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Abstract This paper focuses on investigating the discontinuous fractional
Sturm-Liouville problem equipped with a transmission condition of order α ∈
(1, 2). Through rigorous analysis, it is demonstrated that the eigenvalues and
their corresponding eigenfunctions of this problem coincide with those of the
constructed operator in Hilbert space. Furthermore, a necessary and sufficient
condition for the existence of eigenvalues is established, providing a theoretical
foundation for the spectral characterization of such fractional boundary value
problems.

Keywords Sturm-Liouville problem, eigenvalues, fractional boundary con-
ditions, fractional transmission conditions.

MSC(2010) 34B24, 34L20, 34L05.

1. Introduction

Since its inception, the Sturm–Liouville problem has garnered significant attention
across mathematical and physical communities. Extensive theoretical advancements
and practical applications have been documented in the literature, as demonstrated
by foundational works [2, 11, 14, 18]. However, the classical integer-order formula-
tion of this problem has become inadequate for addressing modern challenges in
engineering physics and interdisciplinary applications. This limitation has spurred
the integration of fractional calculus and fractional differential equations into the
framework, prompting a resurgence of interest in fractional-order generalizations
of the Sturm–Liouville problem. Fundamental concepts of fractional differentiation
and integration, alongside introductory treatments of fractional differential equa-
tions, are comprehensively presented in [9, 12]. Applications spanning physics and
mechanics are surveyed in [20,24], with particular emphasis on statistical mechanics
explored in [13]. Financial modeling has also benefited from fractional calculus, as
exemplified by [5], which examines viscoelastic and thermodynamic properties of
stock indices. Among fractional-order operators, Riemann–Liouville fractional in-
tegrals, Riemann–Liouville fractional derivatives, and Caputo fractional derivatives
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have been most extensively studied. Recent developments include investigations
into Hilfer fractional derivatives, as highlighted in [3, 4, 21].

The study of continuous boundary-value problems has long attracted extensive
attention. Equally significant, however, are discontinuous boundary-value prob-
lems, among which the Sturm-Liouville problem with transmission conditions has
emerged as a critical research area in physics and mechanics. This class of problems,
characterized by eigenparameter-dependent boundary conditions and complemen-
tary transmission conditions imposed at interior points, has been systematically
investigated in recent literature (see [16]). Furthermore, spectral properties of the
classical Sturm-Liouville problem have been generalized to equations with piecewise
continuous potentials [7], while Kadakal [6] established asymptotic approximation
formulas for eigenvalues and normalized eigenfunctions in regular Sturm-Liouville
systems. Meng [15] addressed two canonical fractional discontinuous dissipative
Sturm-Liouville-type boundary-value problems, incorporating both boundary and
transmission conditions. Meanwhile, Sevinik [19] explored the existence and unique-
ness of solutions for nonlinear fractional differential equations of order 2 < α ≤ 3 .
Other contributions include investigations into fractional boundary-value problems
under alternative boundary conditions were investigated in [8, 17,22].

The fractional-order Sturm-Liouville system with parameter α ∈ ( 12 , 1] has been
systematically analyzed by Akdoğan [1, 23]. This study comprehensively charac-
terized the boundary conditions and two transmission conditions, leading to the
conclusion that the eigenvalues and corresponding eigenfunctions of this fractional
system exactly coincide with those of the constructed operator in Hilbert space.
Furthermore, the fourth-order integer-order Sturm-Liouville problem was rigorously
discussed in [26], where both necessary and sufficient conditions for the existence
of eigenvalues were explicitly established.

The objective of this paper is to generalize the results derived in Refs. [1,23] to
the case of fractional order α ∈ (1, 2). Motivated by the insights from [10, 25], we
propose four boundary conditions for fractional order α ∈ (1, 2). A discontinuous
fractional Sturm-Liouville problem with transmission conditions is then formulated.
Through operator-theoretic analysis in Hilbert space, the eigen-structure of the
problem is characterized, and exact equivalence is established between the operator
eigenvalues and those of the boundary-value problem, leading to the derivation of
necessary and sufficient eigenvalue conditions.

This paper is structured as follows: Section 2 presents definitions and simple
properties for Riemann-Liouville fractional integrals, Riemann-Liouville fractional
differentiation, and Caputo fractional differentiation, along with some lemmas. Sec-
tion 3 describes the discontinuous fractional Sturm-Liouville problem with trans-
mission conditions, focusing on the order α ∈ (1, 2), which is the subject of this
study. Section 4 states that the boundary value problem has four linearly inde-
pendent solutions. Section 5 provides a sufficient and necessary condition for the
eigenvalues of the problem.

2. Some auxiliary definitions and results

In this section we present the basic definitions and facts relevant to this work (see
also [9, 12]), along with the necessary proofs of the lemmas.

Definition 2.1 (c. f. [12]). (Left and right Riemann-Liouville (R-L) fractional
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integrals)
Let [a, b] ⊂ R, Re(α) > 0 and f ∈ L1[a, b]. Then the left and right Riemann-

Liouville fractional integrals Iαa+ and Iαb− of order α ∈ C are given by

Iαa+f(x) =
1

Γ(α)

∫ x

a

f(t)dt

(x− t)1−α
, x ∈ (a, b],

Iαb−f(x) =
1

Γ(α)

∫ b

x

f(t)dt

(t− x)1−α
, x ∈ [a, b)

respectively.

