can be easily bounded as follows:

‘/UmP(p)(div uydz| < Co™||Vul| pz||P — P(p)||r2 < %amHVuH%g + Co™Cy.
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Integrating (3.13) over (0,7), choosing m = 1, and using (3.6), one gets (3.7).

Next, for m > 0, operating ¢’ [0/0t +div(u-)] to (1.1)3, summing with respect
to j, and integrating the resulting equation over T3, one obtains after integration
by parts

m
(g/p|a2dw> - %om_la’/pM\Qdm
¢

=— /amqu [0, P + div(0; Pu)|dx + ,u/amuj (A + div(uAu? )] da

. (3.14)
+ A+ p) /Umﬁj [0:0;divu + div(ud;divu)]|de
3
£ N
i=1
It follows from integration by parts and using the equation (1.1); that

Ny =— / o™i [0; Py + div(0; Pu)]dx

= /am[—Plpdivuajuj + Ok (0507 uP) P — PO, (Opi?uF)]da (3.15)

< C(P)o™ [Vl L2 [Vl 2
< 80™|[Vill72 + C(p, 6)o™ [ Vull7.

Integration by parts leads to
Ny = u/o’mllj (A + div(uAw?)|dz
= —u / o™ [|Va|? + 907 OpuOiu? — 0yt Djut Opu? — Ou? Dut Oyl |dx (3.16)

< —%/am|vu|2d;ﬂ+0/0m|Vu|4d9c‘
Similarly,

A
Ny < HEA [ o + C/om\Vu\4dm. (3.17)

Substituting (3.15)-(3.17) into (3.14) shows that for ¢ suitably small, it holds that
(gm/pm?dx) +u/am|V1l|2dx+ (u+A)/am(divu)2dx
t

(3.18)
< mo™1o! / pli2dz + Co™|[Vul|Ls + C(p)o™ | V| 2.

Taking m = 3 in (3.18) and noticing that

T
3/ 020//p|12|2dxdt§ CA(T),
0

we immediately obtain (3.8) after integrating (3.18) over (0, 7). The proof of Lemma
3.1 is completed. O

Next, the following lemma is important of the estimates on both A;(a(T)) (i =
1,2,3) and the uniform upper bound of the density.
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Lemma 3.2. Let (p,u) be a smooth solution of (1.1)-(1.3) on T3 x (0, T satisfying
(3.4). Then there exist positive constants K and ey both depending only on u, A, a,

v, p, B and M such that

a(T)
sup £ ulfa+ [ 0 [ plifdudt < (. 0),
0<t<o(T) 0

o(T)
sup t2fﬁ/p|u|2dx+/ t2fﬁ/\vu\2dxdth(ﬁ,M),
0<t<o(T) 0

provided Cy < €.
Proof. We define w; and ws to be the solution to:
Lw; =0, wi(z,0) =wio(x),

and
Lwy = =VP(p), wa(z,0)=0,

respectively, with L being the linear differential operator defined by
(Lw) 2 pw! + pu- V' — (pAw’ + (u+ A)divw, ;)
= pi? — (pAw’ + (p+ N)divw,;), j7=1,2,3.

Straightforward energy estimates show that:

o(T)
sup /p|w1|2dx+/ /|Vw1\ dzdt < C(p /|w10| dx,
0<t<o(T)

o(T)
sup /p|w2|2dx+/ /\Vw2|2dxdt < C(p)Cy.
0

0<t<o(T)

and

It follows from (3.21) and standard L?-estimate for elliptic system that

IVwillze < Cl[V2willz2 < Cllprin]| .

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

Multiplying (3.21) by wq, and integrating the resulting equality over T3, we get

by (3.25) and (3.4

~—

3 that

(Ul Vs [3 + (4 Ndive [2:), + [ plin Pde
t

N =

/pw1 u - Vwy)dz
1/2 1/3
<o >( [ sl dx) ( / p|u|3dw) 1w e

<CpCy” [ phi s,

which, together with Gronwall’s inequality and (3.23), gives

o(T)
sup (Va2 + / / plin Pdudt < C|[Vanol2,
0<t<o(T) 0

(3.26)
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and

o(T)
sup  t]| Vw2, —|—/ t/p|u}1|2dmdt < Ol|wiol3e, (3.27)
0<t<o(T) 0

provided Cy < g91 £ (2C(p))~/%.
Since the solution operator wig — wi (-, t) is linear, by the standard Stein-Weiss
interpolation argument [2], one can deduce from (3.26) and (3.27) that for any

