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Abstract We discuss the existence and uniqueness of solutions for sequen-
tial fractional differential equations supplemented with parametric type anti-
periodic boundary conditions. We make use of fixed point theorems due to
Krasnosel’skĭi and Banach to obtain the desired results. Examples illustrating
the obtained results are presented. Moreover, an interesting feature concern-
ing the solutions of parametric type anti-periodic boundary value problems of
lower and higher order sequential fractional differential equations is presented
(see the conclusions section). Our results are novel in the given configuration
and generalize the literature on anti-periodic boundary value problems.
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1. Introduction

During the last few decades, fractional order boundary value problems have been
extensively investigated by many researchers. For some recent results on boundary
value problems involving different kinds of fractional derivatives such as, Riemann-
Liouville, Caputo, Hilfer, Hadamard, etc., for instance, see the text [7] and the re-
search articles [1–3,6,9,13,16,18–20]. Fractional boundary value problems with anti-
periodic boundary conditions also received considerable attention as such boundary
conditions appear in a variety of practical situations. In the study of modes, many
numerical problems converge faster with anti-periodic boundary conditions in con-
trast to the periodic boundary conditions [17]. One can find some recent work on
anti-periodic boundary value problems in the papers [8, 11, 12]. In [5], the authors
introduced the concept of dual anti-periodic boundary conditions and solved a frac-
tional integro-differential equation equipped with these conditions. In [4], fractional
differential equations complemented with nonlocal (parametric type) anti-periodic
boundary conditions were studied.
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In this paper, we apply the idea used in [4] to investigate a parametric type anti-
periodic boundary value problem for a sequential fractional differential equation
given by

(CDα + k CDα−1)x(t) = g(t, x(t)), k > 0, 2 < α ≤ 3, t ∈ [0, T ], (1.1)

x(a) = −x(T ), x′(a) = −x′(T ), x′′(a) = −x′′(T ), 0 < a << T, (1.2)

where CDα denotes the Caputo (Liouville-Caputo) fractional derivative operator of
order α and g : [0, T ] × R → R is a given continuous function. Here, we mention
that the condition 0 < a << T means that the boundary data is initially perturbed
and thus the problem (1.1)-(1.2) is an initially perturbed anti-periodic boundary
value problem. This work is motivated by the idea to examine the solution of a
sequential fractional differential equation subject to the initially perturbed anti-
periodic boundary conditions. Also, a relationship is developed between solutions
of lower and higher order perturbed anti-periodic boundary value problems for
sequential fractional differential equations (for details, see the Conclusions section).

In the rest of the paper, we set the material as follows. In Section 2, we prove a
preliminary result that is used to convert the problem (1.1)-(1.2) into a fixed point
problem. Section 3 contains the main results for the problem (1.1)-(1.2). In Section
4, we outline the results for a sequential fractional differential equation of order
α ∈ (3, 4] equipped with parametric type anti-periodic boundary conditions. The
paper concludes with some interesting observations.

2. A preliminary result

Before proceeding for a preliminary lemma, we recall some definitions related to
our work.

Definition 2.1. [14] Let υ be a locally integrable real-valued function on −∞ ≤
a < t < b ≤ +∞. The Riemann-Liouville fractional integral Iωa+ of order ω ∈ R (ω >
0) for the function υ is defined as

Iωa+υ(t) =

∫ t

a

υ(ϑ)

Γ(ω)(t− ϑ)1−ω
dϑ,

where Γ denotes the Euler gamma function.

Definition 2.2. [14] For (p−1)-times absolutely continuous differentiable function
υ : [a,∞) −→ R, the Caputo derivative of fractional order ω for the function υ is
defined as

CDω
a+υ(t) =

∫ t

a

υ(p)(ϑ)

Γ(p− ω)(t− ϑ)1+ω−p
dϑ, p− 1 < ω ≤ p, p = [ω] + 1,

where [ω] denotes the integer part of the real number ω.

In the present work, we use CDω instead of CDω
0+ and Iω instead of Iω0+.

Next, we solve a linear variant of the problem (1.1)-(1.2).

