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EXISTENCE AND STABILITY OF SOLUTIONS
FOR HADAMARD TYPE FRACTIONAL
DIFFERENTIAL SYSTEM ON BENZENE

GRAPHS*

Yunzhe Zhang'?, Youhui Su®' and Yongzhen Yun'

Abstract This paper is mainly concerned with the existence of solutions for
a class of Hadamard type fractional differential systems on benzene graphs,
and the Hyers-Ulam stability of the systems is also proved. Furthermore, an
example is presented on a formic acid graph to demonstrate the applicability of
the conclusions obtained. The interesting of this paper lies in the integration
of fractional differential equations with graph theory, utilizing the formic acid
graph as a specific case for numerical simulation, and providing an approximate
solution graph after iterations.
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1. Introduction

The fractional differential equation is a generalization of an integer-order differen-
tial equation, allowing for a more accurate description of complex phenomena in
nature and engineering. For instance, fractional differential equations provide a
more appropriate model for describing diffusion processes, wave phenomena and
memory effects [9,10,13,16, 18], and possess a diverse array of applications across
numerous fields, encompassing stochastic equations, fluid flow, dynamical systems
theory, physics, biology, and other domains [4-6,20,22].

Star graph G = (V, E) consists of a finite set of nodes or vertices V(G) =
{vo,v1, ..., } and a set of edges E(G) = {e; = M0, 62 = VaUG, oy € = M}
connecting these nodes, where vy is the joint point and e; is the length of [; the
edge connecting the nodes v; and vy, i.e. [; = |m|
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Graph theory is a mathematical discipline that investigates graphs and networks.
A network is a graph, such as computer network extensions, transportation route
maps, molecules in medicine and biology, and so on [1,15]. Graph theory has
become widely applied in sociology, traffic management, telecommunications and
other fields [7,23].

As is well known, differential equations on star graphs can be applied to different
fields, such as chemistry, bioengineering and so on [8,11]. Mehandiratta et al [12]
explored the fractional differential system on star graphs with n 4+ 1 nodes and n
edges

CDg ui(z) = fi(x,u;, “ Dy jui(2)), 0 < <ljyi=1,2,....k,
w5 (0)=0, i=1,2,..,k

uz(ll) = uj(lj)v 7"] = 1a2a '--7k7i #]a

where CD&I, CDg’m are the Caputo fractional derivative operator, 1 < a < 2,
0<B8<a-1,fi,i=12..,k are continuous functions on C([0,1] x R x R).
By a transformation, the equivalent fractional differential system defined on [0, 1]
is obtained. The author studied a nonlinear Caputo fractional boundary value
problem on star graphs and established the existence and uniqueness results by
fixed point theory.

Zhang et al. [25] discussed the fractional boundary value problem on star graphs,
and obtained the existence and uniqueness results of solutions by fixed point theory.
In addition, Wang et al [24] discussed the existence and stability of a fractional
differential equation with Hadamard derivative. For more papers on the existence
of solutions to fractional differential equations on graphs, refer to [2,3,17,21]. By
numerically simulating the solution of fractional differential systems, scholars can
solve problems more clearly and accurately. However, numerical simulation has
been rarely used to describe the solutions of fractional differential systems on graphs
[14,19,26].

Here, we introduce a novel modeling of fractional boundary value problems
on the benzene graph (Figure 1). The molecular structure of the benzene is as
ring containing six carbon atoms and six hydrogen atoms. Benzene stands as a
pivotal raw material in the petrochemical industry, encompassing a diverse array
of applications. Therefore, a thorough understanding of its properties is of utmost
importance.

By this structure, we consider atoms of carbons and hydrogens as vertices of the
graph and also the existing chemical bonds between atoms are considered as edges
of the graph. To investigate the existence of solutions for our fractional boundary
value problems in the sequel, we label vertices of the benzene graph in the form of
labeled vertices by two values 0 or 1 and and the length of each edge is fixed at e
( Eﬂ =e, i =1,2,..,12) (Figure 2). In this case, we construct a local coordinate
system on the benzene graph and the orientation of each vertex is determined by
the orientation of its corresponding edge. The labels of the beginning and ending
vertices are taken into account as values 0 and 1, respectively, as we move along
any edge.

Motivated by the above work and relevant literatures [2,3,12,14,17,19,21,24-26],
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Figure 2. Benzene graphs with vertices 0 or 1.

we study a boundary value problem consisting of nonlinear fractional differential
equations defined on \EZ\ =e, 1=1,2,---,12 by

AD ui(t) = )\?fi(s,ui(s),HDerui(s)), te€l,el,
and the boundary conditions defined at boundary nodes e, ez, -+ ,e12, and
u1(1) = Ovui(e) = uj(e)a Zv] = 1727 e 7127 1 # jv

together with conditions of conjunctions at 0 or 1 with
k
> N tui(e) =0, i=1,2,--,12.
i=1

Overall, we consider the existence and stability of solutions to the following
nonlinear boundary value problem on benzene graphs

ADe ui(t) = )\f‘fi(s,ui(s),HDf+ui(s)), tel,el,
w(1) =0, i=1,2,---,12,
wi(e) = ugle), i,j = 1,2, ,12, i £ j, (1.1)

k
> oA Tu(e) =0, i=1,2,-,12,
=1
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where 7 Dfﬂr,H Df+ represents the the Hadamard fractional derivative, o € (2, 3],
B e (1,2], fi € C([l,e] x R x R) and A;,i = 1,2,---,12 is real constant. The
existence and Hyers-Ulam stability of the solutions to the system (1.1) are discussed.
Moreover, the approximate graphs of the solution are obtained.

