Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 15, Number 5, October 2025, 3045-3066 DOI:10.11948/20240520

NEW TRAVELING WAVE SOLUTIONS OF
THE (341)-DIMENSIONAL GENERALIZED
BREAKING SOLITON EQUATION

Xiaoxiao Zheng!', Xiaolin Si' and Yanxiao Lu!

Abstract In this paper, we will study solutions of the (341)-dimensional gen-
eralized breaking soliton (gBS) equation which used to describe the interaction
phenomena between Riemann wave and long wave via three space variables
in nonlinear media. Firstly, we transform (3+1)-dimensional gBS equation to
the bilinear form. Secondly, we apply the three-wave method to study bilinear
form and then get many kinds of solutions for (341)-dimensional gBS equa-
tion, concluding periodic solitary wave solutions, bell solitary wave solutions,
two-soliton solutions, breather lump wave solutions, et al. These solutions can
describe interaction between waves and are presented by 3D and 2D graphs.
Finally, we analyze the resolving thoughts of extended homoclinic test method
and its correlation of three-wave method. Our results show the significance
and efficiency of these methods.

Keywords Symbolic calculation, three-wave method, extended homoclinic
test method, gBS equation.
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1. Introduction

In recent years, many high-dimensional nonlinear partial differential equations which
can better reflect complex and practical physical phenomena have been established
in the fields of mechanics, control processes, ecological and economic systems, chem-
ical recycling systems and epidemiology. Due to the fact that exact solutions can
profoundly explain the physical model itself and predict the evolution process of
the actual physical state, more mathematicians and physicists investigated exact
solutions (including traveling waves and non-traveling waves) of high-dimensional
nonlinear partial differential equations with constant coefficients and variable coef-
ficients [2,5, 6,23, 24, 29]. Bilinear method, three-wave method and extended ho-
moclinic test method have been widely used to solve partial differential equations
(PDEs) [1,7,20,25,26]. Symbolic computations have been used in exploring lump
solutions to nonlinear wave equations since 2015 [16,17]. Moreover, Ma [18] used
Darboux transformations with a general class of Darboux matrices to explore soli-
ton solutions. Refs. [10,21,22] applied extended Jacobian elliptic function expansion
approach, unified method, Sardar sub-equation method, etc. to study solutions of
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nonlinear partial differential equations. Inspired by the above literature, our article
will explore traveling wave solutions of generalized breaking soliton equation that
describes the phenomena of folded waves in nature.

The (2+41)-dimensional breaking soliton equation [26]

Ut + QUggy + Plgzy + YUUL + Auty, + 5uwax71uy =0 (1.1)

is used to describe the interaction phenomena for propagation of long wave along
the z-axis and propagation of Riemann wave along the y-axis direction, where real
constants a, 3, v and § are nonzero hyper-parameters of the system, u(z,y,t) :
Rx Rx R — R is the real function of variables x, y and ¢, representing the Riemann
wave. Xu [27] discussed the Painlevé property and derived the bilinear form, N-
soliton solutions, BT, Lax pair and infinite conservation laws to (1.1) as A = 2§
and v = 3ad. By introducing the nonzero seed solution, Hu [12] obtained the real
non-static lumps, lump-soliton solutions and other relevant exact solutions of (1.1).
Based on the resulting Hirota’s bilinear equation and the extended homoclinic test
theory, Ref. [28] constructed soliton solutions, homoclinic breather waves and rogue
waves. Via the Hirota method, Wronskian technique, extended modified rational
expansion method, Ref. [11,13] derived bilinear forms, N-soliton solutions, parallel
solitons and so on. of Eq. (1.1).

Based on the (2+1)-dimensional breaking soliton equation (1.1), considering
the case of discontinuity in bottom depth, identifying the interaction phenomena
between Riemann wave and long wave via three space variables in nonlinear media,
the following (3+1)-dimensional generalized breaking soliton (gBS) equation

8$71(ult + Uyt + Ust) + QUzgy + BUgay + YUUE + Auny, + 5uwaafluy =0 (1.2)

is derived. This equation can be used to model more general wave problems as these
arbitrary constants might be related to more general physical conditions, which is
of great importance in ocean engineering, fiber optics, mathematical physics, fluid
dynamics, et al. u(z,y,2,t) : R X R x R x R — R is the real function of variables
x, y, z and t, real constants «, 83, v, A and § are hyper-parameters of the system,
Oz~ ! presents integral operator of x. As y = —z, (1.2) can be reduced to (1.1).
Refs. [8, 14, 15] have studied the lump-type solutions, rogue wave type solutions,
double-periodic solutions, breather-wave, multi-wave and periodic lump-stripe in-
teraction phenomena to (1.2). Ref. [3] introduced Bécklund transformation, Wron-
skian solutions and interaction solutions to (1.2). Using bilinear neural network
method, Refs. [9,30] studied lump waves, lump-stripe solitons, rogue-type waves et
al. for system (1.2). By using optimal system of Lie subalgebra, Ref. [19] studied
the symmetry analysis, closed-form invariant solutions and dynamical wave struc-
tures of (1.2). Introducing the multi-dimensional Riemann theta function, Chen
et al. [4] constructed one-periodic wave solutions, two-periodic wave solutions, and
gave asymptotic properties of those solutions.
Letting A=0=3/, y=6c, (1.2) can be transformed as follows

8x_1(uzt + Uyt + Ust) + QUzzg + Plaggy + 6auu, + 3Funy, + Sﬁumax_luy =0. (1.3)

In our paper, we investigate traveling wave solutions for (341)-dimensional gBS
equation (1.3). Firstly, we use u = 2(In f), to get the bilinear form of (1.3). Then,
applying two forms of three-wave method [7] and the extended homoclinic test
method [16,17], we obtain many exact solutions of (3+1)-dimensional generalized
breaking soliton equation (1.3).
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2. Exact solutions of the (3+1)-dimensional gBS
equation

Via the transformation v = 2(In f),,, we will convert equation (1.3) into bilinear
form

(DyDy + DyDy + D, Dy + aDi + BD3D,)f - f

:affmz:mc - 404fzfmmx + 30‘]051: + 5ffmcmy - 5fmmtfy - Sﬂfzfmxy

+35faca:fxy +ffact‘ - f:cft +ffyt - fyft JFffzt - fzft
=0.