Lemma 2.1. Let h ∈ C([0, T ],R). Then, the unique solution of the linear sequen-
tial fractional differential equation

(CDα + k CDα−1)x(t) = h(t), 2 < α ≤ 3, (2.1)
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subject to the boundary conditions (1.2), is given by

x(t) =

∫ t

0

e−k(t−s)

(∫ s

0

(s− p)α−2

Γ(α− 1)
h(p)dp

)
ds

+ v1(t)

[∫ T

0

(T − p)α−3

Γ(α− 2)
h(p)dp+

∫ a

0

(a− p)α−3

Γ(α− 2)
h(p)dp

]

+ v2(t)

[∫ T

0

(T − p)α−2

Γ(α− 1)
h(p)dp+

∫ a

0

(a− p)α−2

Γ(α− 1)
h(p)dp

]

+ v3(t)

[∫ T

0

e−k(T−s)

(∫ s

0

(s− p)α−2

Γ(α− 1)
h(p)dp

)
ds

+

∫ a

0

e−k(a−s)

(∫ s

0

(s− p)α−2

Γ(α− 1)
h(p)dp

)
ds

]
, (2.2)

where

v1(t) =
k(T + a) + 2

4k2
− t

2k
− e−kt

k2(e−ka + e−kT )
, v2(t) = − 1

2k
+

e−kt

k(e−ka + e−kT )
,

v3(t) =
−e−kt

e−ka + e−kT
. (2.3)

Proof. Applying the Riemann-Liouville operator Iα−1 on both sides of (2.1) and
then solving the resulting equation, we obtain

x(t) = A1 +A2t+A3e
−kt +

∫ t

0

e−k(t−s)Iα−1h(s)ds, (2.4)

where Ai, i = 1, 2, 3, are unknown arbitrary constants. From (2.4), we have

x′(t) = A2 − kA3e
−kt + Iα−1h(t)− k

∫ t

0

e−k(t−s)Iα−1h(s)ds, (2.5)

x′′(t) = k2A3e
−kt + Iα−2h(t)− kIα−1h(t) + k2

∫ t

0

e−k(t−s)Iα−1h(s)ds. (2.6)

Using (2.6) in the condition x′′(a) = −x′′(T ), we get

A3 =
−1

(e−ka + e−kT )

{∫ T

0

e−k(T−s)Iα−1h(s)ds+

∫ a

0

e−k(a−s)Iα−1h(s)ds

− 1

k

(
Iα−1h(T ) + Iα−1h(a)

)
+

1

k2

(
Iα−2h(T ) + Iα−2h(a)

)}
. (2.7)

Making use of (2.5) in the condition x′(a) = −x′(T ), we find that

2A2 = kA3(e
−ka+−kT )− Iα−1h(a) + k

∫ a

0

e−k(a−s)Iα−1h(s)ds− Iα−1h(T ) (2.8)

+ k

∫ T

0

e−k(T−s)Iα−1h(s)ds,
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which, on inserting the value A3 from equation (2.7), yields

A2 = − 1

2k

[
Iα−2h(T ) + Iα−2h(a)

]
. (2.9)

Finally, using (2.4) in the condition x(a) = −x(T ), we obtain

2A1 =−A2(T + a)−A3(e
−kT + e−ka)−

∫ T

0

e−k(T−s)Iα−1h(s)ds

−
∫ a

0

e−k(a−s)Iα−1h(s)ds. (2.10)

Inserting the values A2 and A3 from (2.7) and (2.9) respectively into (2.10), we find
that

A1 =

(
k(T + a) + 2

4k2

)[
Iα−2h(T ) + Iα−2h(a)

]
−

(
1

2k

)[
Iα−1h(T ) + Iα−1h(a)

]
.

(2.11)

Substituting the values of A1, A2 and A3 from (2.11), (2.9) and (2.7), respectively
into (2.4), we get (2.2). The converse follows by direct computation.

3. Main results

Let X = C([0, T ],R) denote the Banach space of all continuous functions from [0, T ]
into R endowed with the usual supremum norm.