It is also noteworthy that solutions obtained from the problem (1.1) can be
depicted in various rational applications of organic chemistry. More precisely, any
solution on an arbitrary edge can be described as the amount of bond polarity,
bond power, bond energy etc. The interesting of this paper lies in the integration of
fractional differential equations with graph theory, utilizing the formic acid graph
as a specific case for numerical simulation, and providing an approximate solution
graph after iterations.

2. Preliminaries

In this section, for conveniently researching the problem, several properties and
lemmas of fractional calculus are given, forming the indispensable premises for ob-
taining the main conclusions.

Definition 2.1. [3,9] The Hadamard fractional integral of order «, for a function
g € LP[a,b], 0 < a <t <b< oo, is defined as

Hfg+g(t) = ﬁ /at (log é)a_l%s)ds.

Definition 2.2. [3,9] Let [a,0] C R, § = t4 and AC}[a,b] = {g : [a,b] = R :
§"~Y(g(t)) € ACla,b]}. The Hadamard derivative of fractional order « for a function
g € ACYla,b] is defined as

D340) = 0" (0 = g (tp) [ (o8 )7 s

where n—1 < a < n, n = [a]+1 and [a] denotes the integer part of the real number
a and log(+) = loge(+).
Lemma 2.1. [3] Fory € AC}[a,b], the following result hold

n—1 k
M (DR = ) - e (1og )

k=0
where ¢c; € R, 1 =0,1,--- ,n—1.

Lemma 2.2. (Scheafer’s fized point theorem ) [8] Let X be a Banach space and let
F: X — X be a completely continuous operator (i.e., an operator that restricted to
any bounded set in X is compact). Then either

(i) The set {x € X : x = uFx for some p € (0,1)} is unbounded, or

(ii) F has at least one fixed point in X.
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Lemma 2.3. Let h;(t) € AC([1,¢],R)

L i=1,2,--
fractional differential equations

, 12, then the solution of the
HD1a+ui(t) = hi(t)v te [136]7
ul(l) :07 i= 1727"' 7127

ui(e) :uj(e) 27.] = 172a"' 7127 Z#]v (21)

Z)\ )=0,i=1,2,--

12

)

18 given by

u;(t) % t( *) 71h£)ds

1

k -1 e exa—2hi(s
logt[F Z(XYC)\JAl)[ (log;) h]T()ds

Jj=17
k )\— e exa—1 /Iy (s) — hi(s
J#i

Proof. By Lemma 2.1, we have

ui(t) = "1 hi () — Y — P logt, i =1,2,-- 12,
where c(-l)7 052) are constants. The boundary condition u;(1) = 0, gives cgl) =
0, fori=1,2,---,12.

Hence,

ui(t) = T I hy(t) — P logt

¢ tya—l h(s) (2)
= — log — I =1,2,---,12. 2.
I‘(cu)/1 (Ogs) 5 — 9 ogt, i 7 (2.3)
Also

N /t1 t\e=2h(s) 1 (g
ui(t)_F(a—l) t(lOgs) ds £

S

Now, the boundary conditions u;(e) = u;(e) and Z Ay

= 0 implies that c; (2)
must satisfy

1 ¢ e o‘_lhi(S) (2 _ 1 € e O‘_lhj(s) (2)
F(a)/l (log;) s BTa = )/1 <1°g§) s 0

o c;’y (24)

zk:A 1( Ny /e(logj)a”liis)ds—cgz)) 0. (2.5)

On solving above equations 2.4 and 2.5, we have

: ‘ o2y (s)
1 loo & S) ae ) — 1@
;)\ ( a—l)/ (Ogs) s ds A
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k
_ 1 ¢ exe—1h;(s) 1 ¢ e\*—1h;(s) 2)
=S e (1 c 5 s — 7/ log i) 1o+ o
Z J [F(a) /1 Ogs) s I(a) J; ( Ogs) s st

which implies

)

k k

—12) _ 1 “(10g €Y 2 ha(s)
Aje Z)\j l"(oz—l)/1 (Ogs) s ds

1 j=1

J

Hence, we get

2 At ¢ eNe=2h;(s
o’ = I‘(al— 1) 2 <Z’?_ A.l)/l (log 2) hT()dS

Jj=1 j=17
k AL e e\a—1 /hy(s) — his
_F(la) ; (Z?_Jl )\j—1> (/1 (log;) (h (s) - hi( )))ds. (2.6)
J#