(2.1)

2.1. First kind of three-wave method

In this subsection, using the three-wave method, we solve the solutions of (2.1) and
further obtain solutions of (1.3).

We set the first form of f with exp-function, trigonometric function and hyper-
bolic function

(2.2)

f1 = as cos & + az cosh &3 + ase’t + ase ™54,
gz:kzx+lly+mlz+czt+dza i:273a4a

where fi = kzdf + lzy +m;z + Cit + di, ki, li, m;, C;, di, a; (Z = 2,3,4) and as are
some constants to be determined below. In summary, the following conclusion can
be drawn.

Theorem 2.1. Let fi be given by (2.2). If f1 is the solution of bilinear equation
(2.1), then combining u = 2(In f1).., we get solutions of (3+1)-dimensional gBS
equation (1.3) with the following form

—agk? cos & + azk? cosh &3 + agke®t + askle %
ao cos & + az cosh €3 + ageés + ase 64
—agkysinés + agks sinh €5 + a4k4ef4 — (15]646_54
as cos &3 + az cosh &3 + ageés + aze64

u('r7 y7 Z’ t) 2

—2( )2, (2.3)

where & = kix +Liy+miz+cit +di, ki, L, my, ¢, di, a; (1 =2,3,4) and as satisfy
some corresponding relationships.

Next, taking (2.2) into (2.1) and combining it with linear independence, yields
a system of determining equations about parameters k;, l;, m;, ¢;, a; (i = 2,3,4)
and as as follows

asaz(aks + aky — 6aksks + Bkily + Bkils — 3Bk3ksls — 3Bkalak’
+es(ks + 15 +m3) —ca(ka+ 1o +ma)) =0,
a2a3(4ak2k§ — dak3ks — Bk3lz + Bk3ly + 3Bkok3ls — 36k31oks

+ ca(ks + 13+ m3) + cs(ka + la +m2)) =0,
agay(aky + akj — 6ak3k] + Bkily + Bkily — 3Bk3kaly — 3Bkalak?
+ca(ks +1a +my) — co(ka + 12 +mg)) =0,
asay(dakeki — daksky — Bkily + Bkily + 3Bkakily — 3Bk312ky
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+ ca(ka + 1y +my) + ca(kz + la +m2)) =0,

asas(aks + akj — 6ak3k3 4 Bkily + Bkily — 3Bk3ksly — 3Bkolok?
+ ca(ks +la +my) — ca(ka + 12 + m2)) =0,

— agas(4akokd — dakiky — P31y + Bkl + 3Bkokily — 3Bk31oky (2.4)
+ co(ka + Uy +my) + ca(kz + l2 + m2)) =0,

azas(aks + akj + 6akik] + Bkils + Bkily + 3Bk3kaly + 3Bkslsk:
+ca(ks + 1y +my) + c3(kz + 13 +m3)) = 0,

— azaq(daksky + dakiky + Bk3ly + Bkils + 3Bkskily + 38k313ky
+ cs(ka + 1y +ma) + ca(ks + 13+ m3)) =0,

azas(aks + akj + 6akik3 + Bkils + Bk, + 3Bk2kaly + 3Bkslsk:
+ca(ka + Iy + my) + c3(ks + 13+ m3)) =0,

azas(dakski + dakiky + Bkily + Bkl + 3Bkskily + 38k313k,

+ c3(ks + Iy +my) + ca(kz + 13 +m3)) = 0,

agas(16ak] + 166k51, 4 4ca(ky + 1y +my)) + a3 (daks + 4Bk3 1o
— co(ka + lo +m2)) + a3 (4aks + 4BK3ls + c3(ks + I3 +mg)) = 0.

Then, solving equation (2.4) and combining (2.3), we obtain the following solu-
tions of (3+1)-dimensional gBS equation (1.3).

e Case 1 5
« o —
lp = _Bk27 mg = Tkm
« o —
l3=—B/€37 m3 = 5'67%‘3,
« o —
Iy = _Bk47 my = T'Bkz;,

where a;, k;, ¢;, d; (i =2,3,4) and a5 are free constants.
Combining conditions of Case 1 with (2.3), yields the solution of (3+1)
-dimensional gBS equation (1.3)

2(—agk3 cos &o + agk? cosh €3 + agkiett + askle %)
as cos &5 + az cosh €3 + agefs + aseé4
—agko sin &y + azks sinh &3 + agksett — askge™5
ao cos Eo + az cosh €3 + ageés + ase 64

uy(z,y, 2,t) =

—2( )2, (2.5)

where §; = k;x — %kly + aTgBkiz + it +di, ai, kiy iy di (1 =2,3,4) and a5 are free
constants.
Furthermore, through detailed analysis, we can obtain the following solutions.

(1.1) If a3 = 0 in Case 1, one can obtain the solution of (1.3)

2a3 (ks (ase + ase™%*) cosh & — 2ksky(ase’® — ase™%*)sinh &3)
(ag cosh &3 + asefs + aze—64)2
n 8asaski + 2a3k3
(ag cosh &3 + agels + ase—¢4)2

ug(x,y,2,t) =

(ks = k24 kD) (2.6)
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Especially, if aqas > 0, solution us can be rewritten as two-soliton solution

t+4asz./asas (k;5 cosh §~4 cosh &3 — 2k3k4 sinh §~4 sinh 53)
(as cosh &5 + 2, /azas cosh 54)2
8asaski + 2a3k3

+ =
(as cosh &5 + 2, /azas cosh &4)?

where & = & + 01, 61 = In, /% and ks = k2 + k3. When ay > 0, the sign of us

takes the positive sign. Otherwise, it takes the negative sign. Moreover, as a4 > 0,
as > 0 with ag > 0, or a4 < 0, a5 < 0 with ag < 0, solution uz does not have
singularities. Otherwise, solution us have singularities.