0 € [B,1],

o(T)
sup 70| Vw2, +/ tlfe/p|u}1\2dxdt < C'||w10||§~197 (3.28)
0<t<o(T) 0

with a uniform constant C' independent of 6.
Next, we estimate wq. It follows from a similar way to (2.6) and (2.8) that

(3.29)

IV((2p+ Ndivws — (P = P))||r2 < Cllpiz] 12,
[Vwa|[Le < C(llptellL> + 1P = PllLs).

Multiplying (3.22) by ws;, integrating the resultant equation over T® and using
(3.29), one has

1 : . ,
3 <u||Vw2|%2 + (p+ V|| divave||2 2 — 2/(P — P(p))le’lUgd(E) + /p|w2|2d33
t

= [ pwa(u - Vws)dx — /Ptdivwgdx

1/2 1/3
<o) ([ otiPas) ([ o) 19wl

+ / divwsdiv((P — P)u)dx + /((7 —1)P + P)divudivwyda
50 /3 1/2 B
<@ ([ oluinPar) (10" uallzs + 1P Plis)

- /(P —P)u-V (divw2 - i_:j\) dz

1
+ P —
22p+A)

<CEIC” [ phiafda + CCY + CIP = Pluslul oo

/(P — P)*divudz + C||Vul|2s + C||Vws||2.

+C|IP = P|[Ls + C||Vulliz + Cl[Vuwa] Z:

< C(p)C%3 / plsa|2dz + CCL? 4 C||Vu|2s + C|| Vews s,

which, together with (3.24) and Gronwall’s inequality, gives

o(T)
sup  ||Vws |2, +/ /p|u)2|2dxdt <cey?, (3.30)
0<t<o(T) 0
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provided Cy < gg2 £ (2C(p))~3/%. Taking wig = up so that w; 4+ wy = u, we then
conclude from (3.28) and (3.30) that for any 6 € [, 1],

a(T)
sup t1*0||vu|@2+/ tlff’/p|u\2dmdtg0||uo||§le +oCl? 3.31)
0<t<o(T) 0

provided Cy < g9 = min{egy, g2} Thus, (3.19) follows from (3.31) directly.
To prove (3.20), we take m = 2 — f in (3.18) to obtain, after integrating (3.18)
over (0,0(T)) and using (3.31) and (2.9), that

o(T)
sup tQ_B/pMQdac—l—/ t2_6/|vu|2dxdt
0<t<o(T) 0

a(T)

< C’/ 2P| V|3 adt + C(p, M)
0
o(T) 2 - 113 D3 ~

<C [ PITulue (Il + 1P - Pl de+ C(p, M)
0
a(T)

<cC / 12D/ (18]l 2.) 2 (28| o 20| 20) 2 (41| o 222 )t
0

+C(p, M)

1/2
SC(ﬁ,M)< sup 277 / p|u|2dx> +C(p, M),

0<t<o(T)

which implies (3.20). Thus, we finish the proof of Lemma 3.2. O
The following Lemma 3.3 will give an estimate on Az(o(T)).

Lemma 3.3. If (p,u) is a smooth solution of (1.1)-(1.3) on T3 x (0,T) satisfying
(3.4), there exists a positive constant €1 depending on u, A, a, v, p, B and M such
that the following estimate holds for dy defined by (3.3):

sup /p\u|3(x,t)dx <, (3.32)
0<t<a(T)

provided Cy < g7.

Proof. Multiplying (1.1)2 by 3|u|u, and integrating the resulting equation over T2,
we obtain by (2.9) that

i plul’dz

< C/|u||Vu\2d:c+C/|P—P(,5)||u\|Vu|dx
< Cllull o | V|| 52 [Vl 15 + CIIP — P(p)| s |[ull 1o ]| Vul| 2
< (IVull35 + Coll Vul32%) (lpil 2 + 1P — P(p)|| )"/