Hence, inserting the values of 01(2)7 we get the solution (2.2). This completes the
proof. O

3. Main results

In this section, the existence and uniqueness to solutions of system (1.1) are dis-
cussed.
We define the space X = {u: u € C([l,e],R),HDeru € C([1,¢e],R)} with the

norm

lullx = llull+ |[" Dl = sup fu(t) + sup 7D u(d)].

te(l,e] te(l,e]

Then, (X, ||.||x) is a Banach space and accordingly, the product space (X* = X; x

Xy +++ x Xi2, ||.|[x+) is a Banach space with norm
k
[ullxe = [[(u1,u2, -+ s ur2)|x = Z il x, (ur,ug,---ug) € XF.
i=1

In view of Lemma 2.3, we define the operator T': X* — X* by
T(ULUQ, o ,Uk)(t) = (T]_(’U;],UQ, e auk?)<t)a T aTk(uhu?? T ,Uk;)(t)) 3
where

Ti(uy, ug, -+ ug)(t)
~ s [ (v Lyt flo ) "D ()

- T(a) s s ds
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AN o evam2 £ (s, uy(s), D5 u(s)
(Z’?jx.%)’\i/l(logs) .

logt < )\;1 o [ e aflfj(svuj(s)vHDﬁ“j(S))
*rmo§:<zﬁclxl>Aj[‘(bgs> "

S

logt o At o € e\ fi(s,ui(s), DY ui(s))
‘r(@Z(w)Ai/l (=3) o

S

s
_ logt zk: )\] 1 /\q/e (1ogg)a72gl(s w;(s) H B u(s))ds
F(a_ 1) j=1 2521 )\;1 ! 1 S I ’ 17
k -1
logt A /e a-1 B
+ AL og — gi(s,u;(s), " D7 ui(s))ds
F(a) jz::l (Zj_l )\j—1> J ( s) J( J( ) 1+ J( ))
J#i
k -1
logt A; /e ey a—1 s
- = N log — gi(5,ui(s), " D{yui(s))ds.  (3.1)
F(e) ; (Zﬁlmj‘l) (1o ) an(oste), "D ()
J#i

Assume that the following conditions hold:

(H1) g; : [1,e] x Rx R — R4 = 1,2,--- ,12 be continuous functions and there
exists nonnegative functions /;(¢) € C[1, €] such that

l9:(t, 7, y) — gi(t, 21, 91)| < L) (|2 — 21| + |y — y1]),

where t € [1, €], (z,y), (x1,91) € R?;
(H2) w; = sup |Li()], i=1,2,---,12;
te(l,e]
(H3) There exists A; > 0, such that
‘gi(t’xvy)‘ < Ai’ te [1761’ (‘Tvy) € R x R, 1=1,2,---,12.

For computational convenience, we also set the following quantities

1 2 1
B; =e(\* + )77
NN N T Y TasD) T TaatD)
1 1

T@T2-p)  Tla+r2-p)
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W e 1 1 1
+€Z (A7 + X577 [ T(@)  Ta+l)  T@re—5 +I‘(o¢+1)F(2—5)_7
i (3.2)
C; =e\y ! + 2 + ! —+ ! + ! -
T () T(a+1) T(a—B+1) T(@r(2-p6) T(a+1)I(2-— B) ]
- ol 1 1 1 ! 3.3
e XN T e T rere ) T rerore—p | O

Jj=1

J#i
Theorem 3.1. Assume that (H1) and (H2) hold, then the fractional differential
system (1.1) has a unique solution on [1,e] if

() (%) =

where B;, i =1,2,---,12 are given by equation (3.2).
Proof. Let u = (uy,ug, - ,uia), v = (v1,v2,--- ,v12) € X¥, t € [1,e], we have

[ Tiu(t) — Tiv(t)]
A? t E a—1
Sf(a)/l (logs)
logt k -2
T Ta- 1) -1 log ‘gj(s’uj( ), DY uy(s)
j=1 J 1 J

~g5(s,v(s), " 1+UJ ‘ ds]

* ;O(i; Z (Z’?)\_)\J))\?/l (log s)all

Jj=1 J=1"
J#i

—g;(5,v5(5), " D, 0 (s ))‘ds]

k -1 . o
ot s (e [ o)

1 Jj=17""j
J#i

—gi(s, vi(s), HDfﬂJi(s))‘ ds] .

gi(S,Un( ) }{l)ﬁ+l%( )) 4’gi(salﬁ(s)7fil)f+lﬁ(s))‘ds

g; (57 u;(s), HDf+“J (5)>

Gi (Sa u;(s), HD15+UZ(5))

-1
Using (H1) and (H2), ¢t € [1,¢] and (’j\iﬂ
J=1"3

><1f01‘j—12 -, k, we obtain
| Tiu(t) — Tyv(t)]