If asas < 0, solution us can be simplified as

:|:4a3\/ —Qa4as (k5 sinh €5 cosh 53 — 2/€3k4 cosh 55 sinh fg)
(a3 cosh &3 + 2v/—ayas sinh &5)?
8asaski + 2a3k3

+ (a3 cosh 53 + 2\/ —a4as sinh 65)2 ’
where & = £, + 05, 65 = ln,/—Z—‘; and ks = k3 + k7. The sign of uy takes the

u3($7y7 Z’t) =

2.7)

ug(z,y,2,t) =

(2.8)

positive sign as a4 > 0. Otherwise, it takes the negative sign.

Remark 2.1. If we take k3 = +ky, the solution uz becomes hyperbolic function
solutions

8&3\/(14(15]{33 COSh(fg F 54) + (8&4(15 + 2a§)k§

Us xaywzat = =~ , Q4 > O7 2.9

( ) (a3 cosh &3 + 24 /agas cosh &4)? (2:9)
-8 %2 cosh 3 8 242\ k2

o (1,1, 2, 1) = —o08y/@adsks COsh(& F &) + (Baats +2a5)ks o)

(as cosh &5 — 2, /agas cosh 54)2

Additionally, as k3 = +ky4, solution u4 reduces to

8az\/—agask3 sinh(&5 F &) + (8asas + 2a3)k3

t) = 0 2.11

u?(aj?yvza ) (agcosh§3+2\/T4a5sinh§5)2 , aq > U, ( )
_ — kQ inh 9 2 k2

us(@,y, 7, 1) = 8azv/—asasks sinh(&s F &) + (8asas + 2a3)k3 <0, (212)

(ag cosh &3 — 24/—agas sinh &5)2 ’

o
4 08 06 04 02 0 02 04 06 08 1
t

(a) u-t (b) u-z-t

Figure 1. us withas = a4 =a5 =1, y=2=0, ks =2, ks =1,¢c3=ds =1, cqy =dg = 2.
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(a) u-z-t with cg =1 (b) u-2z-t with ¢z = —1

17752\

AR
/n,'tlozcg‘
X

(c) u-z-t with cg = —2

Figure 2. hyperbolic function solutions us as ag = a4 =as =1, mg =myg = —2,c4 =1,ds =dsg =0,
z=y=0.

Solutions us —ug can be seen as combinations of two types of hyperbolic function
solutions which reflect the interaction between waves. In Figure 2, we fix one
hyperbolic function and change another hyperbolic function to better reflect the
interaction between two solitary waves. Figure 3 reflects characteristics of singular
waves.

(1.2) If a3 = 0, combining Case 1 and (2.5), yields the solution of (1.3)

2a0 (k3 — k2)(ases + ase™%4) cos &y + daskaky sin & (asest — aze™5)
(ag cos & + ageds + aze—84)2
8agask? — 2a3k3
(as cos & + agest + aze—84)2’

U9($79a27t) =

(2.13)

Moreover, as aqas > 0, one can get the following solution from (2.13)

+4as./asas ((ki — k%) cosh 54 cos &g + 2koky sinh 54 sin §2)
(ag cos & + 2, /azas cosh 54)2
Sasask? — 2a2k3

+ =,
(ag cos &o + 2, /agas cosh &4)?

ulo(xaywzat) =

(2.14)

where §~4 =&+ 61, 60 = In, /Z—;. As a4 > 0, the sign of ujg takes positive.

Otherwise, it takes the negative sign. Moreover, as a4 > 0, as > 0, as +2,/azas > 0
with 2,/asa5 —as > 0 or ay <0, a5 <0, as — 2 /asas < 0 with —as — 2 /agas < 0,
solution u1g does not have singularities. Otherwise, solution u;o have singularities.
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«_»

(a) u-t (b) u-z-t with sign

(c) u-z-t with sign “+4”

Figure 3. ug withas = a4 =a5 =1, y=2=0,ks =ks=1,c3=2,c4 =1,d3 =dqg = 1.

In addition, if agas < 0, from (2.13), one obtains the solution

( P = +4das/—agas ((kZ — k%) sinh &5 cos & + 2ksky cosh &5 sin 52)
“® Y, % - (CLQ COS 62 + 2\/ —Qa40a5 sinh 65)2
8asask] — 2a3k3

+ (ag cos &g + 24/—agas sinh 5)2’

where &5 = &4 + 02, 03 = In /—Z—g. As a4 > 0, the sign of uy; takes positive.

Otherwise, it takes the negative sign.

(2.15)

Remark 2.2. Especially, for ky = +ky4, solution u19 can be rewritten as breather
lump wave solutions

+8ay/azask3 sinh§~4 sin & + (8agas — 2a3)k3

u2(x,y, 2,t) = — , ag >0, 2.16
( ) (ag cos & + 2y/azas cosh &4)? ( )

8 k2 sinh £ si 8agas — 2a3)k3
wis(z,y, 2, 1) = Toazy/aaasky sinhasings + Basas = 2ax)ky o9 yn

(ag cos &y — 2, /azas cosh €~4)2
If ko = +k4, the solution uq1 reduces to breather lump wave solutions
( " +8ag+/—agask3 cosh & sin o + (8agas — 2a3)k3
u ‘r7 bl Z’ = . b
14 y (CLQ cos &g + 24/—aqas sinh 55)2

8 — k2 cosh &5 si 8 —2a2)k3
urs (g, 2, t) = Tonzy/~0atsky cosh by sinby + (Basas 2k (g 19)
(az cos&a — 24/—ayas sinh &)

ag >0, (2.18)
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where the signs of u14 and w15 take the symbol above as ko = k4. Otherwise, they
take the symbol below.

