
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com

Volume 15, Number 5, October 2025, 2935–2958 DOI:10.11948/20240569

A CLASS OF COORDINATE DESCENT
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Abstract In order to resolve large-scale linear systems, we construct the
new probability criterion based on the angle between hyperplanes and propose
the randomized coordinate descent method with the angle probability crite-
rion. Furthermore, we propose the randomized extended coordinate descent
method with the angle probability criterion, which allows to solve underde-
termined linear systems. The convergence properties of the two methods are
analyzed from the expectation perspective and upper bounds on their con-
vergence rate are derived when the matrix is full rank. Lastly, we conduct
numerical experiments to verify the efficacy of our new methods.
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1. Introduction

We consider solving the large-scale linear system

Ax = b, A ∈ Rm×n, b ∈ Rm, (1.1)

where matrix A is either full row rank or full column rank, b is a m dimensional
vector and x ∈ Rn is an unknown vector. Due to the wide range of applications
of this linear system in various fields, finding the solution of (1.1) has become a
hot research topic. When the overdetermined linear system (m > n) is consistent,
x⋆ = (ATA)−1AT b being the unique solution is expected to be found, when the
overdetermined linear system is inconsistent, which means that there is no exact
solution, we are committed to finding the least squares solution

xLS = argmin
x

∥b−Ax∥22, (1.2)

and when the linear system is underdetermined (m < n), there are infinitely many
solutions, so without special restrictions we usually would like to pick the least Eu-
clidean norm solution xLN = AT (AAT )−1b, where ∥A∥2, AT and A−1 respectively
represent the Euclidean norm, the transpose and the inverse of the matrix A.
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When dealing with large-scale linear systems, randomized iterative methods,
like the randomized kaczmarz (RK) method [20] and randomized coordinate de-
scent (RCD) method [9], are favoured for their fewer storage, lower computational
complexity, and higher stability, whereas randomized coordinate descent is widely
studied owing to its extensive applications in the fields of biology [4], signal pro-
cessing [16], operational research [13], neural networks [23], and so on. In the RCD
method, the update of the iterative solution is realized by conducting the line search
along a search direction, where the search direction is randomly selected from the co-
ordinate directions with a specific probability criterion. In addition, the coordinate
descent (CD) method also can be obtained by application of classical Gauss-Seidel
method on normal equation

ATAx = AT b,

so that the RCD method has also been known as the randomized Gauss-Seidel
(RGS) method.

Leventhal and Lewis [9] presented the RCD method in 2010, which is similar
to the RK method in that it makes full use of the norm information of the matrix
to select the search direction and converges linearly in expectation. Furthermore,
Bai et al. [1] succeeded in deriving the precise closed form of the mean-squared
residual produced by RCD method, and developed a more precise prediction of the
upper bound on convergence rate for RCD method. For the large-scale optimization
problem, in 2012, Liu [14] proposed a random coordinate descent method with
the worst-case efficiency estimates. In order to decrease the computation cost in
iterations, many researchers considered the block versions of the RCD method [11,
17, 24], where the core idea is to randomly select a portion of the columns of the
matrix to form a block for iteration, for more research on block versions, please refer
to [7,10]. In addition, to further accelerate the total computation time, Rodomanov
and Kropotov [18] applied a randomized coordinate selection strategy for volume
sampling in the RCD method, as well as Niu and Zheng [15] provided a more efficient
probability criterion based on residual vectors and developed the new randomised
coordinate descent (NRCD) method.

When the matrix is normalised in advance, the columns of the coefficient matrix
will be selected with the same probability in the RCD method, to address this short-
coming, the greedy randomized coordinate descent (GRCD) method was developed
by Bai and Wu [3], which preferentially eliminates greater entries of residual vec-
tors during each iteration to optimize the solution process. In addition, Zhang and
Guo [25] further introduced a relaxation factor to achieve more flexible iterative
adjustment in performing the greedy strategy, thus developed relaxed greedy ran-
domized coordinate descent (RGRCD) methods. While Zhang et al. [21] improved
the utilisation of the iteration product by adopting a multi-step strategy, which
led to the proposal of multi-step greedy randomized coordinate descent (MGRCD)
method. The numerical experimental results indicated that all of the above greedy
versions of the RCD method are superior to the typical RCD method.

However, although the RCD method is effective for overdetermined linear sys-
tems, whether consistent or inconsistent, the RCD method adds components which
orthogonal to the row span of the matrix A to the iterative solution xk in the itera-
tions, so that for underdetermined linear system, the RCD method cannot converge
to the lest norm solution xLN . In order to solve this problem, Ma et al. [12] used
an extension strategy on the RCD method thus obtaining the randomized extended
coordinate descent (RECD) method as well as established the theory for conver-
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gence. Subsequently, Du [6] provided more tightly upper bounds of convergence for
the REK method and the RECD method, in addition to the fact that these bounds
hold true for various types of linear systems (1.1), while he gave the equivalent ver-
sion of RECD showing that the RECD method establishes the connection between
the RK and RCD methods. Recently, Wu and Xiang proposed a general version of
randomized extended coordinate descent (GRECD) method, which can be achieved
by converting rows or columns randomly selected in iterations into matrix form, and
used two different sampling strategies, discrete sampling and Gaussian sampling, to
accelerate the GRECD method in [22].

In this work, we deeply investigate the meaning of the geometric projection
for the RCD method, aiming to select a hyperplane with a larger angle to the
current hyperplane for projection in each iteration. By using the iterative solutions
and residual vectors to construct the sine value of the angle and constructing a
new probability criterion, we further propose the randomized coordinate descent
method with angle probability (RCDA). Subsequently, we apply the new probability
criterion to the first component update process in the RECD method as well as
propose the randomized extended coordinate descent method with angle probability
(RECDA). We also explore the convergence of these two new methods theoretically
and fully verify the effectiveness of them through a series of numerical experiments.

The rest sections of this work are structured as below. We briefly introduced
the classical RCD method and the RECD method in Section 2. Later, the RCDA
method is presented and the upper bound on the convergence rate of this method
is derived in Section 3. In Section 4, the RECDA method is developed and we
derive the theory of convergence. Furthermore, we design and perform a series of
numerical experiments to verify the superiority for RCDA and RECDA methods in
Section 5. Finally, we summarize the main results of this work in Section 6.

2. The RCD and RECD methods

In this section, we firstly present notations used in this paper and then describe the
RCD method [9], the RECD method [12] and an equivalent variant [6] as well as
their convergence theorems.