< e e h

i [) ; HJ)B ;
D(a+ 1) 7l et Pt
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k a—
¢ /\
+eg (F(;)Wj”“j — vl + F Wj H D1+U‘j 1+UJH>

k a—f
Z A S

j=1
i
e e)\;-kﬂ
— —willui — vil| + w—w; | DY u; — T DY v,
I‘\(a+ 1)w ||'LL v || + F(a+ 1) 1+u 1+’U
2e(\¢ + A7) H
iy (= ol + [0 wi = D)
k a a—f
AF + A
"‘ez Ty Wi (”U’J UJ”"‘H D1+U’J 1+UJH>
XS+ 07
T B e (g = o3l + | Dfwy = D7, 5]
= MNa+1)
J#i
1 2 a—pB H
=5ty * T 7y ) X ol = will + DYy = DY
1 1 k
ek ) S0 (sl [ )
=1
=
Hence,
[ Tiu(t) — Tiv ()]
1 2 o e
ek )06 0 (|03
1 k
Y \eF
+e F(a a+1))j_21(J+] )
i
X Wy (HUJ —vjl + HHD1+UJ D1+U]H> (3.4)

By the formula in reference [10]

e

we have

17D, Tyu(t) — 7 D¥, Tow(t)

AL ! a=p-1
“*Ta—-5) /1 (log é)

9i (s,ui(s),HDerui(s)) — gi(s,vi(s), HDf vz(s))‘ ds
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<Z’?/\j_1/\‘_1>)\?/1€ (10g§)‘1—1“9j(5,uj( ), 1DP u;(s))

Using (H1) and (H2), [(2 — §) < 1 and (,37

obtain

) <lforj=1,2- k we

¥ D, Tou(t) — 7 D Tou(t)
e)\iﬁwnu. — || + L
Ma—B+n " "1 Ma—g+1)™

k
A¥
+e§ ——wj||u; —v; +’7w-HHDﬁ u; — 1D v”
~ <F(04)F(2—ﬁ) J” J JH F(a)F(Q—ﬁ) J 1+ 1+%7

IN

k a a—p
AS S
Hnp H B
+e E <F(aj+ wjllu; — v3||+F(ci+l)wj" Diiuj — D1+UjH>

Jj=1
J#
exs 6)\(-1_5 H B ki
2 . - — s L ; D i D
+F(a + 02— B)wlnuz v + T(a+ DI(2— B)wz 1+ U 1+ Vi

e A7)

IN

(||ul vi|| + HHDHW DﬁvZ

)

Mla— B8+ 1)
k
A +)\
—i—ez )WJ (H“J vl + HHD1+UJ Dfﬂ)jH)
)\“ s
S s (o oot

e<A$ AT
Mo+ 1)I(2 - ﬁ)

(”uz vi|| + HHD +U; — HDf+

).

Hence,

|1 D2, Tu(t) - " DY, Ty (t)|

< e( L + L + ! )
Fla-pg+1) C@r2-p) Ila+1)I'(2-7p)
(A + A ﬁ)wz(Huz—UZH—FHHDHuZ— DY\ v, )
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k
+e(r(a)r12 5 Tt 1)1r(2 - 5)) ;(A}X +A777)
i
XW; (Huj — ;|| + HHD15+uj - HDerUjH) . (3.5)

From (3.4) and (3.5), we have

ITsu(t) = Tl + |7 D, Tou(t) - D, Too(t)|

< of L, 2 ! + ! + ! )
S\ T T 5D i@ f) | Mt e 5

) + A7 (Jlus = will + || "D = 7D wi| )

1 1 1 1 e e
&g * T + Tore =5 T Te T ITE 7)) ;(Aj X7
i
Xw; (Huj —vjll + HHDij — "D, )
Hence,
| Toult) = Too(t) 1
< 1 2 1 1 1
< @t 7D f@rE= st T T orE )
« a— 1 1 1 1
<N (e * Tt FTe ) T T T DR )
k k
2050453 (- et

i

<

k
= Bi(zwi>u_U|X’“v (3.6)

where B;, i =1,2,--- ,k are given by (3.2).
From the above equation (3.6), it follows that

k
ITu = To)llxe = Y I1Tou — Tovlx

i=1

: (i Bl’) (é,) ool
(5)(5)

we obtain that T is a contraction map. According to Banach’s contraction principle,
the original system (1.1) has a unique solution on [1,e]. O

Since
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Theorem 3.2. Assume that (H1) and (H2) hold, then system (2.1) has at least
one solution on [1,e].

Proof. We demonstrate that the operator 7' : X* — X is completely continuous.

