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QUALITATIVE BEHAVIORS AND CONTROL
OF A NEW FOUR-DIMENSIONAL

LORENZ SYSTEM
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Abstract In this paper, a new nonlinear four-dimensional Lorenz system
is proposed. Nonlinear dynamical properties of this system, including the
stability of the fixed points, Lyapunov exponents, the bifurcation behaviors
and sensitivity to initial conditions, are considered by using chaos theory and
numerical simulations. It is very interesting that we find that this system
exhibits chaos phenomena for a set of parameters. The globally exponential
attractive set of this system has been obtained according to Lyapunov stability
theory. Synchronization has been realized between two identical hyperchaotic
systems via globally exponential approach and sliding mode control method
by using the results of the global exponential attractive set, Vaidyanathan’s
theorem and Dini derivative. The novelty of the paper lies in that the glob-
ally exponential attractive set of the system is obtained firstly, then the result
of the globally exponential attractive set is used to study chaos control and
chaos synchronization. Furthermore, the precise mathematical expression of
the controller is obtained according to the boundedness of this system. Fi-
nally, the synchronization process is simulated by MATLAB to illustrate the
effectiveness of the theoretical analysis. The results of numerical simulations
show that two control methods for chaos synchronization are effective.

Keywords Lorenz system, stability theory, qualitative theory, bifurcation
behavior, sliding mode control.
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1. Introduction

Unpredictability is a phenomenon in nonlinear dynamics that discovered by Henri
Poincaré [25] who is a famous scientist and mathematician in the world when he
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studied the three-body problem: earth, moon, and sun move under their mutual
gravitational interactions. He found that a small change in the initial condition of
this problem can cause a large error in the final phase that would become known
as chaos. However, Henri Poincaré’s results did not attract much attention at the
time. In 1975, Li and Yorke [15] coined the mathematical, physical concept of
“chaos” which is known as “Li-Yorke chaos”. In 1963, the meteorologist E. N.
Lorenz [17] built nonlinear weather models to predict the weather forecast and he
found that this nonlinear system could exhibit very complex behaviors and chaos
due to the sensitive dependence upon the initial conditions which is known as the
butterfly effect. The scientific gateway to chaos research was reopened. Since then,
chaos phenomena arising from nonlinear systems have attracted much attention
from many scientists. To discover new chaotic systems for exploring the mechanism
of chaos is an important research direction of chaos research. In 1976, the Rossler
chaotic system was discovered [27]. In 1986, the Chua circuit system was found
by Leon O. Chua in a physical experiment [4, 12]. In 1996, the Swedish physicist
Stenflo [30] established a four-dimensional Lorenz system to describe the dynamics
of acoustic-gravity waves, namely, the Lorenz-Stenflo system. In 1999, Chen and
Ueta found a new chaotic system, namely, the Chen system [3]. In 2002, Lu and
Chen found a novel chaotic system which connected the Lorenz system and the
Chen system [18]. In 2002, Lu et al. introduced the Unified chaotic system [19].
Since then, many chaotic systems have been discovered and studied [1, 5, 11, 14,
20, 29, 33, 35, 37, 38, 42, 43]. Chaos phenomena have been found and studied in
encrypted communication, biology, engineering technology, neural network, fluid
mechanics and other fields by many researchers [1, 5, 8, 11, 14, 20, 22, 24, 29, 33–35,
37–40,42,43].

