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MODIFIED HOMOTOPY PERTURBATION
METHODS FOR SOLVING PARTIAL

DIFFERENTIAL EQUATIONS∗

Yue Liu1,2,3, Jing Pang1,3,† Yajun Du1,3 and Tianle Yin1,3

Abstract Homotopy perturbation method can be widely accepted for ap-
proximating or accurately solving nonlinear differential equations due to its
generality and ease of use. Rational homotopy perturbation method and Ra-
tional biparameter homotopy perturbation method are two extensions of ho-
motopy perturbation method which can improve the accuracy of the solution.
In this paper, the algorithm steps of these two derived methods are introduced,
meanwhile, the approximate solutions of Burgers equation and Gardner equa-
tion are obtained. Absolute errors of these two methods in solving partial
differential equations are calculated and described to verify the effectiveness
of the methods.
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1. Introduction

The Homotopy perturbation method [10] has a wide range of applications in solv-
ing approximate solutions of differential equations. This method transforms the
original nonlinear differential equations into a system of linear differential equa-
tions, making it easier to solve. While the Rational homotopy perturbation method
(RHPM) [15] rewrites the solution as a power series quotient to improve the effi-
ciency of computation. Based on RHPM, Rational Biparameter homotopy pertur-
bation method (RBHPM) [17] introduces two parameters in solution, and the two
parameters are solved by comparing the same power coefficient, then the analytical
approximate solution of the equation is obtained. It is worth noting that, when
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RHPM and RBHPM are used to solve differential equations, the numerical solution
of the equation needs to be obtained first, and then the value of the parameter
can be obtained by fitting the numerical solution. However, practice has proved
that these two methods are widely used because of their high accuracy and few
iterations.

Both RHPM and RBHPM were introduced by Vazquez-Leal [15, 17] and have
been widely used in solving differential equations. RHPM was applied to obtain the
approximate solutions for the Van der Pol oscillator problem, and compared with
RHPM, HPM, and VIM, it was found that the approximate solution generated by
RHPM was the most accurate. Vazquez [17] used RBHPM to get the approximate
solutions to a Ricatti nonlinear differential equation. An analytic approximate so-
lution of stiff systems was obtained by improved RHPM [4]. Albalawi [1] applied
HPM to get the approximate expression of the time fractional Emden-Fowler equa-
tion, and proved the effectiveness of this method in solving fractional equations.
Vazquez [16] proposed two improved HPM, both of which can be successfully ap-
plied in dealing with nonlinear differential equations. The applications of RHPM
and RBHPM to linear and nonlinear optimal control problems are studied in [8,18].

Burgers equation [6] plays an important role in nonlinear partial differential
equations which simulates the propagation and reflection of shock wave. The Gard-
ner equation [12,27] is a combination of the KdV equation and the mKdV equation,
which is a useful model for the description of internal solitary waves in shallow wa-
ter. Many methods can be used to obtain analytical solutions to the Burgers equa-
tion and the Gardner equation, for instance, Auxiliary equation method, Bilinear
method and Lie symmetry analysis [9,14,22,25,28] and so on. It is also a practical
method to seek the approximate solution of these two equations using homotopy
theory. Biazar [5] and Alqahtani [2, 13] applied the HPM to gain the approximate
result of the Burgers equation. HPM has also been used to solve the delayed Burgers
equation [24]. References [7,11] applied Homotopy Analysis Method to numerically
solve one-dimensional nonlinear Burgers equation. For the fractional Burgers equa-
tion and fractional Gardner equation, [26] introduce the new fractional calculus on
timescales and its applications in new fractional inequalities on timescales. Their
solutions can also be obtained by homotopy perturbation method and its derivative
methods [3, 19–21,23].

In this paper, HPM, RHPM and RBHPM are used to get analytic approximate
solutions for Burgers equation and Gardner equation. The error analysis between
the exact solution and the approximate solutions are given. Conclusion shows that
the proposed method is characterized by high precision, fast convergence and fewer
iterations which can be widely applied to the solution of partial differential equa-
tions.

2. Method description

2.1. Homotopy Perturbation Method (HPM) [10]

HPM is an approximate method widely used for solving differential equations. For
the following equation:

L(u) +N(u)− f(r) = 0, (2.1)

where L is the linear operator and N is the non-linear operator, f(r) is an analytic
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function. Through the HPM, we construct a homotopy equation:

H(v, p) = (1− p) [L(v)− L(u0)] + p [L(v) +N(v)− f(r)] = 0, (2.2)

where p is an embedded parameter between 0 and 1, u0 is the approximate solution
of (2.1).