In view of continuity of the functions f;,7 =1,2,--- | k, we obtain that the operator
T is continuous.
Let Q be any bounded subset of X*, for u = (u1,us, - ,ux) € Q, t € [1,¢€], we
can get
At tya-1
(0] < s [ (1o 2)™ o (5060, "D () s
k -1
logt Z ( )‘j > /e a—2
AL <log 7)
_ k — J
Ila—1) SN 1
X ‘gj (s,u](s),HDf+uJ(s))‘ ds
k -1
logt A /6 e\ e 3
+ A logf) ‘g s,u;(s), " Diu )ds
“®;;<ziﬂy* ), (o)t o
J#i
k -1
logt A; /e e\l
+ A log7> gi (8, ui(s), Hpb u;i (s )ds
Fns () (). D%,
J#i

Using (H3), we can write

2e A\ k eAjAS b eAjAT
Tu®) = 5551 +ZF ZF(@—I—I)

= 3752
=ed AOl( (1a) + a2+1 )+€ZA ( 1 F(a1+ 1))
3751
Thus,
Tl < eAi/\?(F(la) + P(a+1) ) + eZA ( I‘(al—i— 1)) (37)
J#Z

On the other hand,

’prﬂyu(t))
A t tya—p-1
<7 ), (o)
(logt)' =5 u i o [ e\ a2
"Ta_nre-s 2(25_1A1>Aj/1 (1°g§>

i (s, ui(s),” D1+Uz ))’ds




Existence and stability of solutions for... 3079

- k —1 € e\ >
R (2 o sl

j=1 j=17"
J#i
k -1
(log t)!~" ( A ) / ey i
+ Z |\ log — Ji (8, u;i(s), Dﬁui(s))‘ ds.
Mare-g 2\ 5 a1 )% ), (1055)
J#i
At
By (H3), (logt)!=# <1 and (ﬁ) <lforj=1,2,--- k, we get
2i=12;
‘HDf+Tiu(t)‘
k k
A\ A; )\a eA AS eA: )\
- M i s B D 1
MNa-—pg+1) T(a+1)T = 1F -B) = Fla+1)I'(2-06)
J#i
1 1 1
= eA; N} + +
‘ ( INC —54—1) L(a)l'(2 - 5) F(044-1)F(2—5))

|
+62A ( r(2 3" (a+1)F(2—ﬁ))'

3751
Hence
1 1 !
”HDf+EU S EAA; ( T(o— ﬂ‘i‘l) Jrl"( (2 - 0) +F(a+1)1‘(2—5))
1
+€ZA ( F(2 3 Tlarre- 5))' 35
.7751

From (3.7) and (3.8), we have

Tl + || D, Tou

<eans( R R S— P : )
—\ I (@) T(a+1) T(a—B+1) T(@I'(2-8) TI(a+1)I(2-7p)
oo 1 1 1
Fe2 AN (Ffa) * a7 * Fre—p * fa T orE )
i
eX*( L, 2 ! + ! + ! )
MNa) T(a+1) (a—08+1) TINo)'(2-p) T(a+D1HI'(2-7P)
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where C;, i =1,2,--- , k are given by (3.3). Hence,

Tl = i Tl < (ic) (iA]) .

i= j=1

so it follows that T is uniformly bounded.

(3.9)

Now we will prove that T is equi-continuous. For u = (uj,ug, - - ,ug) €

Q, t1,t2 € [1,€] with t; < g, we can get
|Tiu(tz) — Tyu(t)]

iy [ ()™ (")

“ra f, (o)
_ k

. (logrt(la 71(3 t2) > <Z

(o

(10gt2—10gt1) b >\]_1 A\

T 2\ )Y
=1 \2uj=17
i

x/le (logg)(kl ’gj(s,uj( ), Dﬁuj( ))‘ds

(logt; —logts) b )\;1 o
T T 2 (Zk )\1>>\i

j=1 J=17
€ a—1
x/ (logg)
1 S

J#i
gi(s,ui(s), HDerui(s))‘ ds.
Using (H3), we get
| Tiu(tz) — Tyu(ty)]

eA; N o eA;\$
SI‘( )((logtg) — (logt1)®) + m

k a o

/\
—logts) +e 7lot logt
21 gt2) Z +)(g2 gt1)
j#l

Gi (s, u; (8), HDer ul(s)) ‘ ds

1
N Ve
ko1 )™

Jj=17"

9]'(57“]( )s D1+U]( ))‘ds

(logt; — logts)

BAIL)\?

INa+1)

:eAi)\’q(F(la) + I‘(a1+ 1)>(

k
1 1
A-A‘*( )1 ty — logty).
J#i
In addition,

logt; —logts) +

’HDf+ZI}u(tg) _ HDfmu(tl)‘

gi (s,ui(s),HDIBJruz

((log t2)*

()| ds

— (logt1)®)

(3.10)
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s ()
o to B
+I‘(oz)\z—ﬁ)/tl (log%) o

— k _
(logti™" logt >\ N
T Ta-1r Z o )
] J

=1

gi(s,ui(s), DY ui(s))| ds

gi(s,uz( ), "D} ui(s))| ds

X/le<10ge) ) ‘gj(sa“j(s)vHDf+uj(5))’dS
+ (logrt(z logt z:( ;j )A;‘
S
L ()