The technique for controlling chaos is predictive control and synchronization con-
trol. The phenomenon that the dynamical behaviors of two chaotic systems become
consistent is known as chaos synchronization. Carroll and Pecora [2] initially pro-
posed the concept of synchronization in order to design the appropriate controllers
to synchronize two chaotic systems with distinct initial conditions. There are variety
of control strategies, such as active control, sliding mode control, adaptive control,
and others. Complete synchronization, anti-synchronization, compound synchro-
nization, difference synchronization and others have been developed to control the
chaotic behaviors of chaotic systems [7,9,10,21,23,26,44,45]. Among all the control
techniques for chaos synchronization, linear feedback controller is simple in struc-
ture and easy to operate in practice. Many researchers have used the linear feedback
controllers to synchronize and control chaos in various chaotic and hyperchaotic sys-
tems [13,28]. Among them, the sliding mode control method is a variable structure
control method, which has strong robustness in the face of external interference and
parameter disturbance, and the theory of using sliding mode control to realize chaos
synchronization has been studied more and more deeply. In 2014, Vaidyanathan
and his collaborators used the sliding mode control method to realize global chaos
synchronization of two identical three-dimensional chaotic systems [31] and they
proposed a new sliding mode control method in the paper [32]. In 2023, Dinesh
Khattar et al. [9] studied a sliding mode control problem of a three-dimensional
chaotic system according to the sliding mode control method that proposed by
Sundarapandian Vaidyanathan. Compared with the previous research [31,32], this
paper extends the sliding mode control method from the three-dimensional chaotic
system to the four-dimensional hyperchaotic system. These control techniques are
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too appealing and have been widely used due to their simplicity in configuration.
In this paper, linear feedback control approach has been used to achieve the glob-
ally exponentially synchronization [36,41] and Lyapunov stability theory ensure the
global stability of the nonlinear systems. Since hyperchaotic systems have more
complex dynamical behaviors and the sliding mode control method has the advan-
tage of being insensitive to system parameters, this research has an important role
in promoting the development of secure communication [6, 16].

The structure of this article is arranged as follows: Section 2 introduces a new
nonlinear four-dimensional Lorenz system and discusses the dynamical behaviors of
this system. Section 3 studies the global exponential attractive set of this system.
Section 4 studies globally exponential synchronization through linear feedback con-
troller. Section 5 studies synchronization through the sliding mode control method.
Section 6 provides the conclusions of this paper.

2. Complex dynamics

2.1. System model and hyperchaotic attractor

In this paper, a new hyperchaotic system is proposed

ẋ = a(y − x) + w,

ẏ = bx− xz − y,

ż = xy − cz,

ẇ = −x− dw,

(2.1)

where the parameters a, b, c, d are real constants of system (2.1). When the param-
eters a = 10, b = 25, c = 3, d = 2, system (2.1) is hyperchaotic. When the initial
position of system (2.1) is selected as (x0, y0, z0, w0) = (0.1, 0.2, 0.1, 0.2), then the
three-dimensional hyperchaotic attractor of system (2.1) can be obtained, as shown
in Figure 1. The evolution process of all variables over time t is shown in Figure 2.

2.2. Dissipation

The vector field of system (2.1) is denoted as

F (x, y, z, w) =


f1 (x, y, z, w)

f2 (x, y, z, w)

f3 (x, y, z, w)

f4 (x, y, z, w)

 =


a(y − x) + w

bx− xz − y

xy − cz

−x− dw

 .

System (2.1) is dissipative under the condition a+ c+ d+ 1 > 0, since we have

∇V =
∂f1 (x, y, z, w)

∂x
+

∂f2 (x, y, z, w)

∂y
+

∂f3 (x, y, z, w)

∂z
+

∂f4 (x, y, z, w)

∂w

= − (a+ c+ d+ 1) .
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Figure 1. The hyperchaotic attractors of system (2.1) in the 3D space.
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Figure 2. The evolution process of each variable of system (2.1) over the time t.

2.3. Fixed points and their stability

The fixed points of system (2.1) are determined by solving the following equations

a(y − x) + w = 0,

bx− xz − y = 0,

xy − cz = 0,

−x− dw = 0.

(2.2)

Solving the above equation (2.2), the real equilibrium points of system (2.1) can
be obtained as the following four cases:
(i) If a = 0, c ̸= 0, , there is only one real fixed point S0 = (0, 0, 0, 0) .
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(ii) If a = 0, c = 0, there are an infinite number of real fixed points.
(iii) If a ̸= 0, c = 0, there are an infinite number of real fixed points.
(iv) If a ̸= 0, c ̸= 0, then system (2.1) has only one real fixed point S0 = (0, 0, 0, 0)

when p = abcd−c(d+1)
d2(d+1) ≤ 0. When p = abcd−c(d+1)

d2(d+1) ≥ 0, system (2.1) has the

following three fixed points:

S0 = (0, 0, 0, 0) , S+ =

(
−d

√
p,−

(d+ 1)
√
p

a
, bc− c(d+ 1)

ad
,
√
p

)
,

S− =

(
d
√
p,

(d+ 1)
√
p

a
, bc− c(d+ 1)

ad
,−√

p

)
.