The solution of (2.2) can be expressed as

v =

N∑
i=0

pivi.

By substituting v into the homotopy equation (2.2) and comparing the coeffi-
cients of the same power of p, the equations are obtained, and the expressions of
v0, v1 and v2, . . . can be obtained by solving the equations.

Let p → 1, the approximate result can be expressed as:

u = lim
p→1

v =

N∑
i=0

vi.

2.2. Rational Homotopy Perturbation Method (RHPM) [15]

Although HPM can be successfully applied to obtain approximate solutions of dif-
ferential equations, it still has the characteristics of multiple iterations and large
errors when dealing with nonlinear equations with various types and complex prop-
erties. RHPM uses power series quotient to improve the computational efficiency
and accuracy of HPM in solving nonlinear problems.

Using the idea of HPM and employing the same method to construct homotopy
functions, assuming that the approximate solution of (2.2) is in the form of a power
series quotient:

v[m,n] =

∑m
i=0 p

ivi∑n
j=0 p

jwj
, (2.3)

where [m,n] is the order of RHPM, m represents the highest power of p in (2.3)
and n is the highest power of q. If the limits of both lim

p→1

∑m
i=0 vi and lim

p→1

∑n
j=0 wj

exist, and lim
p→1

∑n
j=0 wj ̸= 0 , then the limit of (2.3) exist. Let p → 1, the solution

of (2.1) can be presented as

u = lim
p→1

v =

∑m
i=0 vi∑n
j=0 wj

.

2.3. Rational Biparameter Homotopy Perturbation Method
(RBHPM) [17]

Different from HPM and RHPM, RBHPM introduces two parameters when con-
structing homotopy equation and its solution. Then construct the homotopy equa-
tion of (2.1):

H(v, p, q) =(1− (ap+ (1− a)q)) [L(v)− L(u0)]

+ (ap+ (1− a)q) [L(v) +N(v)− f(r)]

=0,

(2.4)
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among them, p and q are parameters between 0 and 1, a is their weight factor.
Unlike RHPM, RBHPM assumes that the approximate solution of order [m,n]

of (2.4) is in the form of a power series quotient:

v =

∑m
i=0 p

ivi∑n
j=0 q

jwj
. (2.5)

Substitute (2.5) into (2.4) to obtain the system of equations. When p → 1 and
q → 1, an approximate solution for (2.1) can be given as

u = lim
p→1,q→1

v =

∑m
i=0 vi∑n
j=0 wj

.

3. The approximate solution of Burgers equation

To illustrate the efficiency of the method, we apply HPM, RHPM and RBHPM to
Burgers equation. The Burgers equation [6] takes the following form:

ut + uux − uxx = 0, (3.1)

with the initial condition:
u(x, 0) = 0.

3.1. The approximate solution of Burgers equation by HPM

Construct a homotopy map to (3.1):

(1− p)(vt − u0t) + p(vt + vvx − vxx) = 0, (3.2)

suppose
v = v0 + pv1 + p2v2 + . . . . (3.3)

Substituting (3.3) into (3.2) and collecting the coefficients of the same powers of p
produces initial value problems:

p0 : v0t = u0t, v0(x, 0) = 2x,

p1 : v1t = −v0v0x + v0xx, v1(x, 0) = 0,

p2 : v2t = −v0v1x − v0xv1 + v1xx, v2(x, 0) = 0,

. . . .

(3.4)

We can get a solution for (3.4) in the form:

v0 = 2x,

v1 = −4tx,

v2 = 8t2x,

. . . .

Proceeding in the above manner, the rest of the components can be obtained.
Thus we get the approximate solution which has the following form:

u = 2x(1− 2t+ 4t2 + . . . ). (3.5)
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This result is the same as the Taylor expansion of exact solution for Burgers equation
given in reference [5].

u(x, t) =
2x

1 + 2t
. (3.6)

The comparison results of (3.5) and (3.6) show that HPM is an effective method
to obtain approximate analytical solutions of a class of partial differential equations.