+Co V)22 + Gy ° | V| 2

5/2 3/2 . 176\ 1/2
< C(IVul3% + Collvul3?) (llpillze +C3'°)
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+CCy*|Vull3 + 0y ° | Vul e
< CR00=3/A0=0) (410 Ty ||2,) 7203/ (1178 o1/ 24|3,) /4| e 70
+ < C(200-1)(1-5) (tl—ﬁ||vu||%2)—26o+3/4(t1—ﬁHp1/2u”%2)1/4”vu”i520
+OCy 23R A0 | 3,)3/4 | V| 2
+OCy TV R U=RA=8 |G| 2,) Y4 [ Vul| 2 + CCy/*|[Vul|2
i CCS/Gf(lfﬁ)(pr/z) (t1*5||Vu||%2)’p“/2 (Vulliz)p, 0<p< %

which together with (3.19) and (3.6) gives

sup /p|u|3dx

0<t<o(T)

. o(T)  a(s—as9)(1-5) (3-830)/4 o(T) ) 260
< (5, M) / I / IVl 2dt
0 0

a(T) _ 2(2-480)(1—8) (3-830)/4 a(T) 200
+ C(p, M) / t7 s dt / | Vul|32dt
0 0

1/2

o 1/12 o —3(1-8)/2 v o 2
+ C(p, M)C, ; t dt ; (|Vul|72dt (3.33)
1+1/12 o(D) i o(T) i
+ C(p, M)Cy / t=1=P)/2qy / | Vul|3.dt
0 0

o) P e (1) P
+cSc(p, M) (/ = mdt) (/ ||Vu||%2dt>
0 0
+/p0|U0|3dJC+OCO
< C(p, M)C5™,

provided Cy < &g, where in the last inequality we have used the following simple

facts:
3(28—1)/(48) 3/(26)
/p0|u0|3d9€ <C (/ pouol2dw> ol s (3.34)
< C(p, M)CF™,
and
2B8-4%0)(1=p) _, BEB-1) _,
3 — 850 2-p

due to (3.3) and 8 € (1/2,1]. Thus, it follows from (3.33) that (3.32) holds provided
Cy < &1, where

£, 2 min {50, (C(p, M))—l/éo} _ min {507 (5, M))_w/(w—n} .

The proof of Lemma 3.3 is completed. O
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Lemma 3.4. There exists a positive constant ea(p, A\, a,v, p, 5, M) < &1 such that,
if (p,u) is a smooth solution of (1.1)-(1.3) on T? x (0,T) satisfying (3.4), then

Ay(T) + Ay(T) < G, (3.35)
provided Cy < 5.

Proof. Lemma 3.1 shows that

T T
Ay (T) + As(T) gcm)co+c(,a)/ 03\\vu\|§4d5+0(,3)/ | Vul.ds. (3.36)
0 0

Due to (2.8),
T T T _
/ oVt ds < c/ o® (IF%. + ||w||§4)ds+c/ o3P = Pl[t.ds. (3.37)
0 0 0

It follows from (2.7) that

T
A<ﬁwmm+wwams

T
<C [ o (19ulzs + 1P = Pllos) lpiads
0
T (3.38)
samam(ﬁﬂW@M%ﬁﬂwwm+%”D/'/wwwm8
0

te(0,7)

(7) (A2 + ) A2 (@) AN (T)

To estimate the second term on the right hand side of (3.37), one deduces from
(1.1); that P satisfies
P, +wu-VP+ yPdivu = 0, (3.39)

which gives

P, + (v — 1)Pdivu = 0, (3.40)

(P—P)y+u-V(P—P)+~(P — P)divu + yPdivu — (y — 1)Pdivu = 0. (3.41)
Multiplying (3.41) by 3(P — P)? and integrating the resulting equality over T3, one
gets after using divu = ﬁ(F + P — P) that

3y—1
20+ A

—_ (/(P—P)3dx)t— ;’Z;}\/(P—P)de

—3yP /(P — P)?divudx + /3(7 — 1)(P — P)*Pdivudx

1P — Pz

< — (/(P — ]5)3dx) +nl|P = P||1a + CyllFl|7a + CyllVul3z.  (3.42)
t
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Multiplying (3.42) by o3, integrating the resulting inequality over (0,7"), and choos-
ing n suitably small, one may arrive at
T —
/ S|P — P|[L.dt
0
a(T)

<C su P—P3+C/ P — P|j3,dt
<C swp |P=Plio+C | |P- Pl 3.5)

T
+C(0) [ APIFlLeds + CHC
0

S C([))COa

where (3.38) has been used. Therefore, collecting (3.37), (3.38) and (3.43) shows
that