X /e <log§)a71
1

By (H3), we get

gj(s,uxs),HDﬁuj(s))!ds

" D, Tiu(ts) — " DY, Tu(ty)|

Sm((log@)” — (log1)*~7)
eA; N . -
F(a +1)T(2 - 5) ((logt1)' =7 — (log t2)' =7

Ajxe
+€Zr +1J)FJ(2 7y ((log12)'™" — (log12)' ™)

A [e%
+ez & ﬁ)((logm)l’ﬂ — (logt1)' ")

J#Z
BA,L')\Q

:m“l%tz)a*’ — (log t1)*?)
1 1

+6Ai)\?( T(@)T(2 = B) + F(aJrl)F(Qfﬂ))(lOgt}_B _logté_ﬁ>

1 ! 1-5 1-6
+e) AN} logty " —logt . (311
Z (Fare=p * tasora—g) tets "~ let ™). (1)
J#l
Hence, from (3.10) and (3.11), we obtain
| Tiu(tz) — Tiu(t] x
6Ai)\lq

Sm((l% ta)*~7 — (logt:)*™")
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+€ZA ( @ F(OL1+ 1))(10gt2 —logty)

J#z
e 1 1 L
+ eA; X (F(a)F(Q ~5) + NCESHNCE ﬂ))(logt —logty ”)
k N 1 1 - s
+ e;Ag‘)\j (F(oz)F(Q —B) + T(a+ T2 = B))(loth —logt; ")
J#i

of 1 1
+ediXi (F(a) Tt 1))( r( n 1)
which implies | Tju(ts) — Tyu(t:)||x — 0 as to — ¢1 and so | Tu(ts) — T (t1)]| x» — 0
as tg — t1. Therefore, the operator T is equi-continuous on X* and it follows from
the Arzela-Ascoli theorem that T' is completely continuous.

Define Q = {(uy,u2, - ,ux) € X*: (uy,uo, -+ ,up) = pT(uy,uz, - ,ug), k=
1,2,-+-,12, 0 < p < 1} is bounded. Let (uy,ug, - ,ur) € @, then (uq,ug, - ,ug)
= uT (u1,ug,- -+ ,u) and for each ¢ € [1, €], we have u;(t) = pT;(ur, uz, -+ ,u;), @ =
1,2,--- k. Hence, from (H3), we get

logt; —logts) + ((logt2)™ — (logt1)®),

2A)\ i eA/\‘JK FLoeA N
e + Y TarD
MNa+1) N o 1F(a+1)

j=1
J#i

—H ‘e‘éll“?(r(lo()Jr a2+1)+eZA ( 1 +F(a1+1)> '
J#

lui(t)] < p

Thus,
W1 2 ool 1
il < ] eAiXs (F(a) e 1)) + G;AJAJ (F(a) *Fag 1)) (3.12)
i
and
‘HDf+Tiu(t)‘
cAN e AN L edps a eAj A}
Ma-571) Tt MG " & T@re—7 2= Tt i =5
J#i
. 1 1 1
=X (Fa =5 1) @5 T T OrE— )
1
+62A ( r(2 DRENCESNCE 5))’
3751
which gives
| 1 |
17 DY uill < | eAid? ( Ta—3+1) T@T2=3)  Tla+rT@= 5))
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k ) . )
+€;Aj>\j (F(a)r(g - B) + o+ 02— 5))1. (3.13)
J#i
From (3.12) and (3.13), we obtain

s + || DY
1

eA?(F(a) "Tarn ' Ta—s+) "Tore—p "

k

ted A
j=1
J#i

k
ua(ZAj), (3.14)

where C;,i = 1,2,k are given by (3.3). Hence,

k k k
l[ull xr = Z [Juil| x < u(ZC) (ZA]) < 0. (3.15)

This indicates that the set @) is bounded. Thus, by Lemma 2.2, the operator T" has
at least one fixed point, which denotes that the original system (1.1) has at least
one solution on [1, e]. O

<u

o
o
+
Nt
=
S
|
=

2 1 1 1 ]

S S 1 . 1 ) zk:A‘
Ta) Tlatl) T@L2-p)  Tlat 2 p) J

4. Hyers-Ulam stability
Let ¢; > 0. Consider the following inequality
1T DSui(t) — A2 fi (i), TDY wi (1)) | < e, t € 1] (4.1)

Definition 4.1. [25] The fractional differential system (1.1) is called Ulam-Hyers
stable, if there is a constant cy, ¢, .. r. > 0such that for each ¢ = e(e1,€9,...,65) >0
and for each solution u = (u1, ug, ..., ux) € X* of the inequality (4.1), there exists a
solution @ = (@, Uz, ..., ux) € X* of (1.1) with

”u - a”X < Cfifa,n fu S le [176]'

Definition 4.2. [25] The fractional differential system (1.1) is called general-
ized Ulam-Hyers stable, if there exists function ¢y, r, .. 5 € C(RT,RT) with
Ui fo,. 5 (0) = 0 such that for each ¢ = e(e1,€9,...,65) > 0 and for each so-
lution v = (uy,us,...,ux) € X* of the inequality (4.1), there exists a solution
@ = (ty, Ug, ..., ux) € X* of (1.1) with

”u - ’G'HX < wf17f27~--,fk (5)7 te [1,6].