Solutions u12 — u15 reflcet the interaction of periodic solutions and hyperbolic
function solutions. The solutions all have the characteristics of periodic solutions
and hyperbolic function solutions, reflecting by Figure 4. Moreover, we fix the
periodic solution and change the type of hyperbolic function solution to show the
different interactions between two solutions in Figure 4 (b) and (c).

0 10

(a) w1z with cq4 = 2 (u-z-t) (b) w14 with ¢4 =1 (u-z-t)

3000

) 2500 .

2000

1500

1000 ‘

(c) uiq with ¢4 = 2 (u-z-t) (d) u-t

Figure 4. ax =as =as =ka =ks =co=dy =dyg =1, 2 =y =0.

(1.8) In Case 1, if a4 = 0, one obtains the solution of (1.3)

( 0 dasaskoks sin &g sinh &35 + 2a2a3(k’§ — k%) cos &5 cosh &3
uig(x,y, z,t) =
161%, Y (ag cos&s + az cosh &3 + ase—64)2

(Al + 31)6_54 =+ 2@%]6?2) — 2&%]4?%

(ag cos & + az cosh €3 + aze—84)2’ (2.20)
where
Al = 2a3a5(k§ + ki) cosh &3 + 4asasksky sinh &3,
By = 2aza5(k3 — k3) cos & — 4asaskoky sin &s.
Especially, if k3 = k2 = k% and &3 = ££4, yields the solution
wrr (g, 2o t) = 2k2G + 4askoks sin & (a3 sinh &3 F ase ™) , (2.21)

(ag cos&a + a3 cosh &z + azeTs)?
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where @ = a2 — a3 + 2azas.

Furthermore, one gets the solutions from (2.21) as follows

wra(o 2. t) — B+ dazkaky/as(ag + 2a5) sin & sinh(€  0o) (2.22)
18(2, Y, 2, (ag cos & + \/az(az + 2as) cosh(és +65))2 '

where ag > 0, ag + 2a5 > 0, 93:1n,/a+2a anda-a%—a2+2a5a5

2k§'d — 40,2]{)2]63\/ as (03 + 2(15) sin £2 sinh(fg + 03) (2 23)
(a2 cos&y — /az(as + 2a5) cosh(és +05))> '

u19(x7y7 th) =

where a3 < 0, az +2a5 < 0,03 =1In,/ = +2a5 and @ = a3 — a3 + 2azas. The signs of
u1g and w19 take positive as £3 = &4, and take negative sign as £3 = —&,. Moreover,
as as + v/as(as + 2a5) > 0 and +/as(as + 2a5) — az > 0, solution u;s does not
have singularities. As —ag — y/as(as + 2a5) < 0 and —+/as(as + 2a5) + a2 < 0,

solution w19 does not possess singularities. Otherwise, they all have singularities.
The subsequent partial results have similar properties, so we will not list one by
one.

t) :2k§6 + daskoksy/—as (a3 + 2&5) sin &9 COSh(§3 + 94) (2 24)
(ag cos&s £ v/ —as(ag + 2as5) sinh(&5 £ 604))? 7 .

where az > 0, ag +2a5 <0, 0, =1In,/—- +2a5 and a = a% — a2 + 2azas.

(s 2. 1) — 2BAT dazkakyy/~as(ag § 25 sinocosh(&s £00) o0
21(2,¥; 2, (agcos& F v/—az(az + 2a5) sinh(&3 £ 6,4))2 )

where a3 < 0, az + 2a5 > 0, 64 = In

u20(xaya Z,

—artsa; anda = a% — a3 + 2azas. The signs

of ugy and wg; take the symbol above as {3 = 4. Otherwise, they take the symbol
below as &3 = —&4.

(1.4) If a5 = 0 in Case 1, it yields solution of (1.3)

dagazkoks sin & sinh €3 4 2aza3 (k3 k%) cos & cosh &3
(ag cos & + a3 cosh &3 + agef)?
(Ag + Ba)ebt + 2a2k2 — 2a3k2

usa(z,y,2,t) =

(ag cos & + az cosh &3 + agess)?’ (2.26)
where
Ag = 2aza4 (k3 + k3) cosh &5 — dagayksk, sinh &3,
By = 2asa4(k3 — k2) cos & + 4agaskoky sin &s.
And then, if k3 = k3 = k? and &3 = +£4, one gets the solution
iz (5,1 2, ) = 2k2a + dagkoks sin £o(ag sinh &3 £ aze®?) 7 (2.27)

(ag cos & + ag cosh €3 + agetés)?

where @ = a2 — a3 + 2azay.
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Furthermore, solution us3 can be rewritten as the following periodic-solitary

wave solutions

( t) 2]45%6 + daskoks/as (a3 + 2&4) sin &, Sinh(fg + 95)
uos(,y, 2,t) = )
ey (azcos o + y/as(az + 2a4) cosh(§z + 05))?

where ag > 0, ag + 2a4 > 0, 95:1n,/% and @ = a2 — a3 + 2azay.

wss (2, Y, 2, 1) = 2k2a — daskaks/az(as + 2a4) sin & sinh (€& + 05)
T (ag cos & — \/az(az + 2a4) cosh(&s +605))2

where as < 0, ag + 2a4 < 0, 95:111,/% and @ = a3 — a3 + 2a3a4.

( t) 2k‘§a F daskoksy/—as (Clg + 2&4) sin & COSh(§3 F 96)
usg(x,y, 2,t) = )
2640y (ag cos & F \/—as(ag + 2a4) sinh(&5 F 0g))?

where a3 > 0, a3 + 2a4 <0, 0 = 1In % and @ = a3 — a3 + 2a3ay.