By Lemma 2.1, we can transform the nonlinear problem (1.1)-(1.2) into a fixed
point problem as

x = H(x), (3.1)

where H : X → X is defined by

(Hx)(t) =
∫ t

0

e−k(t−s)

(∫ s

0

(s− p)α−2

Γ(α− 1)
g(p, x(p))dp

)
ds

+ v1(t)

[∫ T

0

(T − p)α−3

Γ(α− 2)
g(p, x(p))dp+

∫ a

0

(a− p)α−3

Γ(α− 2)
g(p, x(p))dp

]

+ v2(t)

[∫ T

0

(T − p)α−2

Γ(α− 1)
g(p, x(p))dp+

∫ a

0

(a− p)α−2

Γ(α− 1)
g(p, x(p))dp

]

+ v3(t)

[∫ T

0

e−k(T−s)

(∫ s

0

(s− p)α−2

Γ(α− 1)
g(p, x(p))dp

)
ds

+

∫ a

0

e−k(a−s)

(∫ s

0

(s− p)α−2

Γ(α− 1)
g(p, x(p))dp

)
ds

]
, t ∈ [0, T ]. (3.2)

Observe that the problem (1.1)-(1.2) has a solution if only the operator H : X → X
has a fixed point. In the sequel, we set

σ =
1

kΓ(α)

{
Tα−1(1− e−kT )(1 + v3) + kv2(T

α−1 + aα−1) + v3a
α−1(1− e−ka)

}
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+
v1

Γ(α− 1)
(Tα−2 + aα−2), (3.3)

and

σ1 =
v1

Γ(α− 1)
(Tα−2 + aα−2)

+
1

kΓ(α)

{
kv2(T

α−1 + aα−1) + v3[T
α−1(1− e−kT ) + aα−1(1− e−ka)]

}
, (3.4)

where vi = sup
t∈[0,T ]

|vi(t)|, i = 1, 2, 3 (vi are given in (2.3)).

3.1. Uniqueness result

In this subsection, we prove the existence of a unique solution to the problem (1.1)-
(1.2) with the aid of Banach’s fixed point theorem [10].

Theorem 3.1. Let g : [0, T ] × R → R be a continuous function satisfying the
condition:

(N1) |g(t, x) − g(t, y)| ≤ θ|x − y|, ∀t ∈ [0, T ], x, y ∈ R, where θ > 0 is the
Lipschitz constant.

Then, the boundary value problem (1.1)-(1.2) has a unique solution on [0, T ] pro-
vided that θσ < 1, where σ is given by (3.3).

Proof. In the first step, we show thatHBλ ⊂ Bλ, where the operatorH is defined
by (3.1) and Bλ = {x ∈ X : ∥x∥ ≤ λ}, with

λ ≥ υσ

1− θσ
, υ = sup

t∈[0,T ]

|g(t, 0)|. (3.5)

For x ∈ Bλ, in view of (N1), we have

|g(t, x(t))| = |g(t, x(t))− g(t, 0) + g(t, 0)|
≤ |g(t, x(t))− g(t, 0)|+ |g(t, 0)|
≤ θ|x(t)|+ |g(t, 0)|
≤ θλ+ υ. (3.6)

In view of (3.5) and (3.6), we obtain

∥(Hx)∥ = sup
t∈[0,T ]

{∫ t

0

e−k(t−s)

(∫ s

0

(s− p)α−2

Γ(α− 1)
|g(p, x(p))|dp

)
ds

+|v1(t)|
[ ∫ T

0

(T − p)α−3

Γ(α− 2)
|g(p, x(p))|dp+

∫ a

0

(a− p)α−3

Γ(α− 2)
|g(p, x(p))|dp

]

+|v2(t)|
[ ∫ T

0

(T − p)α−2

Γ(α− 1)
|g(p, x(p))|dp+

∫ a

0

(a− p)α−2

Γ(α− 1)
|g(p, x(p))|dp

]
+|v3(t)|

[ ∫ T

0

e−k(T−s)

(∫ s

0

(s− p)α−2

Γ(α− 1)
|g(p, x(p))|dp

)
ds
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+

∫ a

0

e−k(a−s)
(∫ s

0

(s− p)α−2

Γ(α− 1)
|g(p, x(p))|dp

)
ds

}

≤ (θλ+ υ) sup
t∈[0,T ]

{∫ t

0

e−k(t−s)

(∫ s

0

(s− p)α−2

Γ(α− 1)
dp

)
ds

+|v1(t)|

[∫ T

0

(T − p)α−3

Γ(α− 2)
dp+

∫ a

0

(a− p)α−3

Γ(α− 2)
dp

]

