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Abstract In this paper, we investigate a Cauchy problem for the time-
fractional diffusion equation by using a new simplified iteration algorithm.
The algorithm arises from the well-known Kozlov-Maz’ya iterative scheme for
solving the Cauchy problem of classical ill-posed boundary value problems. A
relaxation factor in the algorithm is introduced. Based on Fourier analysis, we
give a choice rule for the relaxation factor. The iteration algorithm combined
with a stopping criterion is given for stable numerical reconstruction of the
solution. For illustration, several numerical experiments are constructed to
demonstrate the feasibility and efficiency of the proposed method.

Keywords Time-fractional diffusion equation, Cauchy problem, ill-posed-
ness, iterative algorithm, stopping criterion.

MSC(2010) 35R25, 47A52, 35R30.

1. Introduction

Partial differential equations with fractional-order derivative arose from the studies
of continuous random walk and Lévy motion [3,8,26,46] and high-frequency finan-
cial data [32, 33]. Among these studies, the modeling of advection and dispersion
phenomena in groundwater hydrology to simulate the transport of passive tracers
carried by fluid flow in a porous medium resulted in a partial differential equation
with fractional-order derivative [1, 5, 7, 15, 48]. For economical and safe control of
plants, there is a great demand for a good estimation of the concentration and flow
of pollutants from only spatially observed data during advection and dispersion pro-
cesses. In general, fluid flow and diffusion phenomena are governed by a fractional
diffusion equation. If the initial concentration distribution and boundary conditions
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are given, a complete recovery of the unknown solution is attainable from solving a
well-posed forward problem [24, 25]. In real life, however, the boundary conditions
can be lost, and the distribution data can only be collected at a particular time.
This is usually referred to as ill-posed backward determination problem, which is,
in nature, “unstable” because the unknown solution and its derivatives have to be
determined from indirect observable data that contains measurement error. The
major difficulty in establishing any numerical algorithm for approximating the so-
lution is due to the severe ill-posedness of the problem and the ill-conditioning of
the resultant discretized matrix.

Anomalous diffusion has been found in a broad variety of physics and engi-
neering disciplines, for example, electron transportation [34], dissipation [37], and
heat conduction [13]. It is well known that the continuous-time random walk is a
microscopic model for anomalous diffusion. By an argument similar to the deriva-
tion of the classical diffusion equation from the random walk model, one can derive
time-fractional diffusion models [27, 36]. In recent years, the study of the frac-
tional derivative anomalous diffusion equation has attracted attention from many
researchers, such as [6, 9, 11,28,35,41,42,47,49].

In many practical real-life problems, diffusion is anomalous, but the boundary
data can only be measured on a part of the boundary. This leads to the Cauchy
problem of the fractional diffusion equation, which is by nature ill-posed, refer
to [14] for more details. To the knowledge of the authors, there is still a lack of
full understanding of inverse problems for fractional differential equations. Recent
works can be found in [2, 18,19,21,30,43–45,47].

The Cauchy problem of the classical heat diffusion equation arises from many
physical and engineering disciplines. It is well known that the Cauchy problem of
the heat diffusion equation is ill-posed in the Hadamard sense that a small measure-
ment error in the boundary data can induce enormous error in the solution. Under
an additional condition, a continuous dependence of the solution on the Cauchy
data can be obtained. This is called conditional stability [10]. Due to the severe
ill-posedness of the problem, it is difficult, if not impossible, to solve the Cauchy
problem of the heat diffusion equation by using classical numerical methods with-
out using some kinds of regularization strategies [12]. Theoretical concepts and
computational implementation related to the Cauchy problem of the heat diffusion
equation have been discussed by many authors. See, for instance, [16,17] for compu-
tational aspects and [39] for theoretical aspects. To the authors’ knowledge, most of
the literature on the Cauchy problem of the time-fractional diffusion equation con-
sidered the convergence rate for regularization methods using the Fourier technique.
The work studied the problem in a bounded semi-infinite domain, and by using the
analytic solution, one can construct the regularization solution. However, in this
paper, we consider the Cauchy problem in a bounded finite domain. The difference
from most similar problems is that the analytic solution is not available now, and
the regularization methods cannot be constructed via the analytic solution. In or-
der to overcome this difficulty, we will apply the iterative method with a relaxation
factor. Although many iterative procedures are presented for solving many ill-posed
problems, e.g., [20, 22], the relaxation factor in the iterative algorithms is seldom
discussed from the viewpoint of convergence of algorithms.