Algorithm 1 The RCD Method

Input: A, b,K, x0 and r0 = b−Ax0

Output: xK

1: for k = 0, 1 . . .K − 1 do
2: Select jk ∈ {1, 2, . . . , n} with probability

Pr(column = jk) =

∥∥A(jk)

∥∥2
2

∥A∥2F

3: Compute αk =
⟨A(jk),rk⟩
∥A(jk)∥2

2

4: Update xk+1 = xk + αkejk
5: Update rk+1 = rk − αkA(jk)

6: end for
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For any vector v, w ∈ Rn, we represent their inner product with ⟨v, w⟩ and use
wT represent the transpose of w. For a matrix D = (dij) ∈ Rm×n, the D(i), D(j),

D†, DT , ∥D∥2 = maxx ̸=0
∥Dx∥2

∥x∥2
and ∥D∥F =

√∑n
j=1

∑m
i=1 |dij |2 respectively repre-

sent the ith row, the jth column, the Moore-Penrose, the transpose, the Euclidean
norm, and the Frobenius norm of matrix D. Furthermore, we use σmin(D), null(D),
R(D) and range(D) to represent the smallest nonzero singular value, the null space,

the rank and the column space of matrix D. Besides, the ∥x∥D =
√
xTDx denote

the energy norm for the symmetric positive-define matrix D ∈ Rn×n, the ei de-
note a column vector where the value at position i is 1 and the values at the other
positions are 0.

Let Ek+1[·] or Ek+1· represent the expected value conditional on first k + 1
iterations, namely,

Ek+1[·] = E[· | i0, j0, i1, j1, . . . , ik, jk],

where is, js(t = 0, 1, . . . , k) represent row and column indices that are selected in
the sth iteration, and E[Ek+1[·]] = E[·], Ek+1[·] = Ei

k+1[E
j
k+1[·]] are valid since the

law of iterated expectation.

For overdetermined linear systems, the RCD method as presented by Leventhal
and Lewis in [9] can be obtained by using a probability criterion constructed based
on the Euclidean norm of matrix column in CD method, and the following Theorem
2.1 displays the convergence theory for RCD method in detail.

Algorithm 2 The RECD Method

Input: A, b,K, x0 ∈ Rn and z0 ∈ x0 + range(AT )
Output: xLN

K

1: for k = 0, 1, . . . ,K − 1 do
2: Select jk ∈ {1, 2, . . . , n}with probability

Pr(column = jk) =
∥A(jk)∥22
∥A∥2F

3: Update xk+1 = xk +
AT

(jk)(b−Axk)

∥A(jk)∥2

2

ejk

4: Select ik ∈ {1, 2, . . . ,m}with probability

Pr(row = ik) =
∥A(ik)∥22
∥A∥2F

5: Set Pi = I − (A(ik))
T
A(ik)

∥A(ik)∥2

2

6: Update zk+1 = Pi (zk + xk+1 − xk)
7: Update xLN

k+1 = xk+1 − zk+1

8: end for

Theorem 2.1. [9] For linear system (1.1), where A ∈ Rm×n(m ≥ n) and R(A) =
n, let the initial guess vector x0 ∈ Rn, then the iteration sequence {xk}∞k=0 produced
by the RCD method converges to the unique least squares solution x⋆ in expectation.
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Furthermore, the solution error of the sequence {xk}∞k=0 is subject to

E∥xk − x⋆∥2ATA ≤
(
1− σ2

min(A)

∥A∥2F

)k

∥x0 − x⋆∥2ATA, k = 1, 2, . . . .

However, for the underdetermined linear systems, the RCD method is invalid
since there is no way to converge to the corresponding least norm solution xLN , to
solve this problem, MA et al. extended RCD method as well as provided a theory
of convergence of this method in [12]. They used randomized orthogonal projection
for obtaining component in x that is orthogonal to the row space of matrix A and
removed the component by iteration so that the iterative solution converges to
least Euclidean norm solution. Specifically, the RECD method can be described as
Algorithm 2.

Algorithm 3 The RECD-E Method

Input: A, b,K, x0 ∈ Rn and z0 ∈ range(AT )
Output: zK
1: for k = 0, 1, . . . ,K − 1 do
2: Select jk ∈ {1, 2, . . . , n}with probability

Pr(column = jk) =
∥A(jk)∥22
∥A∥2F

3: Update xk+1 = xk +
AT

(jk)(b−Axk)

∥A(jk)∥2

2

ejk

4: Select ik ∈ {1, 2, . . . ,m}with probability

Pr(row = ik) =
∥A(ik)∥22
∥A∥2F

5: Update zk+1 = zk +
(A(ik))

T
(xk+1−zk)

∥A(ik)∥2

2

(
A(ik)

)T
6: end for

Subsequently, in order to discuss the convergence for RECD method more conve-
niently, Du [6] provided a mathematically equivalent method to the RECD method,
known as the RECD-E method. In the k + 1 th iteration, the vector zk+1 in the
RECD-E method is equivalent to xLN

k+1 in the RECD method, and at the same time,
zk+1 can be regarded as the iterative solution obtained by applying the RK method
on linear system Az = Axk+1 .

The tighter upper bound for convergence of RECD method has been further
developed by Du, which is suitable for linear systems of various types (underdeter-
mined or overdetermined, inconsistent or consistent). The REGS-E method, as well
as its convergence theorem, can be summarised as Algorithm 3 and Theorem 2.2.

Theorem 2.2. [6] For linear system (1.1), where the matrix A is of full rank,
let the initial guess vector x0 ∈ Rn and z0 ∈ range(AT ), then the iteration se-
quence {zk}∞k=0 produced by the RECD method converges to the A†b in expectation.
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Furthermore, the solution error of the sequence {zk}∞k=0 is subject to

E
∥∥zk+1 −A†b

∥∥2
2
≤ φk+1

∥∥z0 −A†b
∥∥2
2
+

(k + 1)φk+1

∥A∥2F

∥∥Ax0 −AA†b
∥∥2
2
,

where φ = 1− σ2
min(A)

∥A∥2
F

.

Theorem 2.1 and Theorem 2.2 indicate that if matrix is reasonably well con-
ditioned, meaning that its singular values are significantly far from the origin, the
RCD method and the RECD method may achieve rapid convergence.

3. The RCDA method

Within the current section, we present the randomized coordinate descent method
with angle probability (RCDA), which has a probability criterion with respect to
the angle between the two hyperplanes, and analyse its convergence.

Used as a projection method, the RCD method projects the iterative solution
xk from hyperplane AT

(jk−1)
Ax = AT

(jk−1)
b to AT

(jk)
Ax = AT

(jk)
b at kth iteration

to obtain until the iterative solution approximates the least squares solution xk+1.
Note that the xLS is at the intersection between hyperplanes Hj , j = 1, 2 . . . , n,
here we define Hj as the hyperplane determined by the equation AT

(j)Ax = AT
(j)b,

in order to achieve more rapid convergence, we want the iterative solution xk+1 to
project onto the intersection of the two hyperplanes, which means that the chosen
hyperplaneHjk should be orthogonal to the hyperplaneHjk−1

. However, in practical
arithmetic, such a choice is almost non-existent, so it is a good strategy to choose
the hyperplane Hjk with a larger angle to hyperplane Hjk−1

. Besides, it is also
a good idea to choose a hyperplane that has a larger angle with residual vector
rk = b−Axk.