+|v2(t)|

[∫ T

0

(T − p)α−2

Γ(α− 1)
dp+

∫ a

0

(a− p)α−2

Γ(α− 1)
dp

]

+|v3(t)|

[∫ T

0

e−k(T−s)

(∫ s

0

(s− p)α−2

Γ(α− 1)
dp

)
ds

+

∫ a

0

e−k(a−s)

(∫ s

0

(s− p)α−2

Γ(α− 1)
dp

)
ds

]}
≤ (θλ+ υ)σ

≤ λ,

which implies that HBλ ⊂ Bλ as x ∈ Bλ is an arbitrary element.
Now, we show that the operator H : X → X defined by (3.1) is a contraction.

For that, let x, y ∈ R. Then, for each t ∈ [0, T ], it follows by the condition (N1)
that

∥(Hx)− (Hy)∥
= sup

t∈[0,T ]

|(Hx)(t)− (Hy)(t)|

≤ sup
t∈[0,T ]

{∫ t

0

e−k(t−s)

(∫ s

0

(s− p)α−2

Γ(α− 1)

∣∣∣g(p, x(p))− g(p, y(p))
∣∣∣dp)ds

+ |v1(t)|

[∫ T

0

(T − p)α−3

Γ(α− 2)

∣∣∣g(p, x(p))− g(p, y(p))
∣∣∣dp

+

∫ a

0

(a− p)α−3

Γ(α− 2)

∣∣∣g(p, x(p))− g(p, y(p))
∣∣∣dp]

+ |v2(t)|

[∫ T

0

(T − p)α−2

Γ(α− 1)

∣∣∣g(p, x(p))− g(p, y(p))
∣∣∣dp

+

∫ a

0

(a− p)α−2

Γ(α− 1)

∣∣∣g(p, x(p))− g(p, y(p))
∣∣∣dp]

+ |v3(t)|

[∫ T

0

e−k(t−s)

(∫ s

0

(s− p)α−2

Γ(α− 1)

∣∣∣g(p, x(p))− g(p, y(p))
∣∣∣dp)ds

+

∫ a

0

e−k(t−s)

(∫ s

0

(s− p)α−2

Γ(α− 1)

∣∣∣g(p, x(p))− g(p, y(p))
∣∣∣dp)ds]}

≤θσ∥x− y∥,

where σ is given by (3.3).
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From the above inequality, it follows that the operator H : X → X is a contrac-
tion according to the given condition θσ < 1. Therefore, the operator H : X → X
has a unique fixed point by the Banach’s fixed point theorem. In consequence, the
problem (1.1)-(1.2) has a unique solution on [0, T ].

3.2. Existence result

Here, we prove an existence result for the problem (1.1)-(1.2). This result is based
on a fixed point theorem due to Krasnosel’skĭi [15], which is stated below.

Theorem 3.2. Let M be a closed convex and nonempty subset of a Banach space
X. Let A,B : M → X be the operators such that (i) Ax + By ∈ M whenever
x, y ∈ M ; (ii) A is compact and continuous and (iii) B is a contraction mapping.
Then, Ax+ Bx = x.

Theorem 3.3. Let g : [0, T ]×R → R be a continuous function satisfying (N1). In
addition, we assume that the following condition holds:

(N2) |g(t, x(t))| ≤ ϖ(t), ∀(t, x) ∈ [0, T ]× R, and ϖ ∈ C([0, T ],R+).

Then, there exists at least one solution for the problem (1.1)-(1.2) on [0, T ] if θσ1 <
1, where σ1 is given by (3.4) and θ is defined in (N1).