It is well known that iterative regularization methods stabilize the ill-posed
problems by stopping the iterative process at the optimum point. This is the semi-
convergence of iterative methods for solving ill-posed problems. In these methods,
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the number of iterations performed plays the role of a regularization parameter.
In most iterative methods for solving ill-posed problems of mathematical physics
equations, a least squares method is applied [38], and a corresponding variational
functional should be given, the gradient of the functional should be calculated, and
the computation of the gradient of a given functional is usually complex. In this
paper, we will not give any functional and will not compute the corresponding gra-
dient. The used idea in this paper is from the Kozlov-Maz’ya iteration [22]. The
Kozlov-Maz’ya method is very efficient for solving the ill-posed Cauchy problem of
partial differential equations with integer-order derivatives. And this method has
been extended to solve other types of ill-posed problems [20]. Since the formula
of integration by parts for the integer-order differentiation does not exist for the
fractional-order differentiation, this leads to some theoretical results for classical
differential equations that are not adapted to the fractional differential equations.
Due to this fact, to the authors’ knowledge, this method has not been applied to
solving the Cauchy problem of fractional differential equations yet. For describing
this iterative method more clearly, we only restrict ourselves to solving the Cauchy
problem in the one-dimensional case. We will propose a similar but simpler algo-
rithm with a heuristic stopping rule and a relaxation factor for solving the Cauchy
problem of the fractional diffusion equation. The method with Fourier analysis for
choosing the relaxation factor is considered. Numerical results show that our newly
proposed stopping rule with the relaxation factor works well. The contribution of
this paper consists of two points:

1. A simplified Kozlov-Maz’ya iteration with a relaxation factor is tried to
solve the Cauchy problem of fractional diffusion equations. For this problem, the
algorithm is simpler than the classical Kozlov-Maz’ya iteration, and the cost of the
computation is less.

2. A theoretical analysis on the relaxation factor is conducted. Based on Fourier
analysis, a choice rule for the relaxation factor is given.

The paper is organized as follows. In Section 2, we consider two similar Cauchy
problems for the time-fractional diffusion equation, and in Section 3, we give the
rules for selecting the relaxation factor of the iterative algorithm using the Fourier
transformation technique. In the last section, several numerical examples are con-
structed to demonstrate the feasibility and efficiency of the proposed method.

2. Mathematical formulation of the Cauchy prob-
lem

In most work on the Cauchy problem of the fractional diffusion equation, the authors
consider the following Cauchy problem for the time-fractional diffusion equation in
the bounded semi-infinite domain Ω1 := {(x, t)|0 < x < a, t > 0} and in the
bounded finite domain Ω2 := {(x, t)|0 < x < a, 0 < t < T}:

∂βu

∂tβ
− uxx = 0,

u(0, t) = ϕ(t),

ux(0, t) = h(t),

u(x, 0) = 0,

(2.1)
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where the time fractional derivative ∂βu
∂tβ

is the Caputo fractional derivative of order
β (0 < β ≤ 1) defined in [31],

∂βu

∂tβ
=

1

Γ(1− β)

∫ t

0

∂u(x, s)

∂s

ds

(t− s)β
, 0 < β < 1, (2.2)

∂βu

∂tβ
=

∂u(x, t)

∂t
, β = 1. (2.3)

Problem I. The Cauchy problem defined in Ω1 is to recover the unknown solutions
L(t) := u(a, t) from the given data pairs ϕ(t), h(t).

Most work on this problem only considered the homogeneous initial condition.
This can be explained in the following:

Remark 2.1. The following problem with non-homogeneous initial conditions

∂βu(1)

∂tβ
− u(1)

xx = 0,

u(1)(0, t) = ϕ(t),

u
(1)
x (0, t) = h(t),

u(1)(x, 0) = u0(x)

(2.4)

can be split into Problem I and the following problem

∂βu(2)

∂tβ
− u(2)

xx = 0,

u(2)(0, t) = 0,

u
(2)
x (0, t) = 0,

u(2)(x, 0) = u0(x).