In the following, we will study the stability of the fixed points of system (2.1)
with parameters a = 10, b = 25, c = 3, d = 2. Consider the parameters of system
(2.1) when a = 10, b = 25, c = 3, d = 2, which satisfies the second category in case
(iv) above, so the system (2.1) has three fixed points. To study the stability of S0 =
(0, 0, 0, 0) , we will calculate the Jacobian matrix of system (2.1) at S0 = (0, 0, 0, 0)
as follows:

J |S0
=


−10 10 0 1

25 −1 0 0

0 0 −3 0

−1 0 0 −2

 .

The eigenvalues of matrix J |S0
are calculated as λ1=−21.9073, λ2=10.9112, λ3=−

2.0039 and λ4= −3 by using computer software. Since there exists positive eigen-
value of matrix J |S0

, so S0 = (0, 0, 0, 0) is an unstable fixed point of system (2.1).
The stability analysis of S+ and S− by using the same method yields that S+ and
S− are both stable fixed points of system (2.1).

2.4. Lyapunov exponents and Lyapunov dimension

When the parameters are selected as a = 10, b = 25, c = 3, d = 2, with the initial
value (x0, y0, z0, w0) = (0.1, 0.2, 0.1, 0.2), the Lyapunov exponent of system (2.1) is
calclated as λL1

=0.8133, λL2
=0.0036, λL3

=− 2.0368, λL4
=− 14.7765, respectively.

And the Lyapunov dimension of the attractors of system (2.1) is calculated as
[33,35,43]

DL = j +

j∑
i=1

λLi∣∣λLj+1

∣∣ ,
such that j is the largest integer that guarantees the inequality

j∑
i=1

λLi
> 0. And

the Lyapunov dimension of system (2.1) in this case is

DL = 2 +
λL1 + λL2

|λL3
|

= 2.4011.

Since system (2.1) has two positive Lyapunov exponents, it indicates that system
(2.1) is a hyperchaotic system. Moreover, the Lyapunov dimension of system (2.1)
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is positive fractional dimension, which indicates that the chaotic attractor of system
(2.1) is fractional dimension. The Lyapunov exponent of system (2.1) is shown in
Figure 3.
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Figure 3. The Lyapunov exponent chart of system (2.1).

2.5. Effects of the changes for the system parameters

If parameters b = 25, c = 3, d = 2 of system (2.1) are fixed, the value of parameter
a is changed and the initial value (x0, y0, z0, w0) = (0.1, 0.2, 0.1, 0.2) is fixed. When
a ∈ [0, 50], the Lyapunov exponents (LE) of system (2.1) with respect to parameter
a can be obtained, as shown in Figure 4. The bifurcation diagram of the state
variable x of system (2.1) with respect to parameter a is shown in Figure 5.
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Figure 4. Lyapunov exponents diagram of system (2.1) with a ∈ [0, 50].

It can be found from Figure 4 that when 0 ≤ a ≤ 7.07, the Lyapunov exponents
of system (2.1) are all less than 0, and this system is in a stable state. When
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Figure 5. Bifurcation diagram of state variable x versus a.

7.07 < a < 11.05, the largest Lyapunov exponent of the system is always greater
than 0, and the system is in a chaotic state. However, there are also some points
in small intervals corresponding to two positive Lyapunov exponents, so the system
is in a hyperchaotic state. When 11.05 ≤ a ≤ 50, the Lyapunov exponents of
the system are all less than zero, except the smallest Lyapunov exponent, which is
generally decreasing with the increase of a, and the other three Lyapunov exponents
change very little, so the system is in a stable state. Observing the bifurcation
diagram in Figure 5, the results of Figure 5 also confirm the above dynamical
characteristics of this system.