Proof. Let us introduce a closed and bounded ball as Bε = {x ∈ X : ∥x∥ ≤ ε}
with ε ≥ ∥ϖ∥σ, where supt∈[0.T ] |ϖ(t)| = ∥ϖ∥ and σ is given by (3.3). Now,

we verify the hypothesis of Krasnosel’skĭi’s fixed point theorem in three steps by
introducing two operators H1,H2 : Bε → X as

(H1x)(t) =

∫ t

0

e−k(t−s)

(∫ s

0

(s− p)α−2

Γ(α− 1)
g(p, x(p))dp

)
ds, t ∈ [0, T ],

(H2x)(t) =v1(t)

[∫ T

0

(T − p)α−2

Γ(α− 1)
h(p)dp+

∫ a

0

(a− p)α−2

Γ(α− 1)
h(p)dp

]

+ v2(t)

[∫ T

0

(T − p)α−3

Γ(α− 2)
h(p)dp+

∫ a

0

(a− p)α−3

Γ(α− 2)
h(p)dp

]

+ v3(t)

[∫ T

0

e−k(t−s)

(∫ s

0

(s− p)α−2

Γ(α− 1)
h(p)dp

)
ds

+

∫ a

0

e−k(t−s)

(∫ s

0

(s− p)α−2

Γ(α− 1)
h(p)dp

)
ds

]
, t ∈ [0, T ].

Notice that H = H1 +H2, where the operator H is defined in (3.2).

For x, y ∈ Bε, we have

∥H1x+H2y∥ ≤ sup
t∈[0,T ]

∣∣∣∣∣
{∫ t

0

e−k(t−s)

(∫ s

0

(s− p)α−2

Γ(α− 1)
g(p, x(p))dp

)
ds

+ v1(t)

[∫ T

0

(T − p)α−2

Γ(α− 1)
g(p, y(p))dp+

∫ a

0

(a− p)α−2

Γ(α− 1)
g(p, y(p))dp

]
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+ v2(t)

[∫ T

0

(T − p)α−3

Γ(α− 2)
g(p, y(p))dp+

∫ a

0

(a− p)α−3

Γ(α− 2)
g(p, y(p))dp

]

+ v3(t)

[∫ T

0

e−k(t−s)

(∫ s

0

(s− p)α−2

Γ(α− 1)
g(p, y(p))dp

)
ds

+

∫ a

0

e−k(t−s)

(∫ s

0

(s− p)α−2

Γ(α− 1)
g(p, y(p))dp

)
ds

]∣∣∣∣∣
≤∥ϖ∥σ
≤ε.

Thus, H1x+H2y ∈ Bε. Next, it will be shown that the operator H2 is a contraction.
For that, let x, y ∈ R. Then, for each t ∈ [0, T ], we obtain by using the condition
(N1) that

∥(H2x)− (H2y)∥
= sup

t∈[0,T ]

|(H2x)(t)− (H2y)(t)|

≤ sup
t∈[0,T ]

{
|v1(t)|

[∫ T

0

(T − p)α−3

Γ(α− 2)

∣∣∣g(p, x(p))− g(p, y(p))
∣∣∣dp

+

∫ a

0

(a− p)α−3

Γ(α− 2)

∣∣∣g(p, x(p))− g(p, y(p))
∣∣∣dp]

+ |v2(t)|

[∫ T

0

(T − p)α−2

Γ(α− 1)

∣∣∣g(p, x(p))− g(p, y(p))
∣∣∣dp

+

∫ a

0

(a− p)α−2

Γ(α− 1)

∣∣∣g(p, x(p))− g(p, y(p))
∣∣∣dp]

+ |v3(t)|

[∫ T

0

e−k(t−s)

(∫ s

0

(s− p)α−2

Γ(α− 1)

∣∣∣g(p, x(p))− g(p, y(p))
∣∣∣dp)ds

+

∫ a

0

e−k(t−s)

(∫ s

0

(s− p)α−2

Γ(α− 1)

∣∣∣g(p, x(p))− g(p, y(p))
∣∣∣dp)ds]}

≤θσ1∥x− y∥,

which implies that the operator H2 is a contraction as θσ1 < 1, where σ1 is given
by (3.4).

Finally, it will be verified that H1 is compact on Bε. Notice that continuity of
the operator H1 follows from that of the nonlinear function g(t, x(t)). Also, H1 is
uniformly bounded on Bε as

∥H1x∥ ≤ Tα−1(1− e−kT )

kΓ(α)
∥ϖ∥.