" az+2a4

( 9 2k3a F daskoks\/—asz(as + 2a4) sin & cosh(&3 + 6g)
U7 (2,y,2,t) = y
Y (az cos & F /—as(as + 2a4) sinh(&3 =+ 05))?

where a3 < 0, as + 2a4 > 0, 05 = In , /_agi?éw and @ = a3 — a3 + 2azay.

(1.5) Combining ay = a3 = 0 with Case 1, (1.3) has solution

8a4a5 k‘i
a46§4 + CL5€7§4)2 '

u28($7ya Z»t) = (

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

Then, in the condition of asas > 0, one can obtain bell solitary wave solution

g (2,7, 2, 1) = 2k2sech® (&4 + 601).
Similarly, as agas < 0, it yields singular travelling wave solution
U30(1’7 Y, =, t) = 2k2CSCh2(€4 + 92)

(1.6) In Case 1, if as = a4 = 0, yields solution of (1.3)

t) =
U31($,y,2, ) (a3 cosh§3—|—a5e—54)2

Moreover, as az(2a5 + az) > 0, & = +&4, (2.35) becomes

2a3k3 + 4azask?

h?(&5 + 03).
as(2as + as) sech (&3 & 03)

U32(37»y7 Zat) =

As a3(2a5 + a3) < 0, €3 = ££4, solution uz; can reduce to

2a3k3 + 4azask3

sch?(&5 + 6,).
as3(2a5 + as) osch™(§3 & 0a)

U33(337?472'7t) =

2(1%](1% + 2(130,5((]43% + kZ) cosh 63 + 2ksk,4 sinh 63)6754

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)



New traveling solutions of (34+1)-D gBS Eq. 3055

(1.7) Combining as = a5 = 0 with Case 1, yields solution of (1.3)

2a3k3 + 2azas ((k3 + k3) cosh & — 2k3ky sinh &3) e

t) = 2.38
U34($7y72, ) (0,3 COShfg +a4€£4)2 ( )
Moreover, as as(2a4 + a3) > 0, & = ££4, solution uzy can reduce to
2a3k3 + 4azask? 9
ugs(x,y, z,t) = —————"—>gech”(&3 £ 05). 2.39
3 ( Y ) a3(2a4 n a3) (53 ) ( )
As a3(2a4 + a3) < 0, & = &4, (2.38) can be rewritten as
2a3k3 + 4azask? 9
uge(x,y, z,t) = ————"—"csch + 0g). 2.40
36(2, Y, 2,1) 05 (201 T a3) (&3 =+ 06) (2.40)
(1.8) If a3 = a4 = 0 in Case 1, one gets solution of (1.3)
—2a3k3 + 2aza5((k3 — k3) cos o — 2kaky sin &y )e s
U37($, Y, =z, t) =
(ag cos &y + aze=54)?
_ —2a3k3 + 2azas5(k3 + k2) cos(&a + O7)e ™5 (2.41)
(az cos &g + aze=54)? ’ .
where 0 satisfies tan 6; = ,32}“3’;42.
4 2
(1.9) Similar to case (1.8), if a3 = a5 = 0 in Case 1, one obtains
—2a3k3 + 2a2a5((ki — k2) cos & + 2kaky sin 52)6_54
uzs(,y,2,t) = 2
(ag cos o + agest)
_ —2a3k3 + 2asa4(k3 + ki) cos(& — O7)e (2.42)
(ag cos & + agest)? ' '
(1.10) When Case 1 with a4 = a5 = 0, yields
2(120,3 ((/43§ — kg) COS 52 cosh fg + 4I€2 kg sin €2 sinh 53)
Ugg(l',y,z,t) = . 2
(a2 cos &s + a3 cosh €3)
—2a3k3 + 2a3k3 . (2.43)
(ag cos & + az cosh &3)2
Especially, if ko = +ks, one gets the solution from (2.43)
2k3 (a2 — a3) £ 4azazk3 sin &y sinh &3
U40(Ivya27t) = (244>

(ag cos&o + a3 cosh €3)?

Solution u4g can be seen as the superposition of periodic solution and hyper-
bolic function solution. Figure 5 shows the properties of periodicity and hyperbolic
function. Moreover, (b) and (c) in Figure 5 reflect the impact of parameter pertur-
bations on the behavior of solutions.

Remark 2.3. In solutions u; — u4g,

62 = kgl‘ — %kgy + O[Tzﬂk’gz + 02t + d27
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a) u-t b) u-z-t with co = 2
(a) (b)

— 5

407 10

(c) u-z-t with c2 =1

Figure 5. ugp asax =1, a3 =2, ks =ks =c3=1,do=d3s =—-1,y=2=0.
« a—pf
€3Zk3l‘— *k‘3y+ k32’+03t+d3,
B g
« o —
€4Zk4l‘— Bk‘4y+7ﬁk‘4z+04t+d4,

ai, ki, ¢i, d; (i =2,3,4) and a5 are free constants.

e Case 2
(kg + mQ)CQ — 40[]{33

a3:a4:a5:(), 12:

451@‘% — C2 ’
or
o 3
(13:(24:&5:0, mQZEkgka, 02:4ﬂk2,
or
(% o —
a3:a4:a5:0, lgifgkg, mo = Bﬂkg

Combining the conditions of Case 2 with (2.3), it gets the periodic solution of
(341)-dimensional gBS equation (1.3)

wan (@, y, 2, 1) = ~2k3(1 + tan€3), (2.45)

where
(k‘g + m2)02 — 40[]4)%

=k
62 2% + 4ﬂk%*62

y+m2z+62t+d2,
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ko, ma, co and do are free constants, or

§o = kox + Loy + (%7@ — k2)z + 4Bk3t + da,
ks, lo and dsy are free constants, or

fg = kg.’l? — gk’gy + L_ﬁk‘gz + CQt + dg,

B B
ks, co and dy are free constants.
e Case 3
2 4 3 3
as Saky + 4B8k3ls + 45k 1s
ao =0, as=—, ky3=ky, c3g=c4=— .
2 4(14 3 4 3 4 2k4+13+l4+m3+m4