(2.5)

The above problem (2.5) is a well-posed problem. Therefore, in (2.1), the homoge-
neous initial condition is not important for the inverse problem.

In this paper, we consider seeking the solutions in two different domains Ω1

and Ω2 for problem (2.1). In the case of Ω1, we can take the Laplace transform
and find the analytic solution. By using the Laplace transform and the Fourier
transform [40], the solution of Problem I in the frequency domain can be obtained,

û(x, ξ) = cosh(xη)ϕ̂(ξ) +
sinh(xη)

η
ĥ(ξ), (2.6)

where ξ is the variable of Fourier transform with respect to t,

η := (iξ)
β
2 = |ξ|

β
2 (cos(

βπ

4
) + i sign(ξ) sin(

βπ

4
)). (2.7)

The inverse Fourier transform on (2.6) gives u(x, t).

We note here that, for fixed 0 < x ≤ a, the values of | cosh(xη)| and | sinh(xη)η |
in (2.6) are unbounded as |η| → ∞. Therefore, the problem is ill-posed, and some
regularization methods should be applied.



A new iteration algorithm 2963

So far, for Problem I, there has been a lot of literature considering the theoretic
result of regularization errors. But if the time t is finite, the analysis of regularization
errors is difficult. In most practical situations, the time variable t is finite, and we
consider the following problem:

Problem II. The Cauchy problem (2.1) in the bounded finite domain Ω2 := {(x, t)|0
< x < a, 0 < t < T}, where T is a positive constant. Reconstruct the solution u(a, t)
from the Cauchy data pairs.

However, we could not find an explicit expression for the solution via Fourier
transformation in this case, and we cannot construct a regularization solution or
give the error analysis. Noting that this problem is similar to Problem I, we can
analyze the regularization methods for solving this problem based on the methods
for Problem I because the solution of Problem I can be expressed explicitly. Now
we describe an iterative algorithm with a relaxation factor for solving Problem II.

3. A simplified iterative algorithm

It is well-known that the Kozlov-Maz’ya iteration for solving the Cauchy problem of
the classical partial differential equations is equivalent to the Landweber method [4].
To clarify the idea of this method, we consider the Cauchy problem of the classical
heat equation in Ω2:

∂u

∂t
− uxx = 0,

u(0, t) = ϕ(t),

ux(0, t) = h(t),

u(x, 0) = 0.

(3.1)

Here we want to seek the solution f(t) := u(a, t). The Kozlov-Maz’ya iteration is
given as follows:

Step 1. Given an initial guess f0(t) and solve the forward problem to obtain v(0, t)
and vx(a, t):

∂v

∂t
− vxx = 0,

v(a, t) = f0(t),

vx(0, t) = h(t),

v(x, 0) = 0.

(3.2)

We define the mapping K : f0(t) → v(0, t), i.e., Kf0(t) = v(0, t), where K also
depends on h(t).

Step 2. Based on the obtained data vx(a, t) from Step 1, then solve the forward
problem to obtain f1(t) := w(a, t):

∂w

∂t
− wxx = 0,

w(0, t) = ϕ(t),

wx(a, t) = vx(a, t),

w(x, 0) = 0.

(3.3)
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Let z(x, t) = w(x, t)− v(x, t), then z(x, t) satisfies

∂z

∂t
− zxx = 0,

z(0, t) = ϕ(t)−Kf0(t) := r(t),

zx(a, t) = 0,

z(x, 0) = 0.

(3.4)

We define the mapping K∗ : z(0, t) → z(a, t), i.e., K∗(ϕ(t) − Kf0(t)) = z(a, t) =
f1(t)− f0(t). Therefore, This formula becomes

f1(t) = f0(t) +K∗(ϕ(t)−Kf0(t)).

Using the iteration index k, we have for k = 1, 2, · · ·

fk(t) = fk−1(t) +K∗(ϕ(t)−Kfk−1(t)).