Definition 2.2 (c. f. [12]). (Left and right Riemann-Liouville (R-L) fractional
derivatives)

Let [a, b] ⊂ R and f ∈ L1[a, b]. The left and right Riemann-Liouville fractional
derivatives of order α ∈ C (Re(α) ≥ 0) of function f are defined by

Dα
a+f(x) := DnIn−α

a+ f(x), x ∈ (a, b], (n = ⌊Re(α)⌋+ 1, n ∈ N0 = {0, 1, 2, · · · }) ,
Dα

b−f(x) := (−D)nIn−α
b− f(x), x ∈ [a, b), (n = ⌊Re(α)⌋+ 1, n ∈ N0)

respectively, where D = d
dx is the usual differential operator and ⌊Re(α)⌋ means

the integral part of Re(α). For ease of reference, we will straightforwardly consider
the case n = 2, then

Dα
a+f(x) := D2I2−α

a+ f(x), x ∈ (a, b],

Dα
b−f(x) := D2I2−α

b− f(x), x ∈ [a, b).

Definition 2.3 (c. f. [12]). (Left and right Caputo fractional derivatives)
Let [a, b] ⊂ R and f ∈ L1[a, b]. The left and right Caputo fractional derivatives

of order α ∈ C (Re(α) ≥ 0) are

cDα
a+f(x) := In−α

a+ Dnf(x), x ∈ (a, b], (n = ⌊Re(α)⌋+ 1, n ∈ N0) ,
cDα

b−f(x) := (−1)nIn−α
b− Dnf(x), x ∈ [a, b), (n = ⌊Re(α)⌋+ 1, n ∈ N0)

respectively, where D = d
dx is the usual differential operator and ⌊Re(α)⌋ means

the integral part of Re(α). Similarly, we will consider the case n = 2, then

cDα
a+f(x) := I2−α

a+ D2f(x), x ∈ (a, b],
cDα

b−f(x) := I2−α
b− D2f(x), x ∈ [a, b).

Lemma 2.1 (c.f. [12]). For ease of reference, we will straightforwardly consider the
case n = 2, then

Dα
a+Iαa+f(x) = f(x),

Dα
b−I

α
b−f(x) = f(x)

and

Iαa+Dα
a+f(x) = f(x)− (x− a)α−1

Γ(α)
DI2−α

a+ f(a)− (x− a)α−2

Γ(α− 1)
I2−α
a+ f(a),

Iαb−D
α
b−f(x) = f(x) +

(b− x)α−1

Γ(α)
DI2−α

b− f(b)− (b− x)α−2

Γ(α− 1)
I2−α
b− f(b).

Based on the above equations, we can observe that the Riemann-Liouville (R-L)
derivative is the left inverse of the R-L integral, but not the right inverse.
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Lemma 2.2 (c. f. [12]). Similarly, we will consider the case n = 2, then

cDα
a+Iαa+f(x) = f(x),

cDα
b−I

α
b−f(x) = f(x)

and
Iαa+

cDα
a+f(x) = f(x)− f(a)− f ′(a)(x− a),

Iαb−
cDα

b−f(x) = f(x)− f(b) + f ′(b)(b− x).

Lemma 2.3 (c. f. [12]). Assume that 1 < α < 2, f ∈ AC[a, b] and g ∈ Lp(a, b)(1 ≤
p ≤ ∞). Then the following integration by parts formula holds:∫ b

a

f(x)Dα
a+g(x)dx

=

∫ b

a

g(x) cDα
b−f(x)dx+ f(x)DI2−α

a+ g(x) |x=b
x=a −f ′(x)I2−α

a+ g(x) |x=b
x=a,∫ b

a

f(x)Dα
b−g(x)dx

=

∫ b

a

g(x) cDα
a+f(x)dx+ f(x)DI2−α

b− g(x) |x=b
x=a −f ′(x)I2−α

b− g(x) |x=b
x=a .

Next, we will present and prove the following lemma that is closely related to
the subsequent content.

Lemma 2.4. Let f ∈ L2(a, b) and α ∈ (1, 2), then

(1) Iαa+
cDα

b−f(x) = Mg(x) + (−1)α[f(x)− f(b) + f ′(b)(b− x)],

(2) Iαa+
cDα

b−f(x) = (−1)α−1Iαa+Nf (x) + (−1)α[f(x)− f(a)− f ′(a)(x− a)],

where

Mg(x) =
1

Γ(α)

∫ b

a

(x− t)α−1g(t)dt,

Nf (x) =
1

Γ(2− α)

∫ b

a

(x− t)1−αf ′′(t)dt

and
g(x) = cDα

b−f(x).

Proof. In view of Definition 2.1, we have

Mg(x) =
1

Γ(α)

∫ b

a

(x− t)α−1g(t)dt

=
1

Γ(α)

∫ x

a

(x− t)α−1g(t)dt+
1

Γ(α)

∫ b

x

(x− t)α−1g(t)dt

= Iαa+g(x) + (−1)α−1Iαb−g(x).

Then it leads to

Iαa+g(x) = Mg(x) + (−1)αIαb−g(x).



2870 J. Wu, X. Hao & K. Li

To prove (2), by Definition 2.3, we obtain

Nf (x) =
1

Γ(2− α)

∫ b

a

(x− t)1−αf ′′(t)dt

=
1

Γ(2− α)

∫ x

a

(x− t)1−αf ′′(t)dt+ (−1)1−α 1

Γ(2− α)

∫ b

x

(t− x)1−αf ′′(t)dt

= cDα
a+f(x) + (−1)1−α cDα

b−f(x),

which gives
cDα

b−f(x) = (−1)α−1[Nf (x)− cDα
a+f(x)].