If parameters a = 10, c = 3, d = 2 of system (2.1) are fixed, the value of param-
eter b is changed, and the initial value (x0, y0, z0, w0) = (0.1, 0.2, 0.1, 0.2) is fixed.
When b ∈ [0, 50], the Lyapunov exponents of system (2.1) with respect to parame-
ter b can be obtained, as shown in Figure 6. The bifurcation diagram of the state
variable x of system (2.1) with respect to parameter b is shown in Figure 7.

It can be found from Figure 6 that when 0 ≤ b ≤ 24.55, the Lyapunov exponents
of system (2.1) are all less than 0, and the system is in a stable state. When
5 ≤ b ≤ 24.55, the largest Lyapunov exponent and the second largest Lyapunov
exponent of the system change in basically the same magnitude, and the third
largest Lyapunov exponent is almost unchanged. When 24.55 < b ≤ 50, except for
some points in small intervals, system (2.1) basically has two Lyapunov exponents
greater than 0, so the system is in a hyperchaotic state. These dynamical features
of the system can also be observed from Figure 7.

2.6. Sensitivity analysis to initial values

Parameters for system (2.1) are selected as a = 10, b = 25, c = 3, d = 2, and
the initial value is (x0, y0, z0, w0) = (0.1, 0.2, 0.1, 0.2). Let the initial value of the
system (2.1) changes slightly. If the initial value (x0, y0, z0, w0) of system (2.1) is
changed into (x0, y0, z0, w0) = (0.2, 0.3, 0.2, 0.3) for the first time and the initial
value (x0, y0, z0, w0) is changed into (x0, y0, z0, w0) = (0.21, 0.31, 0.21, 0.31) for the
second time, then Matlab software is used to simulate the evolution of this system
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Figure 6. Lyapunov exponents diagram of system (2.1) with b ∈ [0, 50].

under three different initial values. The comparison diagram of the phase trajectory
of this system with the initial value changing is shown in Figure 8. From the analysis
of Figure 8, it can be found that even though the initial value of hyperchaotic system
(2.1) has only a small change, the dynamical behavior of this system has a great
difference, so this system is strongly sensitive to initial values.

In the following part, we will study the globally exponential attractive set of
hyperchaotic system (2.1) in order to provide theoretical basis for the control and
synchronization of the hyperchaotic system (2.1).

3. Globally exponential attractive set

Theorem 3.1. Let X (t) = (x (t) , y (t) , z (t) , w (t)) ,M = (a+b)2c2

4c−2 . When V (X (t))

> M,V (X (t0)) > M, and a > 1
2 , c > 1

2 , d > 1
2 , b > 0, we have the estimate of the

exponential inequality with respect to the globally exponential attractive set of system
(2.1)

[V (X(t))−M ] ≤ [V (X (t0))−M ] e−(t−t0).

In particular,

Ω= {X |V (X) ≤ M } =

{
(x, y, z, w)

∣∣∣∣∣x2 + y2 + (z − a− b)
2
+ w2 ≤ (a+ b)

2
c2

4c− 2

}
is the globally exponential attractive set of system (2.1).

Proof. Construct

V (X) =V (x, y, z, w) =
1

2
[x2 + y2 + (z − a− b)

2
+ w2],

F (X) =

(
1

2
− a

)
x2 − 1

2
y2 +

(
1

2
− c

)
z2 +

(
1

2
− d

)
w2

+ (a+ b)(c− 1)z +
(a+ b)

2

2
,
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Figure 7. Bifurcation diagram of state variable x with respect to parameter b.

where X = (x, y, z, w). And

dV (X)

dt

∣∣∣∣
(2.1)

=xẋ+ yẏ + (z − a− b) ż + wẇ

=x[a(y − x) + w] + y (bx− xz − y)

+ (z − a− b) (xy − cz) + w(−x− dw)

=− ax2 − y2 − cz2 − dw2 + (a+ b)cz

=− V (X(t)) +

(
1

2
− a

)
x2 − 1

2
y2

+

(
1

2
− c

)
z2 +

(
1

2
− d

)
w2 + (a+ b)(c− 1)z +

(a+ b)
2

2

= − V (X(t)) + F (X(t)).