Let θjk represents the angle between the hyperplane Hjk−1
and the residual

vector rk, define the probability as

pjk =
sin2 θjk∑n

jk=1 sin
2 θjk

, jk = 1, 2, . . . , n. (3.1)

It is obvious that
∑n

jk=1 pjk = 1, so pjk can be used as the probability criterion
select the jkth column. By the construction of pjk , it follows that the probability
that the jkth column is chosen in the current iteration is proportional to the square
of sine value for angle between hyperplane Hjk−1

and the residual vector rk. When

sin2 θjk1
≥ sin2 θjk2

, the probability of selecting jk1th column is greater than the
probability of selecting jk2th column. In other words, the larger the angle between
hyperplane Hjk−1

and the residual vector rk, the probability that jk1th column will
be selected is larger.

Then the RCDA method can be described as following Algorithm 4.

From the iterative formula of RCDA method, it follows that

A(xk+1 − xk) =
AT

(jk)
rjk

∥A(jk)∥22
A(jk) (3.2)
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Algorithm 4 The RCDA Method

Input: A, b,K, x0 and r0 = b−Ax0

Output: xK

1: for k = 0, 1 . . .K − 1 do
2: Select jk ∈ {1, 2, . . . , n} with probability

Pr(column = jk) =
sin2 θjk∑n

jk=1 sin
2 θjk

3: Compute αk =
⟨A(jk),rk⟩
∥A(jk)∥2

2

4: Update xk+1 = xk + αkejk
5: Update rk+1 = rk − αkA(jk)

6: end for

and〈
A(jk), A(xk+1 − xLS)

〉
= AT

(jk)
A(xk+1 − xLS)

= AT
(jk)

A

(
xk +

〈
A(jk), rk

〉
∥A(jk)∥22

ejk − xLS

)

= AT
(jk)

[
A (xk − xLS) +

AT
(jk)

A (xLS − xk)

∥A(jk)∥22
A(jk)

]

= AT
(jk)

(
I −

A(jk)A
T
(jk)∥∥A(jk)

∥∥2
2

)
A (xk − xLS)

= 0,

(3.3)

the equation (3.2) means that the vector A(xk+1 − xk) is parallel to the vector
A(jk) and the equation (3.3) means that the vector A(jk) is orthogonal to the vector
A(xk+1 − xLS) respectively. Then it holds that the A(xk+1 − xk) is orthogonal to
the A(xk+1 − xLS) and according to the Pythagorean theorem, it follows that

∥A(xk − xLS)∥22 = ∥A(xk+1 − xk)∥22 + ∥A(xk+1 − xLS)∥22. (3.4)

Based on the above analysis and the fact ∥A(xk −x⋆)∥22 = ∥rk∥22, it is clear that

sin2 θjk =
∥A(xk+1 − xk)∥22
∥A(xk − xLS)∥22

=
AT

jk
rk

∥Ajk∥
2
2 ∥rk∥

2
2

. (3.5)

Remark 3.1. If we define θjk as the angle between hyperplane Hjk−1
and hyper-

plane Hjk , then the equation (3.1) can still be used as the probability criterion
to select the column in the current iteration, but different from the calculation of
equation (3.5), we use the normal vectors of the hyperplanes to calculate the sine of
the angle between two hyperplanes. However, in practical numerical experiments,
it seems that the experimental results obtained from such calculations are not sat-
isfactory, so how to better represent the angle between two hyperplanes seems to
be a research worth doing in the future.
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Remark 3.2. In practical calculations, the value of ∥rk∥22 can be calculated with-
out being explicitly calculated in the process of calculating equation (3.1), and
combining equation (3.1) with (3.5), it follows that

pjk =

∣∣∣AT
(jk)rk

∣∣∣2
∥A(jk)∥2

2∑n
jk=1

∣∣∣AT
(jk)

rk

∣∣∣2
∥A(jk)∥2

2

, jk = 1, 2, . . . , n. (3.6)

Next, for analyzing the convergence theory for RCDA method, some lemmas are
given as follows.

Lemma 3.1 (Chebyshev’s sum inequality, [19]). For two real number sequences
an = {a1, a2, ..., an}, bn = {b1, b2, ..., bn}, if a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥
bn are valid, then the following inequality

1

n

n∑
i=1

aibi ≥ (
1

n

n∑
i=1

ai)(
1

n

n∑
i=1

bi)

holds true.

Lemma 3.2. [8] For n ∈ N+, xi ≥ 0, yi > 0, ϱ > 0, and j = 1, 2, . . . , n, the in-
equality as follows is valid:

n∑
j=1

xϱ+1
j

yϱj
≥

(∑n
j=1 xj

)ϱ+1

(∑n
j=1 yj

)ϱ ,

and the equality holds if and only if x1

y1
= · · · = xn

yn
.

Lemma 3.3. [2] For matrix A ∈ Rm×n and any vector w ∈ range(AT ), it follows
that

∥Aw∥22 ≥ σ2
min (A) ∥w∥22 .

For the theory of convergence for RCDA method, the subsequent theorem can
be developed.

Theorem 3.1. For linear system (1.1), where A ∈ Rm×n(m ≥ n) and R(A) = n,
let the initial guess vector x0 ∈ Rn, then the iteration sequence {xk}∞k=0 produced
from the RCDA method converges to unique least squares solution xLS in expecta-
tion. Furthermore, the solution error in expectation of sequence {xk}∞k=0 is subject
to

E∥x1 − xLS∥2ATA ≤
(
1− σ2

min(A)

n∥A∥2F

)
∥x0 − xLS∥2ATA (3.7)

and

E∥(xk+1 − xLS)∥2ATA ≤
[
1− σ2

min (A)

(n− 1)γ

]
∥(xk − xLS)∥2ATA, (3.8)

where γ = ∥A∥2F −min1≤j≤n ∥Aj∥22.
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Proof. Based on the step 3 and step 5 of Algorithm 4, for k = 1, 2, . . . , it follows
that

AT
(jk−1)

rk = AT
(jk−1)

(
rk−1 −

〈
A(jk−1), rk−1

〉∥∥A(jk−1)

∥∥2
2

A(jk−1)

)

= AT
(jk−1)

rk−1 −
〈
A(jk−1), rk−1

〉∥∥A(jk−1)

∥∥2
2

∥∥A(jk−1)

∥∥2
2

= AT
(jk−1)

rk−1 −
〈
A(jk−1), rk−1

〉
= 0.