By applying the fractional operator Iαa+ to both sides, we get

Iαa+
cDα

b−f(x) = (−1)α−1[Iαa+Nf (x)− Iαa+
cDα

a+f(x)]

= (−1)α−1Iαa+Nf (x) + (−1)α[f(x)− f(a)− f ′(a)(x− a)].

The proof is completed.

3. Discontinuous fractional Sturm-Liouville prob-
lem with transmission conditions

In this section, we consider the following fractional S-L differential expression £α,x

defined as

£α,x :=

{
cDα

0−p(x)D
α
−1+ + q(x), x ∈ [−1, 0),

cDα
1−p(x)D

α
0+ + q(x), x ∈ (0, 1].

Then we shall consider the following fractional S-L problem on I, where I = [−1, 0)∪
(0, 1],

£α,xu+ λu = 0 (3.1)

with boundary conditions

L1(u) := a1,0I
2−α
−1+u(−1) + a2,0D

α+1
−1+u(−1) = 0, (3.2)

L2(u) := b1,0I
2−α
0+ u(1) + b2,0D

α+1
0+ u(1) = 0, (3.3)

L3(u) := a1,1D
α−1
−1+u(−1) + a2,1D

α
−1+u(−1) = 0, (3.4)

L4(u) := b1,1D
α−1
0+ u(1) + b2,1D

α
0+u(1) = 0 (3.5)

and transmission conditions

L5(u) := I2−α
−1+u(−0) + I2−α

0+ u(+0) = 0, (3.6)

L6(u) := Dα−1
−1+u(−0) +Dα−1

0+ u(+0) = 0, (3.7)

L7(u) := Dα
−1+u(−0) +Dα

0+u(+0) = 0, (3.8)

L8(u) := Dα+1
−1+u(−0) +Dα+1

0+ u(+0) = 0, (3.9)

where
3

2
< α < 2 in (3.1)-(3.9), λ ∈ C and λ is the eigenparameter in (3.1), and

p(x) =

{
p1, x ∈ [−1, 0),

p2, x ∈ (0, 1].
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q(x) is real-valued and continuous in both [−1, 0) and (0, 1], also has finite limits
q(±0) := lim

x→±0
q(x), a21,j + a22,j ̸= 0, b21,j + b22,j ̸= 0, with j = 0, 1 and p1, p2 are

positive real numbers.

4. The operator formulation of the problem

We define the following inner product in the Hilbert space L2[−1, 1] by

⟨f, g⟩ = 1

p1

∫ 0

−1

f(x)g(x)dx+
1

p2

∫ 1

0

f(x)g(x)dx, (4.1)

where f := f(x), g := g(x) ∈ L2[−1, 1]. In this Hilbert space we define the operator
T with domain

D(T ) :=



f = f(x) and Dα−1f(x), Dαf(x), Dα+1f(x),c Dαf(x),

are absolutely continuous on [−1, 0) ∪ (0, 1],

and f(±0), Dαf(±0), Dα−1f(±0), Dα+1f(±0),

I2−αf(±0) have finite limits,

Lif = 0, i = 1, 2, 3, 4, 5, 6, 7, 8,


(4.2)

and action law
T f := £α,xf. (4.3)

Thus the problem (3.1)-(3.9) can be written in the operator form as

T u = λu.

It should be noted that the eigenvalues and eigenfunctions of problem (3.1)-(3.9)
are related to the eigenvalues and eigenfunctions of operator T , respectively.

Theorem 4.1. The linear operator T is symmetric.

Proof. For each f, g ∈ D(T ), using (4.1) we write

⟨T f, g⟩ = 1

p1

∫ 0

−1

T f(x)g(x)dx+
1

p2

∫ 1

0

T f(x)g(x)dx

=
1

p1

∫ 0

−1

(cDα
0−p1D

α
−1+f(x))g(x)dx+

1

p2

∫ 1

0

(cDα
1−p2D

α
0+f(x))g(x)dx

+
1

p1

∫ 0

−1

q(x)f(x)g(x)dx+
1

p2

∫ 1

0

q(x)f(x)g(x)dx. (4.4)

By applying lemma 2.3, we get

⟨T f, g⟩ =
{∫ 0

−1

f(x)cDα
0−D

α
−1+g(x)dx+Dα

−1+g(x)DI2−α
−1+f(x) |

0
−1

−DDα
−1+g(x)I

2−α
−1+f(x) |

0
−1 −Dα

−1+f(x)DI2−α
−1+g(x) |

0
−1

+DDα
−1+f(x)I

2−α
−1+g(x) |

0
−1

}
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+

{∫ 1

0

f(x)cDα
1−D

α
0+g(x)dx+Dα

0+g(x)DI2−α
0+ f(x) |10

−DDα
0+g(x)I

2−α
0+ f(x) |10−Dα

0+f(x)DI2−α
0+ g(x) |10+DDα

0+f(x)I
2−α
0+ g(x) |10

}
+

1

p1

∫ 0

−1

q(x)f(x)g(x)dx+
1

p2

∫ 1

0

q(x)f(x)g(x)dx

= ⟨f, T g⟩+
[
Dα

−1+g(x)DI2−α
−1+f(x) |

0
−1 −DDα

−1+g(x)I
2−α
−1+f(x) |

0
−1

−Dα
−1+f(x)DI2−α

−1+g(x) |
0
−1 +DDα

−1+f(x)I
2−α
−1+g(x) |

0
−1

]
+
[
Dα

0+g(x)DI2−α
0+ f(x) |10 −DDα

0+g(x)I
2−α
0+ f(x) |10

−Dα
0+f(x)DI2−α

0+ g(x) |10 +DDα
0+f(x)I

2−α
0+ g(x) |10

]
. (4.5)

It’s worth noting that DI2−α = Dα−1, DDα = Dα+1. By considering the fractional
boundary conditions (3.2)-(3.5) and transmission conditions (3.6)-(3.9) we have

⟨T f, g⟩ = ⟨f, T g⟩,

which proves that the operator T is symmetric.