This is the famous Landweber method for solving ill-posed operator equations.
In this method, for solving the inverse problems, one has to solve two forward

problems (3.2) and (3.3). If the space dimension becomes higher, then the cost of
computation is very expensive. For this reason, we propose a simplified version of
the Kozlov-Maz’ya iteration. In this version, we use Dirichlet data in the forward
problem and use the Neumann data for fitting, and only one forward problem needs
to be solved. Thus, the cost of computation is much less than the classical version.

The iterative algorithm for solving (2.1) in Ω2 can be constructed as follows:

• Step 1. Specify an initial guess T0 for the temperature w(a, t) at the boundary
x = a.

• Step 2. If Tk(t) has been constructed, solve the well-posed forward problem

∂βw(k)

∂tβ
− (w(k))xx = 0, 0 < x < a, 0 < t < T,

w(k)(0, t) = ϕ(t), 0 < t < T,

w(k)(a, t) = Tk(t), 0 < t < T,

w(k)(x, 0) = 0, 0 < x < a

(3.5)

to determine the k-th approximation w
(k)
x (0, t).

• Step 3. Construct Tk+1(t), which is given by

Tk+1(t) = Tk(t)− c(w(k)
x (0, t)− h(t)), (3.6)

where c is a relaxation factor that makes the algorithm convergent.

• Step 4. Repeat Steps 2 and 3 until a prescribed stopping criterion is satisfied.

Obviously, we only need to solve the forward problem (3.5) in each iteration, which
is different from the classical method. In Step 3, we construct the iteration scheme

by using the Neumann data w
(k)
x (0, t) to fit the data h(t).
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3.1. Analysis of the relaxation factor

In order to show the convergence of the algorithm, we turn to Problem I for the
sake of theoretical analysis. For Problem I, we write the key steps:

• If T̃k(t) has been constructed, solve the well-posed forward problem

∂βu(k)

∂tβ
− (u(k))xx = 0, 0 < x < a, t > 0,

u(k)(0, t) = ϕ̃(t), t > 0,

u(k)(a, t) = T̃k(t), t > 0,

u(k)(x, 0) = 0, 0 < x < a

(3.7)

to determine the k-th approximation u
(k)
x (0, t).

• Construct T̃k+1(t), which is given by

T̃k+1(t) = T̃k(t)− c(u(k)
x (0, t)− h̃(t)), (3.8)

where c is a positive parameter.

Let us define the error function e(k)(x, t) := u(k)(x, t)− u(x, t), where u(x, t) is
the solution of the forward problem:

∂βu

∂tβ
− uxx = 0, 0 < x < a, t > 0,

u(0, t) = ϕ̃(t), t > 0,

u(a, t) = L̃(t), t > 0,

u(x, 0) = 0, 0 < x < a.

(3.9)

Due to (3.7) and (3.9), we have for e(k)(x, t):

∂βe(k)

∂tβ
− (e(k))xx = 0, 0 < x < a, t > 0,

e(k)(0, t) = 0, t > 0,

e(k)(a, t) = εk, t > 0,

e(k)(x, 0) = 0, 0 < x < a,

(3.10)

where εk := T̃k(t)− L̃(t).

Noting that e
(k)
x (0, t) := u

(k)
x (0, t)− ux(0, t) = u

(k)
x (0, t)− h̃(t), (3.8) becomes

εk+1 = εk − ce(k)x (0, t). (3.11)

Using the Fourier transform in (3.10) with respect to t, we can obtain the solution
of (3.10) in the frequency domain:

ê(k)(x, ξ) =
sinh(ηx)

sinh(η)
ε̂k(ξ). (3.12)
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From (3.8), we have

ê(k)x (0, ξ) = η
1

sinh(η)
ε̂k(ξ). (3.13)

Consider (3.11) in the frequency domain, we have

ε̂k+1(ξ) = ε̂k(ξ)− cê(k)x (0, ξ) = (1− c
η

sinh(η)
)ε̂k(ξ). (3.14)

In order to guarantee the convergence of the algorithm, we should select the
parameter c, which should satisfy |1 − c η

sinh(η) | < 1. For example, if 0 < c < 1, we

have |1−c η
sinh(η) | < 1. In the forthcoming section, we set 0 < c < 1 for computation.