Then, from the notion of expectation and the probability criterion equation (3.6),
we have

Ek∥xk+1 − xk∥22 =

n∑
jk = 1

jk ̸= jk−1

∣∣∣AT
(jk)rk

∣∣∣2
∥A(jk)∥2

2∑n
jk=1

∣∣∣AT
(jk)

rk

∣∣∣2
∥A(jk)∥2

2

·

∥∥∥∥∥
〈
A(jk), rk

〉
∥A(jk)∥22

A(jk)

∥∥∥∥∥
2

2

=

n∑
jk = 1

jk ̸= jk−1

∣∣∣AT
(jk)rk

∣∣∣2
∥A(jk)∥2

2∑n
jk=1,jk ̸=jk−1

∣∣∣AT
(jk)

rk

∣∣∣2
∥A(jk)∥2

2

·

∣∣∣AT
(jk)

rk

∣∣∣2
∥A(jk)∥22

≥ 1

n− 1
·

∑n
jk=1,jk ̸=jk−1

∣∣∣AT
(jk)rk

∣∣∣2
∥A(jk)∥2

2∑n
jk=1,jk ̸=jk−1

∣∣∣AT
(jk)

rk

∣∣∣2
∥A(jk)∥2

2

·
n∑

jk = 1

jk ̸= jk−1

∣∣∣AT
(jk)

rk

∣∣∣2
∥A(jk)∥22

=
1

n− 1
·

n∑
jk = 1

jk ̸= jk−1

∣∣∣AT
(jk)

rk

∣∣∣2
∥A(jk)∥22

·

∣∣∣AT
(jk)

rk

∣∣∣2∣∣∣AT
(jk)

rk

∣∣∣2

≥ 1

n− 1
·

(∑n
jk=1,jk ̸=jk−1

∣∣∣AT
(jk)

rk

∣∣∣2)2

∑n
jk=1,jk ̸=jk−1

∥∥A(jk)

∥∥2
2
·
∣∣∣AT

(jk)
rk

∣∣∣2
≥ 1

n− 1
·

(∥∥AT rk
∥∥2
2

)2
∥AT rk∥22 ·

∑n
jk=1,jk ̸=jk−1

∥∥A(jk)

∥∥2
2

=
1

n− 1
·
∥∥AT rk

∥∥2
2

γ
, (3.9)
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here, the second equality holds true due to AT
(jk−1)

rk = 0, and since {an} ={ ∣∣∣AT
(jk)rk

∣∣∣2
∥A(jk)∥2

2

}n

jk=1

and {bn} =

{ ∣∣∣AT
(jk)rk

∣∣∣2
∥A(jk)∥2

2

}n

jk=1

share the same order, we can re-

order them to obtain∣∣∣AT
˜(jk1

)
rk

∣∣∣2
∥A ˜(jk1

)
∥22

≥

∣∣∣AT
˜(jk2

)
rk

∣∣∣2
∥A ˜(jk2

)
∥22

≥ · · · ≥

∣∣∣AT
˜(jkn )

rk

∣∣∣2
∥A ˜(jkn )

∥22

and

n∑
jk=1

∣∣∣AT
(jk)

rk

∣∣∣2
∥A(jk)∥22

·

∣∣∣AT
(jk)

rk

∣∣∣2
∥A(jk)∥22

=

n∑
i=1

∣∣∣∣AT
˜(jki

)
rk

∣∣∣∣2
∥A ˜(jki

)
∥22

·

∣∣∣∣AT
˜(jki

)
rk

∣∣∣∣2
∥A ˜(jki

)
∥22

,

then the first inequality can be established by using the Lemma 3.1. Furthermore,
we use the Lemma 3.2 for obtaining the second inequality and the third inequality
is obviously obtained.

Besides, base on equation (3.9) and by concurrently applying conditional expec-
tation for each side of the equation (3.4) with some calculations, it holds that

Ek∥A(xk+1 − xLS)∥22 = Ek∥A(xk − xLS)∥22 − Ek∥A(xk+1 − xk)∥22
= ∥A(xk − xLS)∥22 − Ek∥A(xk+1 − xk)∥22

≤ ∥A(xk − xLS)∥22 −
1

n− 1
·
∥∥AT rk

∥∥2
2

γ

≤ ∥A(xk − xLS)∥22 −
σ2
min (A)

(n− 1)γ
∥rk∥22

=

[
1− σ2

min (A)

(n− 1)γ

]
∥A(xk − xLS)∥22, (3.10)

where the first and second equality are valid with the use of the linear property
for conditional expectation and definition for Ek[·], respectively, as for the second

inequality, the equation ∥Az∥22 ≥ σ2
min (A) ∥z∥22 in Lemma 3.3 is used.

Then by applying the full expectation for each side of above equation and using
the definition of energy paradigm, it results that

E∥(xk+1 − xLS)∥2ATA ≤
[
1− σ2

min (A)

(n− 1)γ

]
∥(xk − xLS)∥2ATA.

Analogous to equation (3.9) and (3.10), for k = 0, the following inequality can be
obtained:

Ek∥A(x1 − xLS)∥22 ≥ σ2
min(A)

n ∥A∥2F
∥x0 − xLS∥22.

Finally, we can get equation (3.8), that is,

E∥(x1 − xLS)∥2ATA ≤

(
1− σ2

min (A)

n ∥A∥2F

)
∥(x0 − xLS)∥2ATA.
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4. The RECDA method

Within the current section, the randomized extended coordinate descent method
with angle probability (RECDA) is proposed, which also uses the same probability
criterion as in Algorithm 4 to select the columns during the iteration process, and
we develop a convergence theorem for the new algorithm.

Just as described in Section 2, when the number of rows of matrix A ∈ Rm×n

is less than the number of columns, i.e. m < n, the RGS method fails to converge
to corresponding least Euclidean norm solution xLN of linear system (1.1). With
the purpose of solving this problem, Ma et al. [12] proposed the RECD method,
where in each iteration, for the update of the first and second components, the
RECD method constructs the probability criterion used to select rows and columns
of matrix A by utilizing Euclidean norm of matrix A, respectively.

However, such criteria only take into account the information related to the
norm for matrix A but ignores products such as residual vectors that are generated
in each iteration. In addition, the RECD method has the same shortcoming as the
RCD method, if the matrix is scaled in advance by using the diagonal matrix, i.e.
making Euclidean norm of columns the same constant, then the columns will be
chosen with uniform probability in each iteration, which leads to a slower rate of
convergence.

Based on the above analysis, we consider using an angle-based probability crite-
rion in the first part of the REGS method without changing the probability criterion
in the second part of the REGS method. As shown in the analysis in Algorithm 4,
we construct the probability criterion by using the square of the sin value of angle
θjk between the hyperplane Hjk−1

and residual vector rk. Now, we describe the
RECDA method as Algorithm 5.