Corollary 4.1. All eigenvalues of the problem (3.1)-(3.9) are real.

Corollary 4.2. The eigenfunctions corresponding to the different eigenvalues
of the fractional Sturm-Liouville problem (3.1)-(3.9) are orthogonal.

Proof. Let λ1 and λ2 are two different eigenvalues corresponding to eigenfunctions
y1(x) and y2(x), respectively, for the problem (3.1) to (3.9).

£α,xy1 + λ1y1 = 0,

£α,xy2 + λ2y2 = 0.

Multiply the conjugate of the upper-equation by y2(x) and the conjugate of the
lower-equation by y1(x) respectively, subtract from each other and integrate from
−1 to 1 because of the symmetry of the operator £α,x. We have

(λ1 − λ2)⟨y1(x), y2(x)⟩ = 0.

Since λ1 ̸= λ2, and the proof completes.

Naturally, we can assume now that all eigenfunctions of the problem (3.1)-(3.9)
are real-valued.

Lemma 4.1. The equivalent integral form of equation (3.1) with fractional trans-
mission conditions (3.6)-(3.9) is given as

u(x) = u0(x) +
1

p2
I2α0+

[
Nu(x) + (−1)1−α(λ+ q(x))u(x)

]
, (4.6)

where

u0(x) =
xα−1

Γ(α)

(
−Dα−1

−1+u(−0)
)
+

xα−2

Γ(α− 1)

(
−I2−α

−1+u(−0)
)

+ Iα0+
(
−Dα

−1+u(−0)
)
+ Iα0+x

(
−Dα+1

−1+u(−0)
)
.

(4.7)
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Proof. Let us consider (3.1)

cDα
1−p2D

α
0+u(x) + (λ+ q(x))u(x) = 0, x ∈ (0, 1] .

Apply the fractional integral operator Iα0+ acting on this equation and by Lemma
2.4, we obtain

Iα0+
cDα

1−p2D
α
0+u(x) + Iα0+(λ+ q(x))u(x) = 0 (4.8)

and

p2D
α
0+u(x) =Iα0+Nu(x) + p2D

α
0+u(+0)

+ p2xDDα
0+u(+0) + (−1)

1−α
Iα0+ (λ+ q(x))u(x).

(4.9)

Applying Iα0+ on both sides of (4.9) and using conditions (3.6)-(3.9), we find

u(x) =
xα−1

Γ(α)

(
−Dα−1

−1+u(−0)
)
+

xα−2

Γ(α− 1)

(
−I2−α

−1+u(−0)
)

+ Iα0+
(
−Dα

−1+u(−0)
)
+ Iα0+x

(
−Dα+1

−1+u(−0)
)

+
1

p2
I2α0+

[
Nu(x) + (−1)1−α(λ+ q(x))u(x)

]
.

(4.10)

So we reach

u(x) = u0(x) +
1

p2
I2α0+

[
Nu(x) + (−1)1−α(λ+ q(x))u(x)

]
, (4.11)

which completes the proof.
We next define um(x, λ) to construct the successive approximations

um(x, λ)

=u0(x, λ) +
1

p2Γ(2α)

∫ x

0

(x− y)2α−1
[
Num−1

(y) + (−1)1−α(λ+ q(y))um−1(y)
]
dy

=u0(x, λ) +
1

p2
I2α0+

[
Num−1(x) + (−1)1−α(λ+ q(x))um−1(x, λ)

]
.

Lemma 4.2. Let Q1 := maxx∈(0,1] |q(x)|, PR1
:= max|λ|∈R P1(λ) and P1(λ) :=

maxx∈(0,1] |u0(x, λ)|, kα := 1
(3−α)Γ(2−α) .

Then the following estimate

∥um(x, λ)− um−1(x, λ)∥ ≤ PR1

{
2kα + |λ|+Q1

p2Γ(2α+ 1)

}m

(4.12)

holds for all m ∈ N = {1, 2, · · · }.

Proof. Let us apply the mathematical induction for m. Note that we notate

K =
1

Γ(2α+ 1)
. For m = 1, we have

∥u1(x, λ)− u0(x, λ)∥ = ∥ 1

p2
I2α0+ [Nu0(x) + (−1)1−α(λ+ q(x))u0(x, λ)]∥.
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By using Lemma 2.1 and Corollary 2.3 in [9], we have

∥u1(x, λ)− u0(x, λ)∥

≤ 1

p2
K∥Nu0

(x) + (−1)1−α(λ+ q(x))u0(x, λ)∥

≤ 1

p2
K(∥Nu0(x)∥+ ∥(λ+ q(x))u0(x, λ)∥)

≤ 1

p2
K(2kα∥u0(x, λ)∥+ (|λ|+Q1)∥u0(x, λ)∥)

≤ KPR1

p2
(2kα + |λ|+Q1).