3.2. Solve the forward problem

Now we come back to Problem II. For the proposed iteration method, how to solve
the forward problem (3.5) is the key problem. For convenience, we drop the index
k in (3.5).

Before conducting the numerical experiment, we first give the finite difference
scheme for solving the forward problem.

We concentrate on the following forward problem for the given data ϕ(t) and
T (t):

∂βw

∂tβ
− wxx = 0, 0 < x < a, 0 < t < T,

w(0, t) = ϕ(t), 0 < t < T,

w(a, t) = T (t), 0 < t < T,

w(x, 0) = 0, 0 < x < a.

(3.15)

Using an unconditionally stable implicit finite difference scheme, we can obtain the
data wx(0, t). Let tn = (n− 1)τ be the grid points at the t-axis, n = 1, 2, · · · , s+ 1
with time step length τ = T/s, xj = (j − 1)h, j = 1, 2, · · · ,m+ 1 with spatial step
length h = a/m be the spatial grid points; wn

j be the difference approximation to
w(xj , tn). The finite difference scheme for the solution is given as follows [29]:

− 1

h2
w2

j−1 + (σβ,τ +
2

h2
)w2

j −
1

h2
w2

j+1 = σβ,τw
1
j , j = 2, 3, · · · ,m, (3.16)

and for n = 3, · · · , s+ 1,

− 1

h2
wn

j−1 + (σβ,τ +
2

h2
)wn

j − 1

h2
wn

j+1

=σβ,τw
n−1
j − σβ,τ

n∑
i=3

υi−1,β(w
n−i+2
j − wn−i+1

j ), j = 2, 3, · · · ,m, (3.17)

with initial condition
w1

j = 0, j = 1, 2, · · · ,m+ 1 (3.18)

and boundary condition

wn
1 = ϕ((n− 1)τ), wn

m+1 = T ((n− 1)τ), n = 2, · · · , s+ 1, (3.19)

where σβ,τ = 1
Γ(1−β)(1−β)τβ , υi,β = i1−β − (i − 1)1−β , i = 2, 3, · · · . The Neumann

data for the Cauchy problem can be constructed by the approximation:

wx(0, tn) ≈
wn

2 − wn
1

h
, n = 1, 2, · · · , s+ 1. (3.20)
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4. Numerical results and discussion

4.1. Experiment setting

Since an explicit exact solution for the inverse problem II is difficult to construct,
we solve the following forward problem with the exact data L(t), which will be
reconstructed in the corresponding inverse problem

∂βw

∂tβ
− wxx = 0, 0 < x < a, 0 < t < T,

w(0, t) = ϕ(t), 0 < t < T,

w(a, t) = L(t), 0 < t < T,

w(x, 0) = 0, 0 < x < a

(4.1)

to obtain the exact data wx(0, t) = h(t). Now for the inverse problem II, we have
the Cauchy data ϕ(t), h(t) and the exact solution w(a, t) := L(t). In computation,
we can obtain the Cauchy data ϕ(t) and h(t) in the form of vectors denoted as Φ
and H. The noisy Cauchy data of Φδ and Hδ are generated as:

Φδ = Φ+(maxΦ) · σ1 rand(size(Φ)), Hδ = H+(maxH) · σ2 rand(size(H)), (4.2)

where

Φ = (ϕ(t1), · · · , ϕ(ts+1))
T , (4.3)

H = (h(t1), · · · , h(ts+1))
T , (4.4)

δ = RMSE(Φδ − Φ) +RMSE(Hδ −H), (4.5)

in which maxΦ and maxH denote the maximum of the vectors Φ and H, respec-
tively, σ1 indicates the error level of Φ, σ2 denotes the error level of H, and RMSE
denotes the root mean square error between two vectors W and W ∗ defined by

RMSE(W −W ∗) =

√√√√ 1

s+ 1

s+1∑
j=1

(W (tj)−W ∗(tj))2, (4.6)

where rand(size(·)) is a random number generated by MATLAB between [−1, 1].
Numerical implementation is performed using MATLAB in IEEE double preci-

sion. In the numerical examples, we fix T = 1, a = 1, h = 1
100 and τ = 1

50 . For
each noise level σ1 and σ2, the value of δ can be computed by (4.5). For Example
4.1 and Example 4.2, we fix the factor c = 0.3. However, in Example 4.3, we change
the factor c.