T
| o (9ulla+ 1P = Pliy) ds < C)Co. (3.44)

Finally, we estimate the last term on the right hand side of (3.36). First, (3.44)
implies that

T T
/ /0|Vu|3dxds < / /(|Vu|4 | Vul2)dzds < CCo. (3.45)
a(T) a(T)

Next, one deduces from (2.9), (3.19) and (3.4) that
o(T) ‘
| vl
0
N 3/2 . 13/2 1/4
<O [ vl (il s+ o5/ ar
o(T) 12 3/4
< C(ﬁ)/ (t(1—6>/2||vu||p) 1V X, (t/pﬂ|2dx) dt + C(5)Cy
0

o(T) 2 3/4
<) s (02vale) [ vl (¢ f dikac) o
0

te(0,0(T)]
+C(p)Co
< C(p, M)AY Cy + C(p)Co
< C(p, M)Cy®,

provided Cy < g1. It thus follows from (3.36) and (3.44)-(3.46) that the left hand
side of (3.35) is bounded by

(3.46)

C(p, M)Cy/® < Cy*
provided
Co < &2 2 min {51, (C(p, M))_g} .

The proof of Lemma 3.4 is completed. O

Now we are in a position to obtain the uniform upper bound for the density,
which is essential to derive all the higher order estimates and thus to extend the
classical solution globally. We motivated by the research on the two-dimensional
Stokes approximation equations [27].
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Lemma 3.5. There exists a positive constant € = €(p, M) as described in Theorem
1.1 such that, if (p,u) is a smooth solution of (1.1)-(1.3) on T3 x (0,T] satisfying
(8.4), then

7
sup (o)l < 2,
0<t<T

provided Cy < €.

Proof. Rewrite the equation of the mass conservation (1.1); as

Dyp=g(p) +V'(t),
where
P-P 1 ¢
Dip 2 : A, 0 bté—i/ Fdt.
w2 pi+u-Vp, gp) PN (t) TS

For t € [0,0(T)], one deduces from Lemma 2.2, (2.6), (3.35), (3.19), (3.20) and (2.3)
that for dg as in (3.3) and for all 0 < t; < t2 < o(T),

|b(t2) — b(t1)]

o(T)
so/ 1(pF) (- ) | dt
0
oD 1/2 1/2
<) [ IFCOIRIVRC Ol
~ o(T) 1/2,: 1/2 .1/2 1/2,: 1/2
SCE) [ I Pl AVl + el )t
« o(T) —(2=B)/4y - 111/2 (,2—8 L2 \1/4
< C(p) t pidl| s (22| Va|2.) " dt
0
a(T) —q+1/2
v [ e e (@) T (e 2l
0
o(T) 3/4
< C(p M) (/ t-<2-ﬂ>/3|pa|ié3dt> +C(p, M)(A1(a(T)))*
0
a(T)
< 08/2 n (/ 4—1(2=B)(—60+2/3)+50] (tQ_ﬁHPl/QiL\|%2
0

1/2, (12 %o o/
x(t||p u||L2> dt

(5, M) (A (a(T)))*®/* + C(p, M)CE*

)—504-1/3

C
1
< 0, M)CE™", 0<q< 3,

provided Cy < eq. Therefore, for t € [0,0(T)], one can choose Ny and N; in (2.11)
as follows:

Ny =0, No=C(p,M)C/®,
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and { = p in (2.12). Lemma 2.5 thus yields that
o ol 4 Ny <4 OGNS < L (@an
provided
. 8/(350) N 328/(3(28-1))
Co < min{ey,e3}, forez 2 (20(57]\4)) = (20('/;]\4)> .

On the other hand, for ¢ € [¢(T), T, one deduces from Lemma 2.2, (3.35), (3.6),
and (2.6) that for all o(T) <t; <ty <T,

wmrwmnsam/ﬂmuMMMt

t1

< gt -+ C0) [ IR

< 25\?—2/0(152 —t1) +C(p) /U(TT) IEC O IV EC )1 Fodt

< Z(le\pj-gu)(t t) +C(p)Cy'° g?T)(||Vﬂ('vt)|%2 + Nl *al|Z)dt
< 2(6;’1;@(@ — 1)+ C(p)C?,

provided Cy < 5. Therefore, one can choose N1 and Ny in (2.11) as:

a’m—&-l

Ni=—— Ny=C 02/3.
V= g Mo=CO)
Note that R p) —
a(?’ — P ap”
= — < — = — .
9(Q) 1o W T S

So one can set ( = 37’3 in (2.12). Lemma 2.5 and (3.47) thus yield that

3p 3p 70
sup lpllze < L+ No <P v c(p)cy < 2, (3.48)

telo(T),T] 2 2 4’

provided

5 o\Y?