Suppose that (4.12) holds for m− 1, i.e.,

∥um−1(x, λ)− um−2(x, λ)∥ ≤ PR

{
K

p2
(2kα + |λ|+Q)

}m−1

.

Then we have

∥um(x, λ)− um−1(x, λ)∥

= ∥ 1

p2
I2α0+ [Num−1

−Num−2
(x, λ) + (−1)α(λ+ q(x))(um−1(x, λ)− um−2(x, λ))]∥

≤ K

p2
[∥Num−1 −Num−2∥+ ∥(λ+ q(x))(um−1(x, λ)− um−2(x, λ))∥]

≤ K

p2
[2kα∥um−1(x, λ)− um−2(x, λ)∥+ (|λ|+Q1)∥(um−1(x, λ)− um−2(x, λ))∥]

≤ K

p2
(2kα + |λ|+Q1)∥(um−1(x, λ)− um−2(x, λ))∥

≤ PR1

{
K

p2
(2kα + |λ|+Q1)

}m

.

The proof is completed.
By a similar proof method, we can prove the following lemma.

Lemma 4.3. Let Q2 := maxx∈[−1,0) |q(x)|, PR2 := max|λ|∈R P2(λ) and P2(λ) :=

maxx∈[−1,0) |u0(x, λ)|, kα := 1
(3−α)Γ(2−α) .

Then the following estimate

∥um(x, λ)− um−1(x, λ)∥ ≤ PR2

{
2kα + |λ|+Q2

p1Γ(2α+ 1)

}m

(4.13)

holds for all m ∈ N.

Corollary 4.3. Let Q := max {Q1, Q2}, PR := max {PR1 , PR2}, we can deduce
that

∥um(x, λ)− um−1(x, λ)∥ ≤ PR

{
2kα + |λ|+Q

p1Γ(2α+ 1)

}m

, x ∈ [−1, 0),

and

∥um(x, λ)− um−1(x, λ)∥ ≤ PR

{
2kα + |λ|+Q

p2Γ(2α+ 1)

}m

, x ∈ (0, 1]

also hold.
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Lemma 4.4. The following initial value problem

cDα
0−p1D

α
−1+u(x) + (q(x) + λ)u(x) = 0, x ∈ [−1, 0], (4.14)

I2−α
−1+u(−1) = a2,0, (4.15)

Dα+1
−1+u(−1) = −a1,0 (4.16)

has a unique solution on [−1, 0] provided that

K

p1
(2kα + |λ|+Q) < 1. (4.17)

Proof. We can derive the following integral equation by proving Lemma 4.1 in a
similar manner.

u(x) = u0(x) +
1

p1
I2α−1+

[
Nu(x) + (−1)1−α(λ+ q(x))u(x)

]
(4.18)

where

u0(x) =
(x+ 1)α−1

Γ(α)
(Dα−1

−1+u(−1)) +
(x+ 1)α−2

Γ(α− 1)
a2,0

+ Iα−1+(D
α
−1+u(−1)) + Iα−1+(−a1,0)(x+ 1).

The following integral equation is formulated using the mapping A,

ϕ = Aϕ (4.19)

where A is defined as:

Af = u0 +
1

p1
I2α−1+

[
Nf + (−1)1−α(λ+ q)f

]
,

then we have

∥Af −Ag∥ =

∥∥∥∥ 1

p1
I2α−1+

[
(Nf −Ng) + (−1)1−α(λ+ q)(f − g)

]∥∥∥∥ .
By using Lemma 2.1 and Corollary 2.3 in [9], we have

∥Af −Ag∥ ≤ K

p1

∥∥(Nf −Ng) + (−1)1−α(λ+ q)(f − g)
∥∥

≤ K

p1
∥(Nf −Ng)∥+ ∥(λ+ q)(f − g)∥

≤ K

p1
(2kα + |λ|+Q) ∥f − g∥ .

(4.20)

Based on (4.17) it can be shown that the mapping A is a contraction on the space
⟨C [−1, 0] , ∥·∥⟩. For A there is therefore a unique solution of the equation (4.19).
The proof is complete.

Theorem 4.2. For any λ ∈ C, satisfying
K

pi
(2kα + |λ| + Q) < 1 (i = 1, 2). The

differential equation (3.1) has a unique solution that satisfies the fractional boundary
condition (3.2) and the transmission conditions (3.6)-(3.9).



2876 J. Wu, X. Hao & K. Li

Proof. Take into account the differential equation for λ ∈ C

£α,xu(x) + λu(x) = 0, x ∈ [−1, 0), (4.21)
cDα

0−p1D
α
−1+u(x) + (q(x) + λ)u(x) = 0, x ∈ [−1, 0), (4.22)

I2−α
−1+u(−1) = a2,0, (4.23)

Dα+1
−1+u(−1) = −a1,0. (4.24)

By lemma 4.3, this initial value problem has a unique solution ϕ11(x, λ). Next, we
consider the differential equation for λ ∈ C.

£α,xu(x) + λu(x) = 0, x ∈ (0, 1], (4.25)
cDα

1−p2D
α
0+u(x) + (q(x) + λ)u(x) = 0, x ∈ (0, 1], (4.26)

I2−α
0+ u(+0) = −I2−α

−1+ϕ11(−0), (4.27)

Dα+1
0+ u(+0) = −Dα+1

−1+ϕ11(−0). (4.28)

We establish the sequence {un(x, λ)} for x ∈ (0, 1] and n = 1, 2, . . . such that

un(x, λ) = u0(x, λ) +
1

p2
I2α0+

[
Nun−1(x) + (−1)1−α(λ+ q(x))un−1(x, λ)

]
(4.29)

where

u0(x, λ) =
xα−1

Γ(α)
(−Dα−1

−1+ϕ11(−0)) +
xα−2

Γ(α− 1)
(−I2−α

−1+ϕ11(−0))

+ Iα0+(−Dα
−1+ϕ11(−0)) + Iα0+(− Dα+1

−1+ϕ11(−0))x, x ∈ (0, 1].