Now we show that the operator H1 is equicontinuous. Letting t1, t2 ∈ [0, T ] with
t2 < t1, we have

|(H1x)(t1)− (H1)(t2)|
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=

∣∣∣∣∣
∫ t1

0

e−k(t1−s)
(∫ s

0

(s− p)α−2

Γ(α− 1)
g(p, x(p))dp

)
ds

−
∫ t2

0

e−k(t2−s)
(∫ s

0

(s− p)α−2

Γ(α− 1)
g(p, x(p))dp

)
ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ t2

0

(
e−k(t1−s) − e−k(t2−s)

)(∫ s

0

(s− p)α−2

Γ(α− 1)
g(p, x(p))dp

)
ds

+

∫ t1

t2

e−k(t1−s)
(∫ s

0

(s− p)α−2

Γ(α− 1)
g(p, x(p))dp

)
ds

∣∣∣∣∣
≤ ∥ϖ∥
kΓ(α)

(
1− e−k(t1−t2)

)(
tα−1
1 + tα−1

2 (1− e−kt2)
)
,

which tends to 0 as t1 − t2 → 0, independent of x ∈ Bε. So H1 is equicontinuous.
In consequence, it follows by an application of the Arzelá–Ascoli theorem that H1

is completely continuous. Thus, all the assumptions of Theorem 3.2 are satisfied.
Hence, the problem (1.1)-(1.2) has at least one solution on [0, T ].

Example 3.1. Consider the problem{
(CD2.5 + CD1.5)x(t) = g(t, x), t ∈ [0, 2],

x(0.1) = −x(2), x′(0.1) = −x′(2), x′′(0.1) = −x′′(2),

where α = 2.5, T = 2, a = 0.1, k = 1 and g(t, x) =
1

t2 + 10
(
√
x2 + 25 + sin t).

Notice that θ = 1/10 as

|g(t, x)− g(t, y)| ≤ 1

10
|x− y|.

Using the given data, we find that v1 = 0.19812 (at t = 0.65376), v2 = 0.46138,
v3 = 0.96138 and σ = 4.9901 (σ is given by (3.3)). Moreover, θσ = 0.49901 <
1. Thus, the hypothesis of Theorem (3.1) holds true and hence it follows by its
conclusion that the problem (3.1) has a unique solution on [0, 2].

Example 3.2. Consider the problem (3.1) with

g(t, x) =
e−t

√
t4 + 121

( |x|
1 + |x|

+ cosx
)
+

1

5
. (3.7)

Using the data given in Example 3.1, it is found that σ1 = 3.15036 and g(t, x)
satisfies the assumptions (N1) with θ = 2/11 and (N2) with

ϖ(t) =
2e−t

√
t4 + 121

+
1

5
.

Furthermore, θσ1 = 0.57279. Clearly, all the assumptions of Theorem 3.3 are satis-
fied. Therefore, by the conclusion of Theorem 3.3, the the problem (3.1) with g(t, x)
given by (3.7) has at least one solution on [0, 2].
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4. Sequential fractional differential equation of or-
der 3 < α ≤ 4

In this section, we consider a parametric type anti-periodic boundary value problem
for a sequential fractional differential equation of order 3 < α ≤ 4 given by

(cDα + kcDα−1)x(t) = f(t, x(t)), 3 < α ≤ 4, t ∈ [0, T ], (4.1)

x(a) = −x(T ), x′(a) = −x′(T ), x′′(a) = −x′′(T ), x′′′(a) = −x′′′(T ), 0 < a << T,
(4.2)

where f : [0, T ] × R → R is a given continuous function. The problem (4.1)-(4.2)
can by regarded as is an initially perturbed anti-periodic boundary value problem
in presence of the condition 0 < a << T .

Now, we present a lemma for the linear variant of the problem (4.1)-(4.2).

Lemma 4.1. For ψ ∈ C([0, T ],R), the unique solution of the linear sequential
fractional differential equation

(cDα + kcDα−1)x(t) = ψ(t), 3 < α ≤ 4, (4.3)

subject to the boundary conditions (4.2) is given by

x(t) =

∫ t

0

e−k(t−s)

(∫ s

0

(s− p)α−2

Γ(α− 1)
ψ(p)dp

)
ds

+ w1(t)

[∫ T

0

(T − p)α−2

Γ(α− 1)
ψ(p)dp+

∫ a

0

(a− p)α−2

Γ(α− 1)
ψ(p)dp

]

+ w2(t)