4.2. The initial guess

An arbitrary function T0(t) may be selected as an initial guess for the boundary
value w(a, t) of the Cauchy problem II. However, in order to improve the rate of
convergence of the iterative algorithm, we have selected a function that ensures the
solution of the problem satisfies the compatibility conditions w(a, 0) = w(x, 0) = 0.

In all of the numerical examples, the initial guess is given by a constant function

T0(t) = 0. (4.7)
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4.3. The convergence error

In order to investigate the convergence of the described algorithm, at every iteration,
we evaluate the convergence error defined by

eb = ∥w(k)(t)− L(t)∥L2[0,T ], (4.8)

which can be computed by the notation of RMSE defined by (4.6). w(k)(t) is
the computation value after k iterations, and L(t) is the exact value defined by
L(t) := w(a, t). However, the error eb can only be computed if the exact solution
w(a, t) is known, and such a solution is not available in practice. Therefore, a
stopping criterion must be developed in order to cease the iterative process when
convergence has been achieved.

4.4. The stopping criterion

In general, iterative regularization methods stabilize the ill-posed problems by stop-
ping the iterative process at the optimum point. In these methods, the number of
iterations performed plays the role of a regularization parameter. Therefore, a
stopping criterion is needed for the iterative algorithm considered in this paper.

In order to obtain a stopping criterion, let us review the famous iterative method,
i.e., the Landweber iterative method for solving ill-posed problems.

Consider linear ill-posed problems:

Ax = y, (4.9)

whereA : H1 → H2 is a linear, injective, closed operator between infinite-dimensional
Hilbert spaces H1 and H2 with non-closed range R(A). Suppose that yδ ∈ H2 is
the noisy data with

∥y − yδ∥ ≤ δ

and the noise level δ is known.
Landweber [23] suggested rewriting the equation Ax = y in the form x = (I −

λA∗A)x+ λA∗y for some λ > 0 and iterating this, i.e., computing

x0 := 0, xk = (I − λA∗A)xk−1 + λA∗y (4.10)

for k = 1, 2, · · · .
Let r > 1 be a fixed number. Stop the algorithm at the first occurrence of k

with ∥Axk,δ − yδ∥ ≤ rδ. Under the stopping rule, the Landweber iteration method
is convergent [12].

Now following the idea from the above stopping rule, we have

∥w(k)
x (0, t)− h(t)∥L2[0,T ] ≤ rδ, r > 1, (4.11)

where w
(k)
x (0, t) is the computation value after k iterations, and h(t) is the exact

value defined by h(t) := wx(0, t).

4.5. Numerical examples

Example 4.1. First we solve the forward problem (4.1) with β = 0.5, w(0, t) :=
ϕ(t) = 1−e−2t and w(a, t) := L(t) = 3 sin(2πt) by using the implicit finite difference
method. We get the exact data h(t) := wx(0, t).
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Figure 1. The input data wx(0, t) for Example 4.1.

Figure 1 displays the input data wx(0, t). Now we use the iterative algorithm
with the initial guess T0(t) = 0 for reconstructing the solution w(a, t). In practice,
the noise level σ2 ≫ σ1, it is reasonable to only consider the noise level σ2 and
set σ1 = 0. In the iterative algorithm for inverse problem II, we add random noise
σ2 = 10−1 to the exact data h(t). According to (4.5), we have δ = 0.10.

(a) First we investigate the convergence error. We plot the convergence error
(4.8) vs the number of iterations, see Figure 2. The error eb initially decreases
rapidly and then it slows down and tends to a small positive constant of order
2 ∗ 10−1.
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1
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1.8

Number of iterations

e b

Figure 2. The convergence error vs number of iterations for Example 4.1.

(b) As we point out before, it is impossible for one to plot the convergence error
defined by (4.8) because the exact solution L(t) is not known in practice. Now we
test the stopping rule (4.11), where we take r = 2. The results are shown in Figure
3, where (3a) shows the convergence error during the iterative process until (4.11)
is satisfied, (3b) shows the result of reconstruction by the iterative method.