(4.30)

Obviously, each of the functions un(x, λ) is an entire function of λ for each x ∈ (0, 1].
Next we consider the following series

u∗(x, λ) = lim
n→∞

(un(x, λ)− u0(x, λ)) =

∞∑
j=1

((uj(x, λ)− uj−1(x, λ)). (4.31)

According to estimate (4.12) in lemma 4.2, for 0 < x ≤ 1, the absolute value of
its terms is less than the corresponding terms of the convergent numeric series

PR

∞∑
j=1

{
K

p2
(2kα + |λ|+Q)

}j

.

Hence, series (4.31) converges uniformly. Obviously, each term (uj(x, λ)−uj−1(x, λ))
of series (4.31) is continuous on x ∈ (0, 1]. Therefore the sum of series (4.31) is con-
tinuous on x ∈ (0, 1] and

ϕ12(x, λ) = lim
n→∞

(un(x, λ)) = u0(x, λ) + u∗(x, λ)

is continuous on x ∈ (0, 1].
The uniform convergence of the sequence un(x, λ) allows us to substitute n → ∞

into (4.29), resulting in equation (4.11). This shows that the limit function ϕ12(x, λ)
defined by (4.31) serves as the solution to (4.11). However, it is important to note
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that the fulfillment of the initial conditions (4.27) to (4.28) alone is not sufficient.
Finally, let the function ϕ1(x, λ) be given by

ϕ1(x, λ) =

{
ϕ11(x, λ), x ∈ [−1, 0),

ϕ12(x, λ), x ∈ (0,−1]
(4.32)

satisfies the differential equation (3.1), fractional boundary conditions (3.2) and
fractional transmission conditions (3.6)-(3.9).

Using a similar approach, we can prove the next theorem.

Theorem 4.3. For any λ ∈ C, satisfying
K

pi
(2kα + |λ| + Q) < 1 (i = 1, 2), the

differential equation

£α,xu(x) + λu(x) = 0, x ∈ [−1, 0) ∪ (0,−1]

has unique solution

ϕ2(x, λ) =

ϕ21(x, λ), x ∈ [−1, 0),

ϕ22(x, λ), x ∈ (0, 1],
(4.33)

ϕ3(x, λ) =

ϕ31(x, λ), x ∈ [−1, 0),

ϕ32(x, λ), x ∈ (0, 1],
(4.34)

ϕ4(x, λ) =

ϕ41(x, λ), x ∈ [−1, 0),

ϕ42(x, λ), x ∈ (0, 1],
(4.35)

satisfying separately fractional boundary conditions (3.3)-(3.5) and transmission
conditions (3.6)-(3.9), for each x ∈ [−1, 0) ∪ (0, 1].

5. The sufficient and necessary condition for eigen-
values

In this section, we present a necessary and sufficient condition for the S-L problem,
which is composed of conditions (3.1)-(3.9), to meet the following conditions. If we
apply the boundary conditions (3.2)-(3.5), we can obtain the following boundary
matrices.

A =


a1,0 0 0 a2,0

0 a1,1 a2,1 0

0 0 0 0

0 0 0 0

 , B =


0 0 0 0

0 0 0 0

b1,0 0 0 b2,0

0 b1,1 b2,1 0

 ,

and let

Cu(x) =

C1u(x), x ∈ [−1, 0),

C2u(x), x ∈ (0, 1]
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where

C1u(x) =
(
I2−α
−1+u(x), D

α−1
−1+u(x), D

α
−1+u(x), D

α+1
−1+u(x)

)T

,

and

C2u(x) =
(
I2−α
0+ u(x), Dα−1

0+ u(x), Dα
0+u(x), D

α+1
0+ u(x)

)T

.

If λ is not an eigenvalue of (3.1)-(3.9), it can be inferred from Section IV of
[23] that ϕ1, ϕ2, ϕ3 and ϕ4 of the equation (3.1) on [−1, 0) ∪ (0, 1] are linearly
independent.

Let ϕ11, ϕ21, ϕ31 and ϕ41 of the equation (3.1) in the interval [−1, 0) satisfying
the following intitial condition(

Cϕ11(−1, λ), Cϕ21(−1, λ), Cϕ31(−1, λ), Cϕ41(−1, λ)
)
= E (5.1)

where E is identity matrix. Since the fractional Wronskians are entire functions
with respect to λ, independent of x, we can define

ω1(x) = W
(
ϕ11(x, λ), ϕ21(x, λ), ϕ31(x, λ), ϕ41(x, λ)

)
= det

(
Cϕ11(x, λ), Cϕ21(x, λ), Cϕ31(x, λ), Cϕ41(x, λ)

)
= det

(
Cϕ11

(−1, λ), Cϕ21
(−1, λ), Cϕ31

(−1, λ), Cϕ41
(−1, λ)

)
= 1.