3.2. The approximate solution of Burgers equation by RHPM

In order to get the approximate solution of Equation (3.1) with RHPM, we construct
the solution for the homotopy equation (3.2) as

v =
v0 + pv1 + p2v2

1 + at2p
. (3.7)

By substituting (3.7) into (3.2), and comparing the power coefficients of p, a
system of equations can be obtained:

p0 : v0t = u0t, v0(x, 0) = 2x,

p1 : v1t − 2atv0 + 3at2v0t + v0v0x − v0xx = 0, v1(x, 0) = 0,

p2 : v2t + at2v1t − 2atv1 + v1v0x + v0v1x − at2v0xx − v1xx = 0, v2(x, 0) = 0,

. . . .

By solving the above equations, the following results can be obtained.

v0 = 2x,

v1 = 2at2x− 4tx,

v2 = −4at3x+ 8t2x,

. . . .

Substitute the result of v0, v1, v2, . . . into (3.7), and let p → 1, we can get the
approximate solution of (3.1)

u = 2x− 4tx+
8t2x

1 + at2
+ . . . . (3.8)

An undetermined parameter a is presented in (3.8). For determining the adjust-
ment parameter, we need to get the numerical solution of (3.1) first, then the value
of a can be achieved by nonlinear fitting. When the range of x is [-1,1] and the
range of t is [0,1], the optimal solution can be obtained by taking 0.8 as the value
of a.

3.3. The approximate solution of Burgers equation by
RBHPM

The homotopy equation can be constructed as:

(1− (ap+ (1− a)q))(vt − u0t) + (ap+ (1− a)q)(vt + vvx − vxx) = 0. (3.9)
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Suppose that the solution of (3.9) is of order [2, 2], which can be expressed as:

v =
v0 + pv1 + p2v2 + . . .

w0 + qw1 + q2w2 + . . .
. (3.10)

Substituting (3.10) into (3.9), letting w0 = 1. Comparing the coefficients of p and
q to the same power yields:

p0q0 : v0t = u0t, v0(x, 0) = 2x,

p1q0 : v1t + a(v0v0x − v0xx) = 0, v1(x, 0) = 0,

p0q1 : −v0w1t + (1− a)(v0v0x − v0xx) = 0, w1(x, 0) = 0,

p2q0 : v2t + a(v0v1x + v1v0x − v1xx) = 0, v2(x, 0) = 0,

p0q2 : −v0w2t − v0w1w1t + (1− a)v0v0xw1 = 0, w2(x, 0) = 0,

. . . .

(3.11)

Solving equations (3.11) we can obtain:

v0 = 2x,

w0 = 1,

v1 = −4atx,

w1 = 2(1− a)t,

v2 = 8a2t2x,

w2 = 0,

. . . .

(3.12)

Substituting (3.12) into (3.10) and calculating the limits as p → 1, q → 1, then the
results can be obtained:

u =
2x− 4atx+ 8a2t2x

1 + 2(1− a)t
. (3.13)

The unknown parameter a is included in (3.13). From the numerical solution
of the equation, it can be determined by the nonlinear fitting method that when a
takes 0.25, the optimal expression of the equation solution can be obtained.

4. The approximate solution of Gardner equation

The Gardner equation can be written in the following form [27]:

ut + 6(u− u2)ux + uxxx = 0, (4.1)

with the initial condition:

u(x, 0) =
1

2

(
1 + tanh

(x
2

))
.

The exact solution of (4.1) can be found in the literature [12]

u(x, t) =
1

2

(
1 + tanh

(
x− t

2

))
.
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4.1. The approximate solution of Gardner equation by HPM

Applying the method described in Chapter 2.1, we construct a homotopy to (4.1)
as follows:

(1− p)(vt − u0t) + p
[
vt + 6(v − v2)vx + vxxx

]
= 0. (4.2)

The solution of (4.2) can be set as:

v = v0 + pv1 + p2v2 + . . . . (4.3)

A system of equations is obtained by substituting (4.3) into (4.2) to compare the
power coefficients of p:

p0 : v0t = u0t, v0(x, 0) = 0,

p1 : v1t + u0t + 6(v0 − v20)v0x + v0xxx = 0, v1(x, 0) = 0,

p2 : v2t + 6v0v1x + 6v1v0x − 6v20v1x − 12v0v1v0x + v1xxx = 0, v2(x, 0) = 0,

. . . .