From Figure 3, we can see that the stopping rule (4.11) is effective, and the
iterative stop point is almost optimum.

(c) If the noise level σ2 = 10−2 and the other parameters are the same as (b),
using the stopping rule (4.11), the reconstruction result is shown in Figure 4.



2970 Z. Li & X. Xiong

1 2 3 4 5 6 7 8 9 10 11
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of iterations

e b

(3a)

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3

4

t

th
e 

co
m

pu
te

d 
an

d 
ex

ac
t s

ol
ut

io
n 

u(
a,

t)

 

 

approximation
exact solution

(3b)

Figure 3. (3a) The convergence error during the iterative process for Example 4.1; (3b) Reconstruction
result with RMSE=0.23 and iterative step k = 11 for Example 4.1.
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Figure 4. (4a) The convergence error during the iterative process for Example 4.1; (4b) Reconstruction
result with RMSE=0.023 and iterative step k = 20 for Example 4.1.

Example 4.2. Consider the following forward problem

∂βw

∂tβ
− wxx = 0, 0 < x < a, 0 < t < T,

w(0, t) = 0, 0 < t < T,

w(a, t) = L(t), 0 < t < T,

w(x, 0) = 0, 0 < x < a,

(4.12)

where L(t) is given by

L(t) =

1, 0.2 ≤ t ≤ 0.5 and 0.6 ≤ t ≤ 0.8,

0, else.
(4.13)

The results displayed in Figures 5–7 are:
Figure 5 shows the input data wx(0, t) with different β.
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Figure 5. The exact input data wx(0, t) vs β for Example 4.2.

Figure 6 shows the result for the convergence error with β = 0.9, σ2 = 10−2.
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Figure 6. The convergence error vs the number of iterations for Example 4.2.

From Figure 6, we see that the number of iterations performed plays the role of
a regularization parameter. Therefore, a stopping rule should be employed.

Figure 7 shows the result with β = 0.7 and σ2 = 10−2. Figure (7a) shows
the convergence error during the iterative process until the stopping rule (4.11) is
satisfied with r = 2. Figure (7b) shows the approximation result. For smaller β, we
can obtain better approximation results. This is because the smaller β is, the less
ill-posed Problem II is, which has been pointed out in Section 2, see (2.7).

Example 4.3. Let w(0, t) = 1− e−t2 and

L(t) := w(a, t) =

2t, if 0 ≤ t ≤ 0.5,

2(1− t), if 0.5 ≤ t ≤ 1.

In this example, we change the factor c. The results displayed in Figures 8–10
are:

Figure 8 shows the input data wx(0, t) for different β.
Figure 9 shows the result for the convergence error with β = 0.9, σ2 = 10−2, c =

0.1.
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Figure 7. (7a) The convergence error during the iterative process for Example 4.2; (7b) Reconstruction
result with RMSE=0.07 and iterative step k = 50 for Example 4.2.
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Figure 8. The exact input data wx(0, t) vs β for Example 4.3.
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Figure 9. The convergence error vs the number of iterations for Example 4.3.

Figure 10 shows the result with β = 0.9, σ2 = 10−1, δ = 0.02 and c = 0.1.
Figure (10a) shows the convergence error during the iterative process until the
stopping rule (4.11) is satisfied with r = 2. Figure (10b) shows the approximation
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result.
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Figure 10. (10a) The convergence error during the iterative process for Example 4.3; (10b) Reconstruc-
tion result with RMSE=0.06 and iterative step k = 40 for Example 4.3.

5. Conclusion

In this paper, based on the Kozlov-Maz’ya iteration method, we give a simplified
iterative algorithm with a relaxation factor for solving the Cauchy problem for
the fractional diffusion equation. This simplified version only needs to solve one
forward problem in each iterative step and can make the cost of computation less.
We give the stopping rule for iterative steps with the relaxation factor. We find out
that the iterative method has a semi-convergence effect for this ill-posed problem.
However, some detailed analysis for the convergence should be done in the future
work. Numerical experiments show that the newly proposed stopping rule with the
relaxation factor is effective for solving the inverse problem. This method will be
extended to the two-dimensional case in the future.
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