And let ϕ12, ϕ22, ϕ32 and ϕ42 of the equation (3.1) in the interval (0, 1] satisfying
the following intitial condition, that is, the transmission conditions (3.6)-(3.8), then(

Cϕ12
(+0, λ), Cϕ22

(+0, λ), Cϕ32
(+0, λ), Cϕ42

(+0, λ)
)

=−
(
Cϕ11

(−0, λ), Cϕ21
(−0, λ), Cϕ31

(−0, λ), Cϕ41
(−0, λ)

)
.

(5.2)

Similarly, we can define

ω2(x) = W
(
ϕ12(x, λ), ϕ22(x, λ), ϕ32(x, λ), ϕ42(x, λ)

)
= det

(
Cϕ12

(x, λ), Cϕ22
(x, λ), Cϕ32

(x, λ), Cϕ42
(x, λ)

)
= det

(
Cϕ12

(+0, λ), Cϕ22
(+0, λ), Cϕ32

(+0, λ), Cϕ42
(+0, λ)

)
= det

[
−
(
Cϕ11

(−0, λ), Cϕ21
(−0, λ), Cϕ31

(−0, λ), Cϕ41
(−0, λ)

)]
= 1.

Lemma 5.1. Let

u(x) =

u1(x), x ∈ [−1, 0),

u2(x), x ∈ (0, 1]

be any solution of the equation T y = λy, then it can be represented as

u(x) =

d1ϕ11(x) + d2ϕ21(x) + d3ϕ31(x) + d4ϕ41(x), x ∈ [−1, 0),

d5ϕ12(x) + d6ϕ22(x) + d7ϕ32(x) + d8ϕ42(x), x ∈ (0, 1]
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where di ∈ C(i = 1, 2, . . . 8). If u(x) satisfies the transmission conditions (3.6)-
(3.9), then d1 = d5, d2 = d6, d3 = d7, d4 = d8.

Proof. Let u(x) be represented in the following form

u(x) =

d1ϕ11(x) + d2ϕ21(x) + d3ϕ31(x) + d4ϕ41(x), x ∈ [−1, 0),

d5ϕ12(x) + d6ϕ22(x) + d7ϕ32(x) + d8ϕ42(x), x ∈ (0, 1].

Applying the transmission conditions (3.6)-(3.9) to the above equation, i.e.,
d5I

2−α
0+ ϕ12(+0, λ) + d6I

2−α
0+ ϕ22(+0, λ) + d7I

2−α
0+ ϕ32(+0, λ) + d8I

2−α
0+ ϕ42(+0, λ)

d5D
α−1
0+ ϕ12(+0, λ) + d6D

α−1
0+ ϕ22(+0, λ) + d7D

α−1
0+ ϕ32(+0, λ) + d8D

α−1
0+ ϕ42(+0, λ)

d5D
α
0+ϕ12(+0, λ) + d6D

α
0+ϕ22(+0, λ) + d7D

α
0+ϕ32(+0, λ) + d8D

α
0+ϕ42(+0, λ)

d5D
α+1
0+ ϕ12(+0, λ) + d6D

α+1
0+ ϕ22(+0, λ) + d7D

α+1
0+ ϕ32(+0, λ) + d8D

α+1
0+ ϕ42(+0, λ)



=−


d1I

2−α
−1+ϕ11(−0, λ) + d2I

2−α
−1+ϕ21(−0, λ) + d3I

2−α
−1+ϕ31(−0, λ) + d4I

2−α
−1+ϕ41(−0, λ)

d1D
α−1
−1+ϕ11(−0, λ) + d2D

α−1
−1+ϕ21(−0, λ) + d3D

α−1
−1+ϕ31(−0, λ) + d4D

α−1
−1+ϕ41(−0, λ)

d1D
α
−1+ϕ11(−0, λ) + d2D

α
−1+ϕ21(−0, λ) + d3D

α
−1+ϕ31(−0, λ) + d4D

α
−1+ϕ41(−0, λ)

d1D
α+1
−1+ϕ11(−0, λ) + d2D

α+1
−1+ϕ21(−0, λ) + d3D

α+1
−1+ϕ31(−0, λ) + d4D

α+1
−1+ϕ41(−0, λ)

 .

We rewrite it in the following form(
Cϕ12(+0, λ), Cϕ22(+0, λ), Cϕ32(+0, λ), Cϕ42(+0, λ)

)(
d5, d6, d7, d8

)T

=−
(
Cϕ11(−0, λ), Cϕ21(−0, λ), Cϕ31(−0, λ), Cϕ41(−0, λ)

)(
d1, d2, d3, d4

)T

.

Then from (5.2), we have

−
(
Cϕ11(−0, λ), Cϕ21(−0, λ), Cϕ31(−0, λ), Cϕ41(−0, λ)

)(
d5, d6, d7, d8

)T

=−
(
Cϕ11(−0, λ), Cϕ21(−0, λ), Cϕ31(−0, λ), Cϕ41(−0, λ)

)(
d1, d2, d3, d4

)T

,

so (
Cϕ11

(−0, λ), Cϕ21
(−0, λ), Cϕ31

(−0, λ), Cϕ41
(−0, λ)

)
×
(
d5 − d1, d6 − d2, d7 − d3, d8 − d4

)T

= 0. (5.3)

Since

det
(
Cϕ11(−0, λ), Cϕ21(−0, λ), Cϕ31(−0, λ), Cϕ41(−0, λ)

)
= 1 ̸= 0,

the above system of linear equation (5.3) has only zero solution, so

d1 = d5, d2 = d6, d3 = d7, d4 = d8.
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Let