(4.4)

It can be obtained by solving the equations (4.4):

v0 =
1

2
+

1

2
tanh

(x
2

)
,

v1 = −1

4
tsech2

(x
2

)
,

v2 = −1

8
t2sech2

(x
2

)
tanh

(x
2

)
,

. . . .

(4.5)

Substituting (4.5) into (4.3), then letting p → 1, we can obtain:

v =
1

2
+

1

2
tanh

(x
2

)
− 1

4
tsech2

(x
2

)
− 1

8
t2sech2

(x
2

)
tanh

(x
2

)
+ . . . .

The analytical expression of the solution is convenient to analyze the properties
of the equation and better analyze the phenomena in physics and reality. However,
in order to improve the accuracy of the solution, we seek a method with a higher
degree of approximation.

4.2. The approximate solution of Gardner equation by RHPM

Applying the method described in Chapter 2.2, setting the solution in the following
form for homotopy equation (4.2),

v =
v0 + pv1 + p2v2

1 + at2p
. (4.6)

Substituting (4.6) into (4.2) and comparing the same power coefficients of p, we
can obtain:

p0 : v0t = u0t, v0(x, 0) = 2x,

p1 : v1t = 2atv0 − (6v0v0x − 6v20v0x + v0xxx), v1(x, 0) = 0,

p2 : v2t = 2atv1 + 2a2t3v0 − 2at2v1t − 6(v0v0xat
2 + v0v1x + v1v0x)

+ 6(v20v1x + 2v0v1v0x)− v1xxx − 2at2v0xxx, v2(x, 0) = 0,

. . . .

(4.7)



2860 Y. Liu, J. Pang, Y. J. Du & T. L. Yin

Solving the equations (4.7), the expressions can be obtained:

v0 =
1

2
+

1

2
tanh

(x
2

)
,

v1 = at2
(
1

2
+

1

2
tanh

(x
2

))
− 1

4
tsech2

(x
2

)
,

v2 = −1

4
at3sech2

(x
2

)
− 1

8
t2sech2

(x
2

)
tanh

(x
2

)
,

. . . .

(4.8)

Substitute (4.8) into (4.6), and let p → 1, we can get:

u =
1

2
+

1

2
tanh

(x
2

)
− 1

4
tsech2

(x
2

)
−

1
8 t

2sech2
(
x
2

)
tanh

(
x
2

)
1 + at2

+ . . . .

Through the numerical solution of the equation, when x is between -1 and 1, mean-
while, t is between 0 and 1, the value of a can be taken as 0.22 to approximate the
optimal solution by using nonlinear fitting.

4.3. The approximate solution of Gardner equation by
RBHPM

According to the method described in Chapter 2.3, construct the following homo-
topy equation for (4.1):

(1− (ap+(1−a)q))(vt−u0t)+(ap+(1−a)q)(vt+6vvx−6v2vx+vxxx) = 0. (4.9)

Assuming that the solution of (4.9) can be written as an expression:

v =
v0 + pv1 + p2v2 + . . .

w0 + qw1 + q2w2 + . . .
. (4.10)

Let w0 = 1, the following system of differential equations can be obtained:

p0q0 : v0t = u0t, v0(x, 0) = 0,

p1q0 : v1t + a(6v0v0x − 6v20v0x + v0xxx) = 0, v1(x, 0) = 0,

p0q1 : −v0w1t + (1− a)(6v0v0x − 6v20v0x + v0xxx) = 0, w1(x, 0) = 0,

p2q0 : v2t + a(−12v0v0xw1 − 6v20v1x + 6v0v1x + 6v1v0x + v1xxx) = 0, v2(x, 0) = 0,

p0q2 : −v0w2t − 2v0w1w1t + (1− a)(12v0v0xw1 − 6v20w1x − 6v20v0xw1

+ 6v30w1x + 3v0xxxw1 − 3v0xw1xx − v0w1xxx − 3v0xxw1x) = 0, w2(x, 0) = 0,

. . . .
(4.11)

Solving (4.11), yields

v0 =
1

2
+

1

2
tanh

(x
2

)
,

w0 = 1,

v1 = −1

4
atsech2

(x
2

)
,
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w1 =
1

2
(1− a)t

(
1− tanh

(x
2

))
,

v2 = −1

8
a2t2sech2

(x
2

)
tanh

(x
2

)
,

w2 =
1

4
(1− a)2t2

(
1− tanh

(x
2

))
,

. . . . (4.12)

By substituting (4.12) into (4.10), we obtain

u =
1
2 + 1

2 tanh
(
x
2

)
− 1

4atsech
2
(
x
2

)
− 1

8a
2t2sech2

(
x
2

)
tanh

(
x
2

)
1 + 1

2 (1− a)t
(
1− tanh

(
x
2

))
+ 1

4 (1− a)2t2
(
1− tanh

(
x
2

)) , (4.13)

(4.13) shows that although the analytical expression of Gardner equation is given,
the expression contains undetermined coefficient a. To determine the parameter a,
it is necessary to obtain the numerical solution of the equation based on numerical
methods and then obtain a = 0.25 by nonlinear fitting method.