Algorithm 5 The RECDA Method

Input: A, b,K, x0 ∈ Rn and z0 ∈ range(AT )
Output: zK
1: for k = 0, 1, . . . ,K − 1 do
2: Select jk ∈ {1, 2, . . . , n}with probability

Pr(column = jk) =
sin2 θjk∑n

jk=1 sin
2 θjk

3: Update xk+1 = xk +
AT

(jk)(b−Axk)

∥A(jk)∥2

2

ejk

4: Select ik ∈ {1, 2, . . . ,m}with probability

Pr(row = ik) =
∥A(ik)∥22
∥A∥2F

5: Update zk+1 = zk +
(A(ik))

T
(xk+1−zk)

∥A(ik)∥2

2

(
A(ik)

)T
6: end for

Remark 4.1. Similarly to the RCDA method, there is no consideration of con-
structing the probability criterion using the sine values of the angles between hy-
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perplanes, since the same as probability criterion based on the Euclidean norm,
such a criterion does not take into account the iterative products such as residual
vectors.

Next, we first present Lemma 4.1 and then establish convergence theory for
RECDA method shown as following Theorem 4.1.

Lemma 4.1. [6] For matrix A ∈ Rm×n and any vector w ∈ range(A), it follows
that

wT

(
I − AAT

∥A∥2F

)
w ≤

(
1− σ2

min(A)

∥A∥2F

)
∥w∥22 , (4.1)

where the equality holds when σmin(A) = σmax(A).

Theorem 4.1. For linear system (1.1), where A ∈ Rm×n is of full rank, let the ini-
tial guess vector x0 ∈ Rn and z0 ∈ range(AT ), then the iteration sequence {zk}∞k=0

produced from the RECDA method converges to the corresponding solution x⋆ in
expectation. Furthermore, it holds that

E∥zk+1 − x⋆∥22 ≤ αk+1∥z0 − x⋆∥22 +
(k + 1)βkδ

∥A∥2F
∥x0 − x⋆∥2ATA, (4.2)

where α = 1 − σ2
min(A)

∥A∥2
F

, β = 1 − σ2
min(A)
(n−1)γ , δ = 1 − σ2

min(A)

n∥A∥2
F

and γ = ∥A∥2F −
min1≤j≤n ∥Aj∥22.

Proof. From the description of the RECDA method, it is clear that

zk+1 − x⋆ = zk +

(
A(ik)

)T
(xk+1 − zk)∥∥A(ik)
∥∥2
2

(
A(ik)

)T
− x⋆

=

(
I −

(
A(ik)

)T
A(ik)

∥A(ik)∥22

)
zk +

(
A(ik)

)T
A(ik)

∥A(ik)∥22
xk+1 − x⋆

=

(
I −

(
A(ik)

)T
A(ik)

∥A(ik)∥22

)
(zk − x⋆) +

(
A(ik)

)T
A(ik)

∥A(ik)∥22
(xk+1 − x⋆) .

At the same time, we note that〈(
I −

(
A(ik)

)T
A(ik)

∥A(ik)∥22

)
(zk − x⋆) ,

(
A(ik)

)T
A(ik)

∥A(ik)∥22
(xk+1 − x⋆)

〉

= (xk+1 − x⋆)
T

(
A(ik)

)T
A(ik)

∥A(ik)∥22

(
I −

(
A(ik)

)T
A(ik)

∥A(ik)∥22

)
(zk − x⋆)

= (xk+1 − x⋆)
T

((
A(ik)

)T
A(ik)

∥A(ik)∥22
−
(
A(ik)

)T
A(ik)

∥A(ik)∥22

)
(zk − x⋆)

= 0,

which means that vector

(
I − (A(ik))

T
A(ik)

∥A(ik)∥2
2

)
(zk − x⋆) is orthogonal to

(A(ik))
T
A(ik)

∥A(ik)∥2
2

× (xk+1 − x⋆). Then by using the Pythagorean theorem we can obtain

∥zk+1 − x⋆∥22
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=

∥∥∥∥∥
(
I −

(
A(ik)

)T
A(ik)

∥A(ik)∥22

)
(zk − x⋆)

∥∥∥∥∥
2

2

+

∥∥∥∥∥
(
A(ik)

)T
A(ik)

∥A(ik)∥22
(xk+1 − x⋆)

∥∥∥∥∥
2

2

. (4.3)

In addition, it is found, with the use of the definition of expectation and the
expansion of the norm, that

Ek

∥∥∥∥∥
(
A(ik)

)T
A(ik)

∥A(ik)∥22
(xk+1 − x⋆)

∥∥∥∥∥
2

2

= Ek

(xk+1 − x⋆)
T

((
A(ik)

)T
A(ik)

∥A(ik)∥22

)2

(xk+1 − x⋆)


= Ej

k

[
Ei
k

[
(xk+1 − x⋆)

T

(
A(ik)

)T
A(ik)

∥A(ik)∥22
(xk+1 − x⋆)

]]

= Ej
k

[
Ei
k

[∥∥A(ik) (xk+1 − x⋆)
∥∥2
2

∥A(ik)∥22

]]

= Ej
k

[
m∑

ik=1

∥A(ik)∥22
∥A∥2F

·
∥∥A(ik) (xk+1 − x⋆)

∥∥2
2

∥A(ik)∥22

]

= Ek

[
∥A (xk+1 − x⋆)∥22

∥A∥2F

]

≤ β

∥A∥2F
∥A (xk − x⋆)∥22

...

≤ βkδ

∥A∥2F
∥A (x0 − x⋆)∥22 , (4.4)

where the second equality can be obtained with some brief calculations, and by
using equation (3.7) and equation (3.8) in Theorem 3.1 and induction, respectively,
it is known that the first inequality and the second inequality hold true.

Furthermore, it holds that

Ek

∥∥∥∥∥
(
I −

(
A(ik)

)T
A(ik)

∥A(ik)∥22

)
(zk − x⋆)

∥∥∥∥∥
2

2

= Ek

(zk − x⋆)
T

(
I −

(
A(ik)

)T
A(ik)

∥A(ik)∥22

)2

(zk − x⋆)


= Ek

[
(zk − x⋆)

T

(
I −

(
A(ik)

)T
A(ik)

∥A(ik)∥22

)
(zk − x⋆)

]

= (zk − x⋆)
T

(
I − ATA

∥A∥2F

)
(zk − x⋆)

≤ α ∥zk − x⋆∥22 , (4.5)
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for the inequality we use the equation (4.1) in Lemma 4.1.

Lastly, by applying the full expectation for each side of equation (4.3) simulta-
neously and combining equation (4.4) and equation (4.5), we can get equation (4.2),
i.e.,

E ∥zk+1 − x⋆∥22

= E

∥∥∥∥∥
(
I −

(
A(ik)

)T
A(ik)

∥A(ik)∥22

)
(zk − x⋆)

∥∥∥∥∥
2

2

+ E

∥∥∥∥∥
(
A(ik)

)T
A(ik)

∥A(ik)∥22
(xk+1 − x⋆)

∥∥∥∥∥
2

2

≤ αE ∥zk − x⋆∥22 +
βkδ

∥A∥2F
∥A (x0 − x⋆)∥22

≤ α2E ∥zk−1 − x⋆∥22 +
αβ(k−1)δ

∥A∥2F
∥A (x0 − x⋆)∥22 +

βkδ

∥A∥2F
∥A (x0 − x⋆)∥22

≤ α3E ∥zk−2 − x⋆∥22 +

(
βkδ

∥A∥2F
+

αβ(k−1)δ

∥A∥2F
+

α2β(k−2)δ

∥A∥2F

)
∥A (x0 − x⋆)∥22

...