Let 

∂F

∂x
= (1− 2a)x = 0,

∂F

∂y
= −y = 0,

∂F

∂z
= (1− 2c) z + (a+ b) (c− 1) = 0,

∂F

∂w
= (1− 2d)w = 0.

(3.1)

We can get the solution of the equation (3.1)

x = x∗ = 0, y = y∗ = 0, z = z∗ =
(a+ b)(c− 1)

2c− 1
, w = w∗ = 0.

To find the maximum value of the function F (x, y, z, w) , the Hessian matrix of
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Figure 8. Initial value sensitivity map of system (2.1).

F (x, y, z, w) at P0 = (x∗, y∗, z∗, w∗) can be obtained as

HF (P0) =



∂2F

∂x2

∂2F

∂x∂y

∂2F

∂x∂z

∂2F

∂x∂w

∂2F

∂y∂x

∂2F

∂y2
∂2F

∂y∂z

∂2F

∂y∂w

∂2F

∂z∂x

∂2F

∂z∂y

∂2F

∂z2
∂2F

∂z∂w

∂2F

∂w∂x

∂2F

∂w∂y

∂2F

∂w∂z

∂2F

∂w2



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
P (x,y,z,w)=P0

=


1− 2a 0 0 0

0 −1 0 0

0 0 1− 2c 0

0 0 0 1− 2d

 .

According to the extreme value theory of multivariate functions, F (x, y, z, w)
can obtain a maximum value at P0 when the matrix HF (P0) is a negative definite
matrix. If the parameters of system (2.1) satisfy the following condition (3.2), the
matrix HF (P0) is a negative definite matrix.

a >
1

2
,

c >
1

2
,

d >
1

2
,

(3.2)

sup
X∈R4

F (X) = F (X)|x=x∗,y=y∗,z=z∗,w=w∗
=

(a+ b)
2
c2

4c− 2
= M. (3.3)
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Therefore,

dV (X(t))

dt

∣∣∣∣
(2.1)

≤ −V (X(t)) +M. (3.4)

From the exponential inequality (3.4), we can get

[V (X(t))−M ] ≤ [V (X (t0))−M ] e−(t−t0). (3.5)

So, we can get

lim
t→+∞

V (X(t)) ≤ M,

which indicate that

Ω= {X |V (X) ≤ M } =

{
(x, y, z, w)

∣∣∣∣∣x2 + y2 + (z − a− b)
2
+ w2 ≤ (a+ b)

2
c2

4c− 2

}

is the globally exponential attractive set of system (2.1).

The above Theorem 3.1 indicates that the trajectories of the system (2.1) are
eventually attracted to a bounded region with an exponential rate, so that the
trajectories of the system (2.1) are ultimately bounded. Hence, we can get the
bounds of all variables of the hyperchaotic system (2.1) from the above theorem.
The bounds of the variables of the hyperchaotic system (2.1) can be applied to
study synchronization of two identical chaotic systems.

4. Global exponential synchronization

In the following, we firstly apply the linear controller to achieve globally exponential
synchronization with two identical hyperchaotic systems

Assume the drive system is

ẋ1 = −ax1 + ay1 + w1,

ẏ1 = bx1 − x1z1 − y1,

ż1 = x1y1 − cz1,

ẇ1 = −x1 − dw1.

(4.1)

And the response system is

ẋ2 = −ax2 + ay2 + w2 − u1,

ẏ2 = bx2 − x2z2 − y2 − u2,

ż2 = x2y2 − cz2 − u3,

ẇ2 = −x2 − dw2 − u4.

(4.2)
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Let ex = x2−x1, ey = y2− y1, ez = z2− z1, ew = w2−w1, then the error system
can be obtained as



ėx = −aex + aey + ew − u1 (ex, ey, ez, ew) ,

ėy = bex − x2z2 + x1z1 − ey − u2 (ex, ey, ez, ew) ,

ėz = x2y2 − x1y1 − cez − u3 (ex, ey, ez, ew) ,

ėw = −ex − dew − u4 (ex, ey, ez, ew) ,

(4.3)

where ui = ui (ex, ey, ez, ew) , (i = 1, 2, 3, 4) are four controllers that meet the con-
ditions ui(0, 0, 0, 0) = 0 , (i = 1, 2, 3, 4).