From condition of Case 3 and (2.3), yields the following two-soliton solution

2a3(k3 + k3)(ase + o~ cosh & + 2a3k3 + 2a3K3

2
(a3 cosh &3 + agels + pie84)2

u42(ac,y,z,t) =

2
4azksky sinh £3(azett — jﬁe_ﬁ‘*)

(ag cosh &3 + agefs + %6*54)2
a2 cosh &5 cosh(&4 + 0g) — sinh {3 sinh (&4 + 0g) + 1
(cosh & =+ cosh(&y + 65))?
o cosh(§y+60s—&3)£1
% (cosh &3 + cosh(&y + 65))2’

= +4k (2.46)

where 0 = In |2a%|,

8ak? + 48k314 + 4BK313
2kys + 13+ 1y +m3 +my
8ak? + 48k314 + 4PK313 ¢
2kys + 13+ 1y +m3 +my

§3 = kaz + I3y + m3z — L+ ds,

&4 =kax + Ly + myz — + da,

as, aq, ko, kq, co, l; and m; (i = 2,3,4) are free constants. As azaq > 0, the sign of
(2.46) takes positive. Otherwise, it takes negative sign.

Solution u4e can be seen as the superposition of two hyperbolic function solu-
tions. When taking the positive and negative signs respectively, solution u4o shows
different properties in Figure 6. When taking the negative sign, the solution w4
reflects singularity properties in Figure 6(b).

e Case 4

_ ﬁk‘ilg + C4l2

a3:0, a§:4a4a5, k’QZCQZO, mo = -
4

« a—pf
l4 = —7]64, my = 7]64.
g B
Following condition of Case 4 and (2.3), one gets the breather lump wave solution
of Eq. (1.3)



3058 X. Zheng, X. Si & Y. Lu

20 a5 40 5 0 5 0 15 t 20 20 y

(a) wao with sign “-” (u-t) (b) w42 with sign “-” (u-y-t)

¢ 20 20

(c) waz with sign “4+7 (u-y-t)

Figure 6. a4y = ks =ks = —-lg=ds=ds=1,c3=cs=—4,a3=1l4=2, 2 =2=0.

i,y 1) = +4aq./asas (I;5 cosh(&y + 01) cos & + 2koky sinh(&y4 + 61) sin 52)
BT Y, 28 = (as cos & + 2, /agas cosh(€4 + 01))2
N 2a3ks
(ag cos &y £ 2y /azas cosh(&y + 61))?
B :l:2(k~5 cosh(&y + 01) cos&a + 2kaky sinh(&y + 61) sin 52)
B (cos &y £ cosh(éy + 61))?
+ 2%s
(cos & £ cosh(&s + 61))2

(2.47)

where 6 =1In, /2%, ks = k3 — k3,

_ Bkils + cals

Ca
« a—pf

ﬁk4y + 3

a4, as, k4, la, c4, do and dy are free constants. As as > 0, the sign of uy3 takes
positive. Otherwise, it takes the negative sign.
Especially, if k3 = k7, solution uy3 can reduce to

:|:4k‘2]€4 sinh(§4 + 01) sin {2
(cos&o & cosh(§y +61))?

& =y t + da,

&4 = kaz — kaz + cat + dy,

U44(33ay72’at) = (248)



New traveling solutions of (34+1)-D gBS Eq. 3059

e Case 5
ag =0, ka=kz=0, lo=—mag, l3=—mg,
. Blims Bkims —akt — B3l
2 =TS T a2

=7 > — __, C3= y C4 = .
ka+l+ma 0 katli+ma T ka4 lit+mg

Combining Case 5 with (2.3), one obtains the solution

2a5k3 (a3 cosh &3 + ag cos &g )e ™8

t) = 2.49
U45($7ya2’7 ) (02 COSgg +as cosh§3+a5e*54)2’ ( )
where
Bkimy
= —Mmoy + Moz + ———— 1 + do,
&2 2y 2 I 2
Bkims
= —mgy +maz+ ———2° {4 ds,
&3 3Y 3 Ko + la + 170 3
Oék4 + Bk‘i’l4
= kyx + Ly +myz — —— 0 14,
&4 4 4Y 4 Fea + la + s 4
as, ag, as, ka, ly, m; and d;(i = 2,3, 4) are free constants.
e Case 6
as =0, ko =k3 =0, lp=—ma, l3=—mg3,
Bkims Bkims —aki — Bk3ly
Coy = , €3 = y €4 = :
kg + 14+ my kg + 14+ my kyg+ 14 +my
Similar to Case 5, from (2.3), we obtain the solution
2a4k3 (a3 cosh &3 + ag cos &s)edt
U46($7ya27t) = (250)

(ag cos & + az cosh &3 + agest)2’

where &3, &3 and &4 are similar to Case 5, ky, la, a;, m; and d;(i = 2,3,4) are free
constants.

e Case 7
by =ks =0, ¢3=c;5=0, m4=“;ﬁk4,
Cq4MM2 Cc4ms [0
lo=———o—"—, l3=————"—, Iy =——=k4.
2 BE3 + ¢y’ ° B3 +cy tT B

From condition of Case 7 and (2.3), as aqas > 0, we yield the following solution

8agask? 4 2k3,/azas cosh(&4 + 61)(az cos & + ag cosh &3)

Y 2,t) = , (2.51
uar(2,y, 2,1) (ag cos&s + a3 cosh &3 £ (/agas cosh(&y + 61))? ( )
where
C4M2
- _cmz d
) Bk§+c4y+m22+ 25
cam
§3 = Sy maz + da,

NGE
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%k‘w + O[Tgﬂkﬁz + cat + dy,

k4, ca, ma, m3, as, a; and d;(i = 2,3,4) are free constants.
In addition, as aqas < 0, we can get the solution

54 = k4l‘—

8agask? & 2k3\/—asas sinh(&4 + 02)(az cos & + az cosh &3)
(ag cos & + ag cosh &3 £+ y/—agas sinh(&y4 + 91))2

ugs(z,y, 2,t) = . (2.52)

As a4 > 0, the sign of us7 and uyg takes positive. Otherwise, it takes the negative
sign.
e Case 8

k2:k4:07 62204:0,

; c3Mo I c3My ; ak a—pf
= ==, ===, —_ , ma =
T Bkt T PR+’ T BT 7T B

ks.