≤ αk+1 ∥z0 − x⋆∥22 +
k∑

l=0

αlβk−lδ

∥A∥2F
∥A (x0 − x⋆)∥22 .

Remark 4.2. In Theorem 4.1, we do not emphasize the size relationship between
the number of columns and rows of matrix A, since the RECDA method is effective
for both underdetermined and overdetermined linear systems. In addition, when
m > n, x⋆ represents the least square solution xLS and when m < n, x⋆ represents
the least Euclidean norm solution xLN .

5. Numerical experiments

We design some numerical experiments on methods for solving linear system (1)
within this section, i.e. Examples 5.1-5.3, to show the effectiveness of our methods.
For RCDA method, the RCD method and the NRCD method are used to compare
with it, while for the RECDA method, the RECD method and REK method are
used to compare with it. Here the RCD, NRCD, RCDA, RECD, REK, and RECD
methods represent the Algorithm 1 in Section 2, the Algorithm 1 in [15], the Algo-
rithm 4 in Section 3, the Algorithm 3 in Section 2, the Algorithm 3 in [26] and the
Algorithm 5 in Section 4, respectively. All the experiments performed within this
section are conducted using MATLAB R2022a on a computer with 16 GB RAM,
64-bit operating system, windows 10, and AMD Ryzen 7 4800U, 1.80 GHz.

There are two kinds of matrices applied in the experiments, one is the random
matrices generated by MATLAB function randn randomly, which follows the stan-
dard normal distribution, as well as the other one is the real-world matrices selected
from sparse matrix collection [5], which have specific application areas, for more de-
tails, please refer to Table 10. Meanwhile, for randomly generated matrices, the
experiment can be specifically classified into three cases: (i) linear system (1.1) is



Angle-probabilistic coordinate descent 2949

Table 1. IT and CPU of RCD, NRCD, RCDA, RECD and RECDA for m×n matrices A with n = 300
and different m when (1.1) is consistent.

m×n 1000×300 2000×300 3000×300 4000×300 5000×300

RCD
IT 7616.0 4905.4 4296.4 4043.4 3735.3

CPU 0.1608 0.1399 0.1456 0.1467 0.2170

NRCD
IT 2520.9 1378.5 1097.3 974.9 909.7

CPU 0.0768 0.0492 0.0455 0.0444 0.0610

RCDA

IT 2500.2 1373.6 1106.1 978.7 912.4

CPU 0.0646 0.0424 0.0384 0.0365 0.0452

SPA 2.4892 3.2995 3.7917 4.0192 4.8009

RECD
IT 14650.2 8839.6 7761.4 7341.9 7115.0

CPU 0.6320 0.4769 0.5014 0.8839 1.1800

RECDA

IT 11400.9 7403.3 6727.2 6422.8 6322.8

CPU 0.4261 0.3609 0.4049 0.6031 0.8551

SPE 1.4832 1.3214 1.2383 1.4656 1.3800

Table 2. IT and CPU of RCD, NRCD, RCDA, RECD and RECDA for m×n matrices A with n = 400
and different m when (1.1) is consistent.

m×n 1000×400 2000×400 3000×400 4000×400 5000×400

RCD
IT 14331.2 7551.5 6313.0 5684.8 5463.8

CPU 0.2542 0.1551 0.1487 0.1467 0.2308

NRCD
IT 4952.8 2235.1 1704.7 1477.7 1345.3

CPU 0.1171 0.0596 0.0511 0.0495 0.0640

RCDA

IT 4973.8 2242.3 1714.2 1480.6 1348.7

CPU 0.1088 0.0573 0.0439 0.0405 0.0519

SPA 2.3364 2.7068 3.3872 3.6222 4.4470

RECD
IT 28897.5 14124.0 11518.5 10555.3 9970.9

CPU 1.4546 0.8919 0.7662 1.3058 1.7865

RECDA

IT 22398.5 11397.1 9639.7 9106.2 8777.4

CPU 0.8831 0.5829 0.6066 0.8790 1.2199

SPE 1.6472 1.5301 1.2631 1.4856 1.4645

overdetermined (m > n) and consistent; (ii) linear system (1.1) is overdetermined
(m > n) and inconsistent; (iii) linear system (1.1) is underdetermined (m < n).

In order to construct the consistent linear system, it is taken that b = Ax⋆, where
x⋆ is created from the MATLAB function randn(n, 1), and as for the inconsistent
linear system, the scheme b = Ax⋆+Ψ is used, where Ψ ∈ null(AT ) can be obtained
by the application of the MATLAB function null. Besides, the initial vectors for
the RCD, NRCD, and RCDA methods are set to x0 = 0 and the iterations of
these methods terminate immediately when relative solution error (RSE) fulfills
RSE ≤ 10−6 or the number of iteration steps is more than 600000, as well as for the



2950 W. Yu, H. Shen & X. Shao

RECD and RECDA methods, the initial vectors are x0 = 0 and z0 = 0, as for the
REK method, the initial vectors are x0 = 0 and z0 = b as well as the iterations of
these methods terminate immediately when the error satisfies ERR ≤ 10−6, where

RSE =
∥xk − x⋆∥22

∥x⋆∥22
, ERR = ∥zk − x⋆∥22 ,

and for the case that the number of iteration steps is over 600000, it is indicated in
the subsequent tables by the label “−−”.

Table 3. IT and CPU of RCD, NRCD, RCDA, RECD and RECDA for m×n matrices A with n = 500
and different m when (1.1) is consistent.

m×n 1000×500 2000×500 3000×500 4000×500 5000×500

RCD
IT 26930.3 10758.0 8530.5 7722.4 7333.8

CPU 0.5229 0.2872 0.2306 0.2135 0.3332

NRCD
IT 9603.4 3461.8 2426.6 2054.2 1833.3

CPU 0.2833 0.1010 0.0993 0.0936 0.1215

RCDA

IT 9789.0 3381.0 2443.9 2037.2 1841.7

CPU 0.2217 0.0920 0.0723 0.0643 0.0858

SPA 2.3586 3.1217 3.1895 3.3204 3.8834

RECD
IT 55782.3 21209.9 15961.6 14335.8 13360.2

CPU 2.8411 1.1802 1.1342 1.8000 2.4266

RECDA

IT 43581.6 16753.2 13172.5 12046.8 11557.4

CPU 1.7984 0.8961 0.8619 1.1840 1.6518

SPE 1.5798 1.3170 1.3159 1.5203 1.4691

The performance of various methods is captured through the IT (the number
of iteration steps) as well as CPU (computation time in seconds) time, where IT
and CPU time represent the mean number of iteration steps and mean computation
time for 50 operations of corresponding method, respectively. Further, we define
speed− upRCDA(SPA) and speed− upRECDA(SPE) to demonstrate the advantages
of our algorithms more clearly, where speed− upRCDA represents time speed-up
ratio for RCDA method relative to RCD method and speed− upRECDA represents
time speed-up ratio for RECDA method relative to RECD method, that is,

speed− upRCDA =
CPU time of RCD

CPU time of RCDA
,

speed− upRECDA =
CPU time of RECD

CPU time of RECDA
.