5. Figures and discussion

This section describes the precision comparison graphs of HPM, RHPM and
RBHPM in solving approximate solutions of partial equations. Figures 1-2 depict
the error plots and planar comparison graphs of these three methods for solving the
Burgers equation. Figure 1 (a) depicts the absolute error between the approximate
solution obtained by HPM and the exact solution given in the literature. As we
can seen from the image, the error range is within 0 and 4. While Figure 1(b)
presents the absolute error between the calculated results of RHPM and the exact
solution, the error lies in the range from 0 to 1.5. The absolute error between the
results provided by RBHPM and the exact solution is presented in Figure 1(c),
and the error is within the scope of 0 to 0.08. In order to describe the error more
accurately, the mean square error of HPM, RHPM and RBHPM can be calculated
as 4.0079, 0.5304, 0.0011, respectively. By comparing the three graphs in Figure
1 with the calculated results, it can be seen that the error calculated by RHPM
is smaller than that calculated by HPM, while the result calculated by RBHPM is
better than RHPM.

Figure 2(a) and Figure 2(b) respectively compare the approximate solutions
obtained by the three methods with the exact solutions of Burgers equation when
t or x is fixed. Comparison shows that the approximate solution obtained using
RBHPM is closer to the exact solution, which get the same conclusion showed in
Figure 1.

The error comparison in Figure 3-4 describes the accuracy of HPM, RHPM,
RBHPM in solving the approximate solution of the Gardner equation. From Figure
3(a), it can be seen that the error between the results calculated by HPM and the
exact solution is within 0 and 4. Figure 3(b) depicts the error between approximate
solution obtained by RHPM and exact solution ranges from 0 to 2. The error
falls within the interval of 0 to 0.8 between the results calculated by RBHPM and
the exact solution, which is represented in Figure 3(c). For more accurate error
analysis, the mean square error values of HPM, RHPM and RBHPM are calculated
as 0.4059, 0.2566 and 0.1775, respectively.
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(a) Absolute Error by HPM (b) Absolute Error by RHPM (c) Absolute Error by RBHPM

Figure 1. Error diagram of three approximate solutions and the exact solution of Burgers equation.

(a) (b)

Figure 2. 2D plots of three approximate solutions and the exact solution of Burgers equation.

(a) Absolute Error by HPM (b) Absolute Error by RHPM (c) Absolute Error by RBHPM

Figure 3. Error diagram of three approximate solutions and the exact solution of Gardner equation.

Figure 4 shows the two-dimensional comparison graphs more intuitively between
the three methods and the exact solution. Figure 4(a) describes the variation dia-
gram of the solution with x, while Figure 4(b) describes the trend diagram of the
solution with t. The comparison and analysis in Figure 3-4 shows that in the preci-
sion comparison of the three methods, RBHPM is the most accurate method, and
RHPM is better than HPM. This conclusion is further verified by calculating the
mean square error value.
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(a) (b)

Figure 4. 2D plots of three approximate solutions and the exact solution of Gardner equation.

6. Conclusion

For the reason that it is difficult to find the exact solution of many differential
equations, the approximate solutions of Burgers equation and Gardner equation
have been solved by HPM, RHPM and RBHPM in this paper. HPM is a widely
used method for solving approximate solutions of differential equations, but it also
has some limitations, such as many iterations and low accuracy. Therefore, in
order to optimize the accuracy of the algorithm, experts and scholars proposed
RHPM on the basis of HPM, changing the form of the solution to a power series
quotient. Through error analysis, it is proved that this method has fewer iterations
and higher precision than HPM. RBHPM continues to improve on the basis of
RHPM, introducing two parameters p and q, which has a higher precision in solving
partial differential equations.