Theorem 4.1. The linear feedback control law

u1 = k1ex, u2 = k2ey, u3 = k3ez, u4 = k4ew, ki ≥ 0 (i = 1, 2, 3, 4)

can always be chosen such that the zero solution of system (4.3) is globally ex-
ponential stable, so that systems (4.1) and (4.2) can achieve globally exponential
synchronization.

Proof. Define the radial unbounded vector Lyapunov function

V (X) = (|ex| , |ey| , |ez| , |ew|)T

for the system (4.3) and then its Dini derivative along the trajectory of system (4.3)
is 

D+ |ex| ≤ −(a+ k1) |ex|+ a |ey|+ |ew| ,

D+ |ey| ≤ (b+ |z1|) |ex| − (1 + k2) |ey|+ |x2| |ez| ,

D+ |ez| ≤ |y1| |ex|+ |x2| |ey| − (c+ k3) |ez| ,

D+ |ew| ≤ − |ex| − (d+ k4) |ew| .

The above inequality can be written as the following matrix


D+ |ex|

D+ |ey|

D+ |ez|

D+ |ew|




−a− k1 a 0 1

b+ |z1| −1− k2 |x2| 0

|y1| |x2| −c− k3 0

−1 0 0 −d− k4




|ex|

|ey|

|ez|

|ew|

 = C


|ex|

|ey|

|ez|

|ew|

 .

Let Ci(i = 1, 2, 3, 4) be the i-order principal minor determinant of matrix C, and
if matrix C is a negative definite matrix, then the following condition (4.4) should
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be satisfied. 

C1 = −a− k1 < 0,

C2 =

∣∣∣∣∣∣−a− k1 a

b+ |z1| −1− k2

∣∣∣∣∣∣ > 0,

C3 =

∣∣∣∣∣∣∣∣∣
−a− k1 a 0

b+ |z1| −1− k2 |x2|

|y1| |x2| −c− k3

∣∣∣∣∣∣∣∣∣ < 0,

C4 = |C| > 0.

(4.4)

Combined with Theorem 3.1., it can be seen that when the parameters a, b, c, d
satisfy the condition (4.4), then there is the following exponential estimate of (4.1)
and (4.2)

1

2
[xi

2 + yi
2 + (zi − a− b)

2
+ wi

2] ≤ M, i = 1, 2.

Therefore, substituting the maximum max |xi|=
√
2M,max |yi|=

√
2M,max |zi|

=
√
2M + a+ b, i = 1, 2, into (4.4), we can obtain

k1 > −a,

k2 >
a(|z1|+ b)

a+ k1
− 1,

k3 >
(a+ k1)|x2|2 + a |y1| |x2|

|C2|
− c,

k4 >
|x2|2 − (1 + k2)(c+ k3)

−C3
− d.

(4.5)

Therefore, when ki(i = 1, 2, 3, 4) satisfy the condition (4.5), the matrix C can
be guaranteed to be a negative definite matrix. Moreover, it can be seen from (4.5)
that there exist ki(i = 1, 2, 3, 4) such that (4.5) holds. Hence, we have

D+(|ex| , |ey| , |ez| , |ew|)T ≤ C(|ex| , |ey| , |ez| , |ew|)T. (4.6)

Consider the comparing equation

d

dt
(α1, α2, α3, α4)

T
= C(α1, α2, α3, α4)

T
.

From the above differential inequality (4.6), we can obtain

(α1(t), α2(t), α3(t), α4(t))
T
= eC(t−t0)(α1(t0), α2(t0), α3(t0), α4(t0))

T
, t ≥ t0.

Since the matrix C is a negative definite matrix, there exist G ≥ 1 and β > 0
such that ∣∣∣eC(t−t0)

∣∣∣ ≤ Ge−β(t−t0), t ≥ t0.