Example 5.1. In the present example, we show numerical results for case (i) and
case (ii) of randomly generated matrices A ∈ Rm×n(m > n). CPU time and
the number of IT and for RCD, NRCD, RCDA, RECD and RECDA methods to
solve overdetermined linear system (1.1) are listed in Tables 1-6, where Tables
1-3 represent the experimental results of consistent linear system and Tables 4-6
represent the experimental results of inconsistent linear system.
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Table 4. IT and CPU of RCD, NRCD, RCDA, RECD and RECDA for m×n matrices A with n = 300
and different m when (1.1) is inconsistent.

m×n 1000×300 2000×300 3000×300 4000×300 5000×300

RCD
IT 7597.0 4917.0 4266.3 4058.9 3801.9

CPU 0.1525 0.0958 0.0965 0.1018 0.1372

NRCD
IT 2495.9 1368.4 1096.3 975.4 916.2

CPU 0.0585 0.0365 0.0346 0.0328 0.0446

RCDA

IT 2484.4 1351.1 1103.2 986.8 909.7

CPU 0.0507 0.0321 0.0286 0.0260 0.0342

SPA 3.0079 2.9844 3.3741 3.9154 4.0117

RECD
IT 14770.2 8888.6 7789.3 7401.2 7051.6

CPU 0.5382 0.4329 0.4698 0.8032 1.1241

RECDA

IT 11512.0 7402.2 6710.4 6460.1 6328.1

CPU 0.4107 0.3469 0.3912 0.5380 0.7691

SPE 1.3104 1.2479 1.2009 1.4929 1.4616

Based on these data, we can clearly observe that with respect to CPU time and
the number of IT, the RCDA method performs better than RCD method signifi-
cantly for both consistent and inconsistent linear systems. When (1.1) is consistent,
the speed-up ratio for CPU time of RCDA method relative to RCD method is es-
timated to achieve minimum of 2.3364 and maximum of 4.8009, as well as in the
case where (1.1) is inconsistent, the speed-up ratio is also considerable, at least
2.7090 and maximum up to 4.2425. In addition, the RCDA method still has an
advantage in terms of time efficiency with less CPU running time compared to the
NRCD method, although the difference with respect to the number of IT for RCDA
method and NRCD method is not significant.

Similarly, in comparison with the RECD method, the RCDA method shows sig-
nificant advantages with regard to CPU time as well as the number of IT, regardless
of whether (1.1) is consistent or inconsistent. Furthermore, the CPU time speed-up
ratio for RECDA method compared to RECD method is in the range of 1.2383 at
least and 1.6472 at most when (1.1) is consistent, and this speed-up ratio is in the
range of 1.2009 at least and 1.5947 at most when (1.1) is inconsistent.

The experimental results are shown more clearly in Figures 1 to 6, where Figures
1-3 show the relationship curves of CPU time or the number of IT relative to the
number of rows for matrix A ∈ Rm×n when (1.1) is consistent, while Figures 4-6
show the corresponding relationship curves when (1.1) is inconsistent. Observing
the data shown in the figure, we can notice that with fixed n, the number of IT
of these methods shows a decreasing trend with the gradual increase of m. In
particular, the most remarkable decrease occurs when m increases from 1000 to
2000; subsequently, the decrease gradually slows down with further increase in m.
However, unlike the decreasing trend of the number of IT, the relationship between
CPU time and m is characterized by a U-shaped curve. Specifically, as m gradually
increases, CPU time firstly decreases and then increases. Besides, it is easy to see
that both the NRCD and RCDA methods require least number of IT when iterations
are terminated, regardless of the values of m and n. Meanwhile, the RCDA method
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Table 5. IT and CPU of RCD, NRCD, RCDA, RECD and RECDA for m×n matrices A with n = 400
and different m when (1.1) is inconsistent.

m×n 1000×400 2000×400 3000×400 4000×400 5000×400

RCD
IT 14289.6 7531.8 6427.6 5666.9 5528.6

CPU 0.2735 0.1638 0.1593 0.1548 0.2257

NRCD
IT 4992.7 2240.2 1717.6 1467.4 1343.7

CPU 0.1123 0.0613 0.0538 0.0507 0.0653

RCDA

IT 4928.0 2217.4 1712.1 1477.3 1335.2

CPU 0.0956 0.0485 0.0424 0.0400 0.0532

SPA 2.8609 3.3773 3.7571 3.8700 4.2425

RECD
IT 28902.4 14060.2 11544.6 10562.5 10032.0

CPU 1.1410 0.7114 0.7224 1.1649 1.5932

RECDA

IT 22352.6 11388.0 9702.6 9075.6 8820.8

CPU 0.8508 0.5611 0.5943 0.7850 1.0880

SPE 1.3411 1.2679 1.2155 1.4839 1.4643

performs optimally with respect to CPU time, followed by the NRCD method.
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Figure 1. IT and CPU versus m for RCD, NRCD, RCDA, RECD and RECDA when (1.1) is consistent
and n = 300.

Example 5.2. The present example shows the numerical results for case (iii) of
the randomly generated matrices A ∈ Rm×n(m < n). Although the RECD method
and RECDA method are inferior to the randomized version of coordinate descent
without extrapolation in both iteration steps and CPU time for dealing with large
scale overdetermined linear systems (m > n), they have significant advantages
when dealing with underdetermined linear systems (m < n). The RCD, NRCD
and RCDA methods are not able to converge to least Euclidean norm solution xLN

when m < n, so Tables 7-9 only list CPU time and the number of IT for RECD,
REK and RECDA methods. From these data we again verify the effectiveness of
RECDA method, in both CPU time and the number of IT. For random matrices in
this example, the RECDA method performed better than RECD and REK methods
and has significant advantages, where the CPU time speed-up ratio for RECDA
method relative to RECD method ranges from a minimum of 1.2346 to a maximum
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Table 6. IT and CPU of RCD, NRCD, RCDA, RECD and RECDA for m×n matrices A with n = 500
and different m when (1.1) is inconsistent.