Since the error graph and the two-dimensional image comparison diagram can
only visually observe the characteristics of the algorithms, the mean square error is
calculated for quantitative description, and the calculation results are more specific.
Through error analysis, it can be seen that the two derived methods improved on
the basis of HPM both improve the accuracy of the method. It can be concluded
that RBHPM is the most accurate of the three methods when the order of power
series expansion is less.

The calculation process of RHPM and RBHPM both contain parameter a, which
requires the numerical solution of the equation to be obtained first, and then the
parameter can be determined by nonlinear fitting, which undoubtedly increases the
calculation workload. On the other hand, the characteristics of high calculation
accuracy and few iterations also provides an effective way for obtaining the approx-
imate analytical expressions of differential equations.
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Mart́ınez and A. Sarmiento-Reyes, Modified HPMs inspired by homotopy con-
tinuation methods, Mathematical Problems in Engineering, 2012, 1–19.

[17] H. Vázquez-Leal, A. Sarmiento-Reyes, Y. Khan, U. Filobello-Nino and A. Diaz-
Sanchez, Rational biparameter homotopy perturbation method and Laplace-
Pade coupled version, Journal of Applied Mathematics, 2012, 1–21.

[18] H. R. Li, Research based on Rational homotopy perturbation method for solving
optimal control problems, Ph.M. University of Science and Technology Liaon-
ing, 2021.



Modified homotopy perturbation methods 2865

[19] W. W. Mohammed, C. Cesarano, N. I. Alqsair and R. Sidaoui, The impact of
Brownian motion on the optical solutions of the stochastic ultra-short pulses
mathematical model, Alexandria Engineering Journal, 2024, 101, 186–192.

[20] W. W. Mohammed, C. Cesarano, A. A. Elmandouh, I. Alqsair, R. Sidaoui
and H. W. Alshammari, Abundant optical soliton solutions for the stochastic
fractional fokas system using bifurcation analysis, Physica Scripta, 2024, 99(4),
045233.

[21] D. G. Prakasha, P. Veeresha and H. M. Baskonus, Two novel computational
techniques for fractional Gardner and Cahn-Hilliard equations, Computationsl
and Mathematical Methods, 2019, 1(2).

[22] B. Ren, Symmetry reduction related with nonlocal symmetry for Gardner equa-
tion, Communications in Nonlinear Science and Numerical Simulation, 2017,
42, 456–463.

[23] P. Sripacharasakullert, W. Sawangtong and P. Sawangtong, An approximate
analytical solution of the fractional multi-dimensional Burgers equation by
the homotopy perturbation method, Advances in Difference Equations, 2019,
2019(1), 1–12.

[24] S. K. Vanani and F. Soleymani, Application of the homotopy perturbation
method to the Burgers equation with delay, Chinese Physics Letters, 2012,
29(3), 5–8.

[25] T. L. Yin, Z. Q. Xing and J. Pang, Modified Hirota bilinear method to (3+1)-D
variable coefficients generalized shallow water wave equation, Nonlinear Dy-
namics, 2023, 111(11), 9741–9752.

[26] M. Zakarya, M. Altanji, G. AlNemer, H. A. A. El-Hamid, C. Cesarano and H.
M. Rezk, Fractional reverse Coposn’s inequalities via conformable calculus on
time scales, Symmetry, 2021, 13, 542.

[27] J. J. Zhao, R. Zhan and Y. Xu, The analysis of operator splitting for the
Gardner equation, Applied Numerical Mathematics, 2019, 144, 151–175.

[28] Z. Zhao and J. Pang, Solitary wave solutions of GKP equation with (2+1) di-
mensional variable-coefficients in dynamic systems, Chaos, Solitons and Frac-
tals: X, 2022, 8.

Received January 2025; Accepted February 2025; Available online April 2025.


	Introduction
	Method description
	Homotopy Perturbation Method (HPM)R1
	Rational Homotopy Perturbation Method (RHPM)R2
	Rational Biparameter Homotopy Perturbation Method (RBHPM)R3

	The approximate solution of Burgers equation
	The approximate solution of Burgers equation by HPM
	The approximate solution of Burgers equation by RHPM
	The approximate solution of Burgers equation byRBHPM

	The approximate solution of Gardner equation
	The approximate solution of Gardner equation by HPM
	The approximate solution of Gardner equation by RHPM
	The approximate solution of Gardner equation byRBHPM

	Figures and discussion
	Conclusion