And since

(|ex (t0)| , |ey (t0)| , |ez (t0)| |ew (t0)|)T = (α1 (t0) , α2 (t0) , α3 (t0) , α4 (t0))
T
, t ≥ t0.
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So, we have ∥∥∥(|ex (t)| , |ey (t)| , |ez (t)| |ew (t)|)T
∥∥∥

≤
∥∥∥(α1 (t) , α2 (t) , α3 (t) , α4 (t))

T
∥∥∥

≤
∥∥∥(α1 (t0) , α2 (t0) , α3 (t0) , α4 (t0))

T
∥∥∥ •Ge−β(t−t0).

(4.7)

Notice that (0, 0, 0, 0) is the zero solution of the error system (4.3). The above
inequality (4.7) show that the zero solution of the error system (4.3) is globally ex-
ponential stability, so system (4.1) and system (4.2) can achieve globally exponential
synchronization.

In the following part, we will perform numerical simulations to check the cor-
rectness of Theorem 4.1 in the paper. We will give numerical simulations of globally
exponential synchronization for a = 10, b = 25, c = 3, d = 2 and the initial condi-
tions of the drive system and the response system at t0 = 0 are selected as

(x1(0), y1(0), z1(0), w1(0)) = (1, 3.5, 0.5, 4),(x2(0), y2(0), z2(0), w2(0))

= (4, 0.3, 3, 0.5).

Choose k1 = 10, k2 = 53, k3 = 6350, k4 = 2, then Theorem 4.1 can be satisfied. The
diagram of linear synchronization process between system (4.1) and (4.2) is shown
in Figure 9.

0 1 2 3 4 5
t/s

-3

-2

-1

0

1

2

3
e1
e2
e3
e4

Figure 9. Synchronization of linear feedback control for k1 = 10, k2 = 53, k3 = 6350, k4 = 2.

From Figure 9, we can see that the oscillations of the drive and response sys-
tems rapidly become totally indistinguishable which indicate that synchronization
is achieved very quickly.

The simulation results show that the linear feedback method can make system
(4.1) and (4.2) achieve globally exponential synchronization very quickly, which
confirms that the linear feedback method is very effective.

Next, we will apply sliding mode control method to system (2.1) to achieve glob-
ally asymptotical synchronization. Suppose (4.1) is still selected as the transmitting
system and (4.2) as the receiving system and a controller will be designed to make
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systems (4.1) and (4.2) achieve globally asymptotical synchronization. We have the
following results for the sliding mode control.

5. Sliding mode control of synchronization

Theorem 5.1. The parameters a = 10, b = 25, c = 3, d = 2 are selected for system
(4.1) and system (4.2), and the controller is designed as u = φ(x1, y1, z1, x2, y2, z2)−

Qv, where u =


u1

u2

u3

u4

 , φ(x1, y1, z1, x2, y2, z2)=


0

x1z1 − x2z2

x2y2 − x1y1

0

 , Q =


1

1

1

1

 and v

is the sliding mode controller. And when

v = −0.5e1 − 10e2 − 3.5e3 + 3e4 − 5(2e1 + e3 − e4)
2sgn(2e1 + e3 − e4),

system (4.1) and system (4.2) can achieve globally asymptotical synchronization
under any initial states (x1(0), y1(0), z1(0), w1(0)) and (x2(0), y2(0), z2(0), w2(0)).

Proof. Define the control signal as

u = φ(x1, y1, z1, x2, y2, z2)−Qv (5.1)

where u =


u1

u2

u3

u4

 , φ(x1, y1, z1, x2, y2, z2)=


0

x1z1 − x2z2

x2y2 − x1y1

0

 , Q =


1

1

1

1

 and v is

the sliding mode controller. Then the error dynamical system (4.3) can be trans-
formed into the following matrix form:

ė = De+ φ(x1, y1, z1, x2, y2, z2)− u, (5.2)

where e =


e1

e2

e3

e4

 and D =


−a a 0 1

b −1 0 0

0 0 −c 0

−1 0 0 −d

 . The sliding variable can be chosen

to be S(e) = Re = 2e1 + e3 − e4, where R = (2, 0, 1,−1). Let E be the identity
matrix and the parameters of hyperchaotic system (2.1) are chosen as a = 10, b =
25, c = 3, d = 2, then the eigenvalues of the matrix T = [E −Q(RQ)−1R]D can be
calculated as η1 = 0, η2 = −1, η3 = −1.5, η4 = −3. According to the literature [31],
it can be shown that the sliding manifold is globally asymptotically stable.