m×n 1000×500 2000×500 3000×500 4000×500 5000×500

RCD
IT 26521.0 10922.2 8539.9 7656.3 7232.0

CPU 0.5288 0.2478 0.2214 0.2124 0.3037

NRCD
IT 9807.4 3417.7 2453.7 2054.5 1840.6

CPU 0.2667 0.1224 0.1022 0.0946 0.1243

RCDA

IT 9597.5 3405.7 2411.1 2057.0 1842.2

CPU 0.1952 0.0782 0.0627 0.0589 0.0798

SPA 2.7090 3.1688 3.5311 3.6061 3.8058

RECD
IT 55648.5 21096.0 15859.6 14208.2 13341.6

CPU 2.2862 1.1464 1.0897 1.7078 2.2385

RECDA

IT 44001.0 16744.8 13133.5 11979.3 11544.6

CPU 1.7832 0.8663 0.8362 1.0709 1.4569

SPE 1.2821 1.3233 1.3032 1.5947 1.5365
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Figure 2. IT and CPU versus m for RCD, NRCD, RCDA, RECD and RECDA when (1.1) is consistent
and n = 400.
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Figure 3. IT and CPU versus m for RCD, NRCD, RCDA, RECD and RECDA when (1.1) is consistent
and n = 500.
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Figure 4. IT and CPU versus m for RCD, NRCD, RCDA, RECD and RECDA when (1.1) is inconsistent
and n = 300.
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Figure 5. IT and CPU versus m for RCD, NRCD,RCDA, RECD and RECDA when (1.1) is inconsistent
and n = 400.
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Figure 6. IT and CPU versus m for RCD, NRCD, RCDA, RECD and RECDA when (1.1) is inconsistent
and n = 500.

of 1.5548.

Example 5.3. For this example, we consider real-world sparse matrices selected
from sparse matrix collection [5] with practical applications that are either fat or
thin and characteristics of these matrices such as size, density, condition number,
rank, and application areas can be found in Table 10, where the density is defined
by

density =
Number of nonzero elements of the m× n matrix

mn
.

From the data in Table 11, it can be found that both the RCD method and
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Table 7. IT and CPU of RECD, REK and RECDA for m × n matrices A with m = 300 and different
n for Example 5.2.

m×n 300×1000 300×2000 300×3000 300×4000 300×5000

RECD
IT 14597.2 8919.9 7771.6 7286.4 7121.9

CPU 0.5905 0.5680 0.7361 1.2393 1.6444

REK
IT 14513.0 88112.8 7753.1 7336.5 7061.7

CPU 0.5445 0.5026 0.6508 1.0878 1.5036

RECDA

IT 11406.3 7099.1 6149.1 5717.8 5492.9

CPU 0.4783 0.4539 0.5564 0.7995 1.1094

SPE 1.2346 1.2514 1.3230 1.5501 1.4822

Table 8. IT and CPU of RECD, REK and RECDA for m × n matrices A with m = 400 and different
n for Example 5.2.

m×n 400×1000 400×2000 400×3000 400×4000 400×5000

RECD
IT 28675.3 14025.2 11519.0 10553.8 10068.5

CPU 1.3152 1.0302 1.1436 1.8145 2.4068

REK
IT 28380.4 14073.5 11474.8 10511.3 10157.0

CPU 1.2753 0.9611 1.0521 1.7905 2.0582

RECDA

IT 22852.9 11263.5 9326.5 8421.7 8045.8

CPU 1.0157 0.7600 0.8923 1.2258 1.6557

SPE 1.2949 1.3555 1.2816 1.4803 1.4536

the RCDA method have a good performance for dealing with thin matrices, but
the RCDA method performs better, where the CPU time speed-up ratio for RCDA
method compared to RCD method reaches a maximum value of 4.0335 in the case
of matrix ash958. However, while dealing with fat matrices, the RCD and RCDA
methods still failed to converge to the corresponding solutions when iteration steps
up to 600000, so the data in the table are replaced by “ − −”. For RECD and
RECDA methods, they are effective for dealing with both fat and thin matrices,
and the RECDA method outperforms the RECD method with respect to both CPU
time and the number of IT, where the CPU time speed-up ratio for RECDA method
relative to the RECD method reaches a maximum value of 1.5243 for the matrix
abtaha1.

6. Conclusion

In this paper, we present two new randomized iterative algorithms to solve large-
scale linear systems, that is, the RCDA method and the RECDA method, which
are both based on the probability criterion constructed from the sine value of the
angle between two successive projection hyperplanes. Our new algorithms not only
overcome the shortcomings of the RCD method and RECD method but also fully
utilize the various products of iterations. Additionally, we develop convergence
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Table 9. IT and CPU of RECD, REK and RECDA for m × n matrices A with m = 500 and different
n for Example 5.2.

m×n 500×1000 500×2000 500×3000 500×4000 500×5000

RECD
IT 55488.9 21088.6 16081.0 14250.8 13334.5

CPU 2.7517 1.6219 1.7242 2.6644 3.5464

REK
IT 55347.0 20906.5 16055.4 14278.2 13284.9

CPU 2.4438 1.4586 1.5778 2.4590 3.2000

RECDA

IT 43738.2 16831.5 13123.8 11616.3 10807.5

CPU 2.0178 1.2013 1.3318 1.7387 2.2810

SPE 1.3637 1.3501 1.2946 1.5324 1.5548

Table 10. The properties of test sparse matrices in Example 5.3.

Matrix Size Density Cond (A) Rank Application field

Cities 55×46 53.04% 207.15 46 Weighted Bipartite Graph

WorldCities 315×100 23.87% 66.00 100 Weighted Bipartite Graph

ash958 958×252 0.68% 3.20 252 Least Squares Problem

abtaha1 14596×209 1.68% 12.23 209 Combinatorial Problem

n3c5-b7 30×120 6.67% 2.23 30 Combinatorial Problem

crew1 135×6469 20.84% 18.20 135 Linear Programming Problem

Table 11. IT and CPU of RECD, REK and RECDA for matrices A for Example 5.3.

m×n Cities WorldCities ash958 abtaha1 n3c5-b7 crew1

RCD
IT 192145.3 21065.3 4624.2 56425.8 −− −−
CPU 2.6652 0.3327 0.0843 1.6039 −− −−

RCDA

IT 61529.7 5339.9 1078.8 15469.3 −− −−
CPU 1.0387 0.1030 0.0209 0.4915 −− −−
SPA 2.5659 3.2301 4.0335 3.2633 −− −−

RECD
IT 553703.5 70097.8 11170.5 171823.5 1285.6 29700.5

CPU 18.3646 2.8592 0.5301 43.6731 0.0460 11.3200

RECDA

IT 406635.6 51157.3 8858.2 130259.8 970 22278.5

CPU 13.3632 2.1169 0.3897 28.6515 0.0328 8.3130

SPE 1.3743 1.3507 1.3603 1.5243 1.4024 1.3617

theories for both the RCDA method and the RECDA method as well as perform
a series of numerical experiments. The results of experiments have verified the
superiority for these two methods with regard to the number of iteration steps and
computation time.
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