Co < e £ min{ey,e3,e4}, fores = ( _ ) ) (3.49)
ez €5,€a) 1)

The combination of (3.47) with (3.48) completes the proof of Lemma 3.5. O

4. Proof of Theorem 1.1 and Theorem 1.2

In the following, we will prove the main results of this paper. From now on, we will
always assume that the initial energy Cj satisfies (3.49) and the positive constant
C may depend on

1/2

T, llpo” 9lle2, IVallzzs IVuollzz, lleollms, [1P(po)llms,
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besides u, A, a, 7, p,  and M, where g is as in (1.10).

The higher-order estimates are similar to [20], we omit the details here for
brevity. Consequently, combining Proposition 3.1 with the above higher-order es-
timates as well as the local existence obtained in [6], we can prove the global well-
posedness of Theorem 1.1. Finally, to finish the proof of Theorem 1.1, it remains

to prove (1.14).

Multiplying (3.41) by 4(P — P)? and integrating the resulting equality over T2,

one has - )
(IlP = Pl74) (t)

=—(4v—-1) /(P — P)*divudz — 47/15(13 — P)*divudz
+4(yv-1) /Pdivuda: /(P — P)3dzx,
which yields that
| lap=Pity @la<c [P =Plt+ 1vult) o<,
due to (3.44). Combining (3.44) with (4.1) leads to
lim ||[P— P =0,
t—o0
(3.40) gives that

/ dP‘dt<C/ ‘/(P—P)divudx
1| dt 1

< C/1 (1P = P72 + | Vull3-) dt

dt

< C/ (IVF[|32 + [IVull7,) dt
1
<C.
Hence, there exists some positive constant pg such that
. 7 — ’Y
Jim P(t) = pg
due to 0 < pj < P < C. This combined with (4.2) and(1.4) shows
i {lp = pollLa (£) = 0

for any g € [1, 00).
Thus(1.14) follows provided that

tllzgo ||Vu||L2 =0.

Setting

A+

W .
1) & L Vulds + 22 dived 2,
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choosing m = 0 in (3.9), and using (3.11) and (3.12), one has
IO C [ pliPde +CIVults + CCY Vil 1o (14)
where one has used the following simple estimate:

|M1|:‘/11-Vde

= ‘/(P — P)dividx

< CCy? |Vl 2.
We thus deduce from (4.4), (3.35), and (3.44) that

| iropa<c [ (10l + IVl Tl + 1Vl d

[ (172l + 1vulie + (7l d
1

which, together with

/ 1(8)[2dt < c/ IVul22dt < C,
1 1

implies (4.3). The proof of Theorem 1.1 is finished.
Proof of Theorem 1.2. Otherwise, there exist some constant C; > 0 and a subse-
quence {tn};il ; tn; — 0o such that ||Vp (-,tnj)| .~ < C1. Hence, the Gagliardo-

Nirenberg inequality (2.3) yields that there exists some positive constant C' inde-
pendent of ¢, such that for a = r/(2r — 3) € (0, 1),

||p(:17,tnj) - p||c(1r3)
<C||Vp(a,t)||5, |0 tn,) = 2l 12"
<CCt [|p(, tn,) = pl| s" - (4.5)

Due to (1.14), the right hand side of (4.5) goes to 0 as t,,, — oo. Hence,
(@, tn,) — ﬁ||C(T3) — 0 as t,, — oo. (4.6)

On the other hand, since (p,u) is a classical solution satisfying (1.13), there
exists a unique particle path zo(t) with 2(0) = zo such that

p(zo(t),t) =0 for all ¢t > 0.
So, we conclude from this identity that
||p(m7tnj) - ﬁHC(W) 2 |p(x0(t"j)’tnj) - ﬁ| =p>0,

which contradicts (4.6). This completes the proof of Theorem 1.2. O
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