From condition of Case 8 and (2.3), as aqas > 0, one gets the following multi-
wave solution

2a3k3 + 2a3k3 (ag cos & + \/agas cosh(&y + 01)) cosh &3

Y, 2, t) = , (2.53
uas(2,y, 2,1) (ag cos & + ag cosh €3 & \/agzas cosh(&y + 01))2 (2.53)
where
C3MmMo
= ———2 Y+ myz + da,
&2 ﬁkg T s Y 2 2
« o —
&3 = kzx — —ksy + JkBZ + cst + da,
B B
C31My
= ———5——Y +muz +dy,
&4 B + o3 y 4 4
ks, c3, ma, My, as, a; and d;(i = 2,3,4) are free constants.
In addition, as aqas < 0, we can get the multi-wave solution
s (3,9, 2, 1) = 2a3k3 + 2ask3 (az cos & £ v/—agas sinh(&y + 61)) coshfg. (2.54)

(ag cos &y + a3 cosh &3 + \/—agas sinh (&4 + 61))?

As a4 > 0, the sign of ugg and usg takes positive. Otherwise, it takes the negative
sign.

Solutions u49 and usg can be seen as the interaction of three waves. When the
positive and negative signs are taken in the solution w49, the solution exhibits dif-
ferent properties. When taking the positive sign, the solution u49 shows periodicity
and hyperbolic function properties in Figure 7(a). Otherwise, ug9 has periodicity
and singularity properties in Figure 7(b).

e Case 9

k3 =ks =0, c=0, 122—%]62,

cg(ma — a%fb)

ls=—m3 = Bi )
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0
0

5 10 10
y

IR

(a) uwq9 with sign “47 (u-y-t) (b) w49 with sign “7 (u-y-t)

Figure 7. ugg asaz =az =as =1, kg =1, c3 =1, I3 =—-1, la=ls=—35,z2=2=0.

Cy (mg — QTZB kz)
Bk3

From condition of Case 9 and (2.3), one obtains multi-wave solution

l4:—m4 =

2a2k§ — 2&2]{3% (a3 cosh 63 + \/aqas COSh(§4 + 91)) COS 62

t) = 2.55
uz1 (2,4, 2,1) (ag cos & + ag cosh &3 +  /agas cosh(&y + 01))2 » (2:55)
where agas > 0,
«
§2 = kox — Eka + maz + da,
a—f a—f
ma — Tk2 ma — Tkz
= — t)+d
53 03( ﬂkg Yy ﬁkg zZ+ )+ 3
a—p a—f
ma — Tk2 ma — Tkz
= — t)+d
€4 = ca i3 (] B3 z41) +da,
ko, ma, c3, 4, as, a; and d;(i = 2,3,4) are free constants.
In addition, as asas < 0, we can get the solution
wsa(, g2 F) = 2a2k3 — 2ask3 (a3 cosh &3 £ \/—agas sinh (&4 + 01)) cos & (256)

(ag cos &y + a3 cosh &3 + \/—agas sinh (&4 + 61))?

As a4 > 0, the sign of us; and usy take positive. Otherwise, it takes the negative
sign.
e Case 10

b=y MR ey
3 — — 13 ) 4 — L
Bk} B

From condition of Case 10 and (2.3), one gets the two-soliton solution

+2k3 \/agas cosh(&4 + 61)(as cosh & + az cos &) + Basask]
(az cos & + az cosh &g £ \/azas cosh(&y + 61))?2

uss(z,y, z,t) = ,(2.57)
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where aqas > 0,

52 = d?v
c3(my — %k@ cz(ma — QT_ﬁkz;) p
= c3(— t
53 03( ﬁki y + ﬁki z + ) + 35
&4 = kgx — gk;4y + myz + dy,

B

ko, ma, cs3, ¢4, a5, a; and d;(i = 2,3,4) are free constants.
In addition, as a4as < 0, we can get the solution
+2k3\/—agas sinh(&4 + 01) (a3 cosh &3 + ag cos &2) + 8asask]
(ag cos &y + a3 cosh &3 + \/—agas sinh (&4 + 61))?

As a4 > 0, the sign of us3 and us4 take positive. Otherwise, it takes the negative
sign.

U54(x,y,z,t) = . (258)

Remark 2.4. Moreover, if « = 8 in Remark 2.3, we can get solutions u; — uyg for
the (2+1)-dimensional generalized breaking soliton (gBS) equation

83371(1%,5 + Uyt) + QUggay + QUggy + 6auu, + 3auu, + 3auw8x71uy =0. (2.59)

If @« = B in the third condition of Case 2, Case 4, Case 7, Case 8, Case 9, Case
10 with mo = ms = my = 0, yields the periodic solutions, breather lump wave
solutions, hyperbolic function solitary solutions w41, w43, u4q and ugy — usq of Eq.
(2.59).

If mo = 0 in the first condition of Case 2, ko = —g in the second condition of
Case 2, mg = my = 0 in Case 3, my = m3g = 0 in Case 5 and Case 6, yield the
periodic solution w41, two-soliton solution w42, bell soliton solutions w45 and u4g of
(241)-dimensional generalized breaking soliton (gBS) equation

8x71(um + Uyt) + QUgzz + BUgay + 60uu, + 3Buuy + 36%81‘71% =0. (2.60)

In (2.59) and (2.60), u(z,y,t) : R x R x R — R is the real function of variables z,
y and t, real constants o and 8 are hyper-parameters of the system, Oz~ ! presents
integral operator of x.