[∫ T

0

(T − p)α−3

Γ(α− 2)
ψ(p)dp+

∫ a

0

(a− p)α−3

Γ(α− 2)
ψ(p)dp

]

+ w3(t)

[∫ T

0

(T − p)α−4

Γ(α− 3)
ψ(p)dp+

∫ a

0

(a− p)α−4

Γ(α− 3)
ψ(p)dp

]

+ w4(t)

[ ∫ a

0

e−k(a−s)

(∫ s

0

(s− p)α−2

Γ(α− 1)
ψ(p)dp

)
ds

+

∫ T

0

e−k(T−s)

(∫ s

0

(s− p)α−2

Γ(α− 1)
ψ(p)dp

)
ds

]
, (4.4)

where

w1(t) =
−1

2k
+

e−kt

k(e−ka + e−kT )
, w2(t) =

k(a+ T ) + 2

4k2
− t

2k
− e−kt

k2(e−ka + e−kT )
,

w3(t) = −aTk
2 + k(a+ T ) + 4

4k3
+
kt(a+ T ) + 2t

4k2
− t2

4k
+

e−kt

k3(e−ka + e−kT )
,

w4(t) =
−e−kt

e−ka + e−kT
. (4.5)

Proof. As argued in the proof of Lemma 2.1, the solution of (4.3) can be written
as

x(t) = E0 + E1t+ E2t2 + E3e−kt +

∫ t

0

e−k(t−s)Iα−1ψ(s)ds, (4.6)



Sequential fractional parametric type anti-periodic BVP 2931

where Ei, i = 0, 1, 2, 3, are unknown arbitrary constants. Using (4.6) in the boundary
conditions (4.2), we find that

E0 =
1

2

(−aT
2k

− a+ T

2k2
− 1

k3

)[
Iα−3ψ(T ) + Iα−3ψ(a)

]
+
1

2

(a+ T

2k
+

1

k2

)[
Iα−2ψ(T ) + Iα−2ψ(a)

]
− 1

2k

[
Iα−1ψ(T ) + Iα−1ψ(a)

]
,

E1 =

[
a+ T

4k
+

1

2k2

][
Iα−3ψ(T ) + Iα−3ψ(a)

]
− 1

2k

[
Iα−2ψ(T ) + Iα−2ψ(a)

]
,

E2 = − 1

4k

(
Iα−3ψ(T ) + Iα−3ψ(a)

)
,

E3 =
−1

(e−ka + e−kT )

[ ∫ T

0

e−k(T−s)Iα−1ψ(s)ds+

∫ a

0

e−k(a−s)Iα−1ψ(s)ds

−1

k

(
Iα−1ψ(T ) + Iα−1ψ(a)

)
+

1

k2
(
Iα−2ψ(T ) + Iα−2ψ(a)

)
− 1

k3
(
Iα−3ψ(T ) + Iα−3ψ(a)

)]
.

Inserting the above values in (4.6) together with the notation (4.5), we obtain the
solution (4.4).

In view of Lemma 4.1, the nonlinear problem (4.1)-(4.2) can be transformed into
a fixed point problem as

x = Q(x), (4.7)

where Q : X → X is defined by

(Qx) =
∫ t

0

e−k(t−s)

(∫ s

0

(s− p)α−2

Γ(α− 1)
f(p, p(x))dp

)
ds

+ w1(t)

[∫ T

0

(T − p)α−2

Γ(α− 1)
f(p, p(x))dp+

∫ a

0

(a− p)α−2

Γ(α− 1)
f(p, p(x))dp

]

+ w2(t)

[∫ T

0

(T − p)α−3

Γ(α− 2)
f(p, p(x))dp+

∫ a

0

(a− p)α−3

Γ(α− 2)
f(p, p(x))dp

]

+ w3(t)

[∫ T

0

(T − p)α−4

Γ(α− 3)
f(p, p(x))dp+

∫ a

0

(a− p)α−4

Γ(α− 3)
f(p, p(x))dp

]

+ w4(t)

[ ∫ a

0

e−k(a−s)

(∫ s

0

(s− p)α−2

Γ(α− 1)
f(p, p(x))dp

)
ds

+

∫ T

0

e−k(T−s)