Φ1(x, λ) =
(
Cϕ11

(x, λ), Cϕ21
(x, λ), Cϕ31

(x, λ), Cϕ41
(x, λ)

)
, x ∈ [−1, 0),

Φ2(x, λ) =
(
Cϕ12

(x, λ), Cϕ22
(x, λ), Cϕ32

(x, λ), Cϕ42
(x, λ)

)
, x ∈ (0, 1]

(5.4)

where Φ1(0, λ) and Φ2(0, λ) are defined by left and right limits. Let

Φ(x, λ) =

Φ1(x, λ), x ∈ [−1, 0),

Φ2(x, λ), x ∈ (0, 1]

and
Φ(−0, λ) = Φ1(0, λ),Φ(+0, λ) = Φ2(0, λ),

for arbitrary x ∈ [−1, 0) ∪ (0, 1], Φ(x, λ) is entire function of parameter λ.
According to the boundary conditions (3.2)-(3.5), it can be obtained that

ACu(−1) +BCu(1) = 0. (5.5)

Next, we can determine the sufficient and necessary condition for the eigenvalues
in the fractional-order Sturm-Liouville problem.

Theorem 5.1. The complex number λ is an eigenvalue of the problem (3.1)-(3.9)
if and only if

det(A+BΦ(1, λ)) = 0.

Proof. Let λ0 be an eigenvalue of the problem (3.1)-(3.9) and u0(x) its correspond-
ing eigenfunction. Then by Lemma 5.1, the eigenfunction u0(x) may be represented
in the form

u0(x, λ0)

=

d1ϕ11(x, λ0) + d2ϕ21(x, λ0) + d3ϕ31(x, λ0) + d4ϕ41(x, λ0), x ∈ [−1, 0),

d1ϕ12(x, λ0) + d2ϕ22(x, λ0) + d3ϕ32(x, λ0) + d4ϕ42(x, λ0), x ∈ (0, 1]

where d1, d2, d3 and d4 are not all zero. Substituting u0(x) into (5.5), we obtain

A


d1I

2−α
−1+ϕ11(−1, λ0) + d2I

2−α
−1+ϕ21(−1, λ0) + d3I

2−α
−1+ϕ31(−1, λ0) + d4I

2−α
−1+ϕ41(−1, λ0)

d1D
α−1
−1+ϕ11(−1, λ0) + d2D

α−1
−1+ϕ21(−1, λ0) + d3D

α−1
−1+ϕ31(−1, λ0) + d4D

α−1
−1+ϕ41(−1, λ0)

d1D
α
−1+ϕ11(−1, λ0) + d2D

α
−1+ϕ21(−1, λ0) + d3D

α
−1+ϕ31(−1, λ0) + d4D

α
−1+ϕ41(−1, λ0)

d1D
α+1
−1+ϕ11(−1, λ0) + d2D

α+1
−1+ϕ21(−1, λ0) + d3D

α+1
−1+ϕ31(−1, λ0) + d4D

α+1
−1+ϕ41(−1, λ0)



+B


d1I

2−α
0+ ϕ12(1, λ0) + d2I

2−α
0+ ϕ22(1, λ0) + d3I

2−α
0+ ϕ32(1, λ0) + d4I

2−α
0+ ϕ42(1, λ0)

d1D
α−1
0+ ϕ12(1, λ0) + d2D

α−1
0+ ϕ22(1, λ0) + d3D

α−1
0+ ϕ32(1, λ0) + d4D

α−1
0+ ϕ42(1, λ0)

d1D
α
0+ϕ12(1, λ0) + d2D

α
0+ϕ22(1, λ0) + d3D

α
0+ϕ32(1, λ0) + d4D

α
0+ϕ42(1, λ0)

d1D
α+1
0+ ϕ12(1, λ0) + d2D

α+1
0+ ϕ22(1, λ0) + d3D

α+1
0+ ϕ32(1, λ0) + d4D

α+1
0+ ϕ42(1, λ0)

 = 0.

That is

A
(
Cϕ11

(−1, λ0), Cϕ21
(−1, λ0), Cϕ31

(−1, λ0), Cϕ41
(−1, λ0)

)(
d1, d2, d3, d4

)T

+B
(
Cϕ12

(1, λ0), Cϕ22
(1, λ0), Cϕ32

(1, λ0), Cϕ42
(1, λ0)

)(
d1, d2, d3, d4

)T

= 0.
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By (5.1) and (5.4), we have

(A+BΦ(1, λ0))
(
d1, d2, d3, d4

)T

= 0. (5.6)

By the fact that d1, d2, d3 and d4 are not all zero, we have that det (A+BΦ(1, λ0)) =
0.

On the contrary, if det (A+BΦ(1, λ0)) = 0, then the homogeneous system of
the linear equations (5.6) for the variables of the constanta d1, d2, d3 and d4 has

non-zero solution
(
d1

′, d2
′, d3

′, d4
′
)T

. Let

u(x) =

d1
′ϕ11(x, λ0) + d2

′ϕ21(x, λ0) + d3
′ϕ31(x, λ0) + d4

′ϕ41(x, λ0), x ∈ [−1, 0),

d1
′ϕ12(x, λ0) + d2

′ϕ22(x, λ0) + d3
′ϕ32(x, λ0) + d4

′ϕ42(x, λ0), x ∈ (0, 1],

then u(x) is the non-zero solution of equation T u = λu, which satisfies the condi-
tions (3.2)-(3.9) and (5.1). So λ is the eigenvalue of the problem (3.1)-(3.9).
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