2.2. Application of other methods

In this section, we will analyze other three methods for obtaining exact solutions.
Firstly, for the three-wave method, we can set the second form of f with exp-
function, trigonometric function and hyperbolic function

(2.61)

fo = azsin&; + agsinh &3 + aze® + ase %4,
gz:kzx+lly+m1z+czt+dla i:273a4a

where a;, k;, l;, m;, ¢;, d; and a5 are some constants to be determined below.
Taking (2.61) into (2.1), we let the coefficients of sin &, sinh &3, €54 sin &, €754 sin &,
ef1 sinh &, e~ sinh &, cos &y cosh &g, €5t cos €y, e84 cos &y, €S cosh &y, e ¢4 cosh &y
and the constant term are zero, and then yield a system of determining equations
about parameters a;, k;, l;, m;, ¢;, d; and as which is the same as (2.4). Similarly,
the following conclusion can be drawn.
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Theorem 2.2. Let fo be given by (2.61). If fa is the solution of bilinear equation
(2.1), then combining u = 2(In f2).., we get the following form of solutions for
(8+1)-dimensional ¢BS equation (1.3)

—agk3 sin & + azk3 sinh &3 + a4kieg4 + a5kie_54
ag sin &y + az sinh &3 + agets + aze—84
asks cos &g + asks sinh &3 + askqe®t — agkse 4
as sin & + ag sinh &3 + ages + aze—¢4

u(z,y,z,t) =2

—2( 2, (2:62)

where & = k;x + Ly + miz + cit + d;, ki, L, my, ¢;, di, a; (i =2,3,4) and a5 are
some constants.

Similar to Cases 1-10, we can obtain 54 kinds of exact solutions.
Secondly, applying the extended homoclinic test method, we set an auxiliary
function of the following form

(2.63)

fa=1+ b1e52 cos &+ boe?2 + byef? cosh &,
S=kiz+lLiy+miz+ct+d;, i=12,

where EZ = kZI + lzy +m;z + Cit + di7 bi, ki7 li7 m;, C;, d'i (Z = 1, 2) and b3 are some
constants to be determined below. We can see the forms of fie%* and f3 are similar.
Then, taking (2.63) into (2.1), we get the system of coefficients

)

)

bibs(—4aki —48k31) =0

bibs(ci(k1 +1 +mq1)) =0

bi(a(kt + k3 — 6k3k3) + B(k3ly + k3lo — 3k3kaly — 3k111k3)
+Cg(k2 + 15 + mz) — 01(]{31 + 1 + ml)) =0,

bi(—a(4kik3 — 4kika) — B(k3ly — ko — 3k311ka + 3k1k3l0)
—Cz(lﬁ + 1 —|—m1) — Cl(kg + 1y + mg)) =0,

bs(au(kf + k3 + 6k3k3) + B(k3ly + kila + 3kTkals + 3k111k3)
+ea(ka + 1o +me2) + (ks + 1 +mq)) =0,

bl(a(4k1k:§ — 4]{3%]?2) + B(RS’ll + k‘i)’lg + 3]6%[1]62 + 3]@’1]6%[2)
+eo(kr + 1 +my) +cr(ke + 1o +m2)) =0,

172(1604143l + 166k31o + 4co(ko + 12 + mz)) + b2 (40416‘1l +4Bk31,
—c1(k1 4+ 11 +mq)) + b3 (4akt + 4Bk + c1(kr + 11 +mq)) = 0.

(2.64)

2
With the solution u(z,y, z,t) = 2% and the relation between f; and f3, we
3

— 2f1m1f1_f121_

get the solution same as u(z,y, z,t) 72
1

, which just make some changes
to the coefficients.
Finally, if assuming (2.63) as

{ fo=1+4b1e¥ sin&; + bpe®? 4 bye® sinh &y, (2.65)

S=kix+lLy+miz+et+d;, i=1,2

and carrying (2.65) into Eq. (2.1), we yield a system of determining equations about
parameters k;, l;, m;, ¢;, b; (1 =1,2) and bs same as (2.64).



3064 X. Zheng, X. Si & Y. Lu

3. Conclusion

In this paper, we derive a series of new traveling wave solutions of (3+1)-generalized
breaking soliton equation by two types of three-wave methods and two types of the
extended homoclinic test methods. These solutions contain bell solitary solutions,
singular solitary solutions, periodic-solitary solutions and many interaction solutions
between periodic waves and hyperbolic solutions. Our work contains the breather
lump wave solutions [8] and multi-wave soluions [15]. If «, 8, ma, ms and my take
appropriate values, we can obtain many solutions of (241)-dimensional generalized
breaking soliton (gBS) equation (2.59) and (2.60). Our results greatly enrich and
expand the existing results. From our research process, we find that three wave
method and extended homoclinic test method are two convenient, feasible, and effi-
cient methods for solving exact solutions of nonlinear partial differential equations.

Moreover, we investigate several wave patterns for the free parameter values and
also show the interaction of two waves propagation with various 2D and 3D graphs.
Figure 3, Figure 4 and Figure 6 show the interaction of periodic waves and hyper-
bolic waves. Figure 1, Figure 2 and Figure 5 describe the interaction between two
hyperbolic waves. The obtained results are very helpful in the study of interaction
phenomena in mathematical physics, fluid dynamics, engineering and many other
various areas of scientific fields. In the future, we will apply three-wave method to
study exact solutions for four-component nonlinear Schrédinger integrable models
and novel nonlocal nonlinear Schrodinger equations. Moreover, we will attempt
to explore traveling wave solutions of (3+1)-dimensional gBS equation by other
methods.
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