Remark 4.1. Let function u = (uy,us,--- ,uz) € X¥, k= 1,2,---,12, be the
solution of system (4.1). If there are functions ¢; : [1,€] — RT dependent on w;
respectively, then
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(1) |wl(t)‘ S Eis te [176]7 1= 1,27’ o 712,
(i) TD¢ui(t) = A fi(t,ui(8), T DY i (1)) + pilt),t € [L,e],i = 1,2, 12,

Lemma 4.1. Suppose u = (uy, Uy, ...,ux) € X* is the solution of inequality (4.1).
Then, the following inequality holds:

01 gy ) -5 (e + )
i i = < F(Ol) F(Oé‘f’l) J = F(a) F(Oé+1) 3
J#i
(" D) = "D 1)
< - 1 1
53‘3; ( (@)I'(2-5) * (o +1)T(2 — 5))
J#i
, 1 1 )
+816(F( -B+1) t T(a)D(2— f) + P(Oé—i-l)I‘(Q_ﬁ))’

B F(a(ﬁ)t%l(zﬁ— B) ; <Z§A_j1;]1> /1 (108 €)™ 2y (ds
* r<(5§)21:ﬂﬂ> i <Z;jl)\;1> /1 (1005)" ssene
J#i
rreen s (g ) (D)o
Jj#i
and here
w(9) = M) s = X £ ui(s). DL (). i = 1,2, 12
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Proof. From Remark 4.1, we have
H DX ui(t) = A2 fi(s,ui(s), TDY ui(s)) + @i(t), t € [L,el,
ul(1> =0,i=12,---,12,

uj(e)7 l)j: 1327"' ,12, 275])

e
&
—

@
N

Il

wi(t) = ﬁ /j (108 2)%1 (zi(s) + “‘L@) ds

_p(locjg_tl) ]Zi:l <Zj/jl/\g_l> /16 <1og 2)0_2 (ZJ( )+ %3(8)> ds
+1£C)(i§ jz: <Z;_\]:1>\]1> /16 (log 9%1 (zj(s) + %;S)) ds
i
Mo Z (zAA> [ Qo)™ (o + £ ) s
i

and

DY, (1)
= ﬁ /: (log é)aiﬂ*l <zl(s) + wi£8)> ds

oo )18 k )\;1 ¢ e\~ i ()
et 2 () [ () (0 + 22

oet)1-8 )\j—l e oy a1 i(s
+F((1)gi)2 b’)Z(Z? )\._1>/1 (log;) (Zj(8)+90£)>d8

(logt)l=# &
()2 - 5)2

Then, we deduce that

" 2e e e
lus () — i (t)] < S NeE) +;aj@ +;gjm
JAi
1 2 WA 1
:5’e(r(a) r(a+1)> +‘Eﬂ'e;(r(a) +I‘(a—|—1)>
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and

‘HD1+UZ( ) — D1+U ()]
e e

S & (a—ﬂ+1)+€jf(a+1)F(2—ﬂ)
+Eﬂzr )+€ZZF +1) 2-3)
J#l

- e <r<a>r<2 =B " Tla+re- m)

teie( ! + : + = )
“NMla—p+1D  T@l2-5)  Tla+)r2-p)/)

O

Theorem 4.1. Assume that Theorem 3.1 hold, then the fractional differential sys-
tem (1.1) is Ulam-Hyers stable if the eigenvalues of matriz A are in the open unit
disc. There exists |A| < 1, for A € C with det(A\ — A) = 0, where

010 + X2 By (NS + ATy - By(A + Ay Dlas

L |0 AT 018 + AT - 020 + ATy o
03NS + X270 By (NS + AT )y - 01 (N + A )

2{M 1 1 V2 A2 2 2 1\"N12 12 12

Proof. Let u = (uj,us,...,u12) € X¥, k = 1,2,---12, be the solution of the
inequality given by

(D i (t) — A2 fi (tui(), T DY i (1)) | < &4, t € [1,6],
and @ = (4, U, ..., U12) € X* be the solution of the following system
DX () = A fi(s, wi(s), DY, wi(s)), t € [1,¢l,
(1) =0, i=1,2,---,12,
ﬂi(e) —aj(e), i,j=1,2,---,12, i % j, (4.3)

ZA“ )=0,i=1,2---,12.