According to Vaidyanathan’s theorem in the paper [32], sliding mode control v
can be defined as

v(t) = −(RQ)−1[R(kE +D)e+ qS2sgn(S)] (5.3)
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where k and q are sliding constants and sgn(S) is a sign function with respect to S.

The error dynamical system (5.2) can be written as the following form according
to (5.1) and (5.3)

ė = De−Q(RQ)−1[R(kE +D)e+ qS2sgn(S)]. (5.4)

Define the Lyapunov function V (e) = 1
2S

2(e). The equation of sliding mode

motion can be expressed by S(e) = 0 and Ṡ(e) = 0. Differentiate V (e) = 1
2S

2(e)
with respect to t along the trajectory of the system (5.4)

dV (e)

dt

∣∣∣∣
(5.4)

=SṠ(e)

=SRė

=SR{De−Q(RQ)−1[R(kE +D)e+ qS2sgn(S)]}
=S(−kERe− qS2sgn(S))

=− kS2 − qS3sgn(S)

<0.

Thus, the zero solution of the error system (5.2) is globally asymptotically stable,
indicating that system (4.1) and system (4.2) can achieve globally asymptotical
synchronization.

When the sliding constants k, q are chosen as k = 10, q = 10, it can be obtained

v = −0.5e1 − 10e2 − 3.5e3 + 3e4 − 5(2e1 + e3 − e4)
2sgn(2e1 + e3 − e4). (5.5)

Compared with the previous research [31,32], this paper extends the sliding mode
control method from the three-dimensional chaotic system to the four-dimensional
hyperchaotic system. Since hyperchaotic systems have more complex dynamical
behaviors and the sliding mode control method has the advantage of being insen-
sitive to parameter changes, this research has an important role in promoting the
development of secure communication.

In order to verify the correctness of the above theory, we will give some numerical
simulations in the following part. In this section, we will give numerical simulations
of the sliding mode synchronization for a = 10, b = 25, c = 3, d = 2 and the initial
conditions of the drive system and the response system at t0 = 0 are selected as

(x1(0), y1(0), z1(0), w1(0)) = (1, 3.5, 0.5, 4),(x2(0), y2(0), z2(0), w2(0))

= (4, 0.3, 3, 0.5).

Choose k = 10, q = 10, then the above Theorem 5.1 can be satisfied. The sliding
mode synchronization of this hyperchaotic system is shown in Figure 10.

From Figure 10, we can see that the oscillations of the drive and response sys-
tems rapidly become totally indistinguishable which indicate that synchronization
is achieved very quickly.

The simulations show that the sliding mode control method can both make
system (4.1) and system (4.2) achieve synchronization very quickly, which confirms
that the sliding mode control methods is very effective.
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Figure 10. Synchronization of sliding mode control is illustrated when k = 10, q = 10.

6. Conclusions

In this paper, a new four-dimensional hyperchaotic system is proposed and analyzed
by using chaos theory and numerical simulations. The three-dimensional phase
diagram and time sequence diagrams of each variable of this hyperchaotic system
are drawn by the computer software. The influences of parameters a and b for this
hyperchaotic system are also analyzed. The sensitivity of this system to the initial
value is also analyzed. Then, by using Lyapunov-like function method, the globally
exponential attractive set of this system is also obtained. Then by using the result
of the globally exponential attractive set, it is proved that this system can achieve
globally exponential synchronization by applying linear feedback controllers, and
the lower bound of linear feedback controller is calculated. Then, a suitable sliding
mode controller is used to realize globally asymptotical synchronization for this
new hyperchaotic system. Finally, two control methods are simulated by numerical
simulations and the simulations show that both control methods are effective. The
linear control method has the advantage of simple structure and it is easy to design
in practical application. The sliding mode controller has the characteristics of simple
design, insensitive to parameter disturbance and external interference and strong
robustness.
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