(∫ s

0

(s− p)α−2

Γ(α− 1)
f(p, p(x))dp

)
ds

]
, t ∈ [0, T ]. (4.8)

Next, we set the notation:

δ =
1

kΓ(α)

{
Tα−1(1− e−kT )(1 + w4) + w4a

α−1(1− e−ka) + kw1(T
α−1 + aα−1)

}
+

w2

Γ(α− 1)

[
Tα−2 + aα−2

]
+

w3

Γ(α− 2)

[
Tα−3 + aα−3

]
, (4.9)
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δ1 =
1

kΓ(α)

{
w4

(
Tα−1(1− e−kT ) + aα−1(1− e−ka

)
+ kw1(T

α−1 + aα−1)
}

+
w2

Γ(α− 1)

[
Tα−2 + aα−2

]
+

w3

Γ(α− 2)

[
Tα−3 + aα−3

]
, (4.10)

where wi = sup
t∈[0,T ]

|wi(t)|, i = 1, 2, 3, 4 (wi are given in (4.5)).

Now, we present the existence and uniqueness results for the problem (4.1)-(4.2).
We do not provide the proofs for these results as the method of proof is similar to
the one used in obtaining the results of the previous section.

Theorem 4.1. Let f : [0, T ] × R → R be a continuous function satisfying the
condition

(M1) |f(t, x) − f(t, y)| ≤ L|x − y|, ∀t ∈ [0, T ], x, y ∈ R, where L > 0 is the
Lipschitz constant.

Then, the problem (4.1)-(4.2) has a unique solution on [0, T ], provided that Lδ < 1,
where δ is given in (4.9).

Theorem 4.2. Assume that f : [0, T ]×R → R is a continuous function satisfying
(M1) and |f(t, x(t))| ≤ ϱ(t), ∀(t, x) ∈ [0, T ]×R, where ϱ ∈ C([0, T ],R+). Then, the
problem (4.1)-(4.2) has at least one solution on [0, T ] if Lδ1 < 1, where δ1 is given
in (4.10).

5. Conclusions

We established the existence criteria for solutions of sequential fractional differential
equations of orders α ∈ (2, 3] and α ∈ (3, 4] supplemented with parametric type
anti-periodic boundary conditions. Our results are useful when the anti-periodic
phenomenon starts from a position after the initial value of the given domain.

It has been observed that the solution to the problem (4.1)-(4.2) for a sequential
fractional differential equation of order α ∈ (3, 4] (given by (4.7)) contains the so-
lution to the problem (1.1)-(1.2) for a sequential fractional differential equation of
order α ∈ (2, 3] given in (3.1). In fact, if we extend the order α of a sequential frac-
tional differential equation from (2, 3] to (3, 4] in the parametric type anti-periodic
boundary value problem, then we have the following additional term in the solu-
tion of the parametric type anti-periodic boundary value problem for a sequential
fractional differential equation of order α ∈ (2, 3]:

w3(t)

[∫ T

0

(T − p)α−4

Γ(α− 3)
g(p, p(x))dp+

∫ a

0

(a− p)α−4

Γ(α− 3)
g(p, p(x))dp

]
,

where

w3(t) = −aTk
2 + k(a+ T ) + 4

4k3
+
kt(a+ T ) + 2t

4k2
− t2

4k
+

e−kt

k3(e−ka + e−kT )
.

Moreover, the following term(k(T + a) + 2

4k2
− t

2k
− e−kt

k2(e−ka + e−kT )

)
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×

[∫ T

0

(T − p)α−3

Γ(α− 2)
g(p, x(p))dp+

∫ a

0

(a− p)α−3

Γ(α− 2)
g(p, x(p))dp

]

complemented to the solution of the parametric type anti-periodic boundary value
problem for a sequential fractional differential equation of order α ∈ (1, 2] discussed
in Section 4 of [4] yields the solution to the problem (1.1)-(1.2). Thus, there exists
a relationship between solutions of lower and higher orders sequential fractional
differential equations with parametric type anti-periodic boundary conditions.

It is imperative to point out that the results obtained in this paper become the
ones associated with anti-periodic boundary conditions when a → 0+. Hence, our
results are novel in the given configuration and enrich the literature on fractional
order anti-periodic boundary value problems.
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