By Lemma 2.3, the solution of (4.3) can be given in the following form

_1“(lcjg—t1) zk: <A_j_11> AT /1e (1og E)aizgj (s,15(s), " Dy u(s) ) ds
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k -1
logt ( A ) ¢ e\l _ H B —
P (e ) [ (1085) " g5y (0), Dy () ds
F(O‘)jjj i A 1( S)
jF#i
k —1
logt Aj /e eyt - HpB -
- A log — gi(s,ui(s), " DV u;(s))ds.
F<a>§<z§_ﬁf  (oeg) o )
VES

Now, by Lemma 4.1, for ¢ € [1, €], we can get

s (1) — s (8)|
< Juat) = w (1)) + [y () = (1)
< e i s) * Eﬁ: (v * T )
+6(p(1a)+p(a2+ 1))<A“+;j i) (Jlus = will + | Dfy ws = D i)
+e(p<1a>+p(al+1))j§ijlw X5 75(0) (1lwg =5 +]| 7 DY ws = D]y )
and ”

i 1 1
= Eﬂe;( @I2—5)  Tlat I —ﬁ))
J#i
1 1 1
=i = M=)
+e( L + L + ! )
Fla=B+1) T(@I(2-5) Ila+HI'(2-p)
8+ X (s — il + | DY wi = D)
! ! y PP
+e(r(a)r(2—5) - r(a+1)r(2_ﬁ)>§( i)

i

)

x5(0) (Il — @)+ || DYy — 77,y

Hence, we have

llui — ;]| x

= Jlus = @il + |7 Dfy ws(t) — DY s (t)|

a+2 1 a+1 )
e(F(a+1)+F(a—,3+l)+F(oz+1)l“(2—,8) i
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e Z( o=, r<a+a1>+r<12m>gj

J#l

a+2 1 a+1
'”(rm+1y+(a—5+1f+na+nr@—50
X (AS + AT (fus — il x

a+1 a+1 o a—
+e Z( I‘(a+1)F(2—ﬁ)>>\ )‘ ﬁ) ()”u]_uJ”X

J?ﬁz
k
=015+ Y Oaei + 00N + AT Jus — | x
1
g
+292 (XS + X570 ()l — a5,
1
i
where
9 ( o+ 2 n 1 n a+1 >
=e
! Ta+1) T(a—pB+1) T(a+1)L2-58))"

a+1 a+1
%:€<na+n+rm+nrg—m)'

Then we have

(lur =t || x, llug = Gl x, s lurz — a2l x)"
< Gley, €2, ~~,€12)T + A(llur — 1| x, [Juz — G2l x, -\ w12 — ﬂ12||X)T,
where
0,0y - 0y
0y 0, --- 0y
G12><12 -
0y 0y --- 0,

Then, we can get

(lur = || x, [z — Gl x, - lurz — G2l x)" < (I — A)7'Gler, €2, ... 612) 7
Let

hix hig -+ hii2

. haq1 hago -+ hoi2
H=(I—A)'G=

hig;1 hi22 -+ hi212
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Obviously, h; ; >0, i, =1,2,---,12. Set ¢ = maz{e1,¢€2,...,€12}, then we can

get
E ok
J[u —allxx < (Zzhzg)ﬁ (4.4)

j=11i=1
Thus, we have derived that system (1.1) is Ulam-Hyers stable. O

Remark 4.2. Making ¥y, 7, . 7 (¢) in (4.4). We have ¢, 1, .. £.(0) = 0. Then by
Definition 4.2, we deduce that the fractional differential system (1.1) is generalized
Ulam-Hyers stable.

5. Example

The benzene graph we studied in the system (1.1) can be extended to other types of
graphs. For example, star graphs and chord bipartite graphs provide a theoretical
basis for physics, computer networks and other fields. Here we only discuss the frac-
tional differential system on the star graphs (i = 1, 2, 3). We discuss the solution of
a fractional differential equation on a formic acid graph and the approximate graphs
of solutions are presented by using iterative methods and numerical simulation.

Example 5.1. Consider the following questions

H U 1 3 775 sin(u —|HD1+u1( )
Dt = g <(t+7)4< | l(t)+1+|HD1+U1(t)|>>’
s e . [ D}, ua(t)|
HD1+'LL2(t) = (5) ((t3 +3)5 (Sln(m(t) + - |H1Dl+u2( )|>> )
HD%U t) = §g 312 arcsin(usz(t 3t2|HD1+US()| >7 (5.1)
Fous(t) = () <1OOO| O S D )
ul(l) = UQ(l) = ’LLg,(l) = 07
ui(e) = uz(e) = us(e),
()7 (0) + () Muale) + () () =0,
We obtain
5 3 1 1 3
04257 5257 k‘:3, )\1—17 )\225, )\3:1.

Coordinate systems with w1, ug, ug are established respectively on the formic acid
graph with 3 edges (Figure 4).
For ¢t € [1, €],

|HD1+u1< )l )
1+ [HD2, uy (t)]

= s (sin(uz(t) 4 |1+u2()|>
L+ [HD? us(t)]

g1 (t uq(t), Dﬁul( )) = G <sin(u1(t) +

g2(t,uz(t), 7 DY us(t))
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o ”

W e w e w

Figure 3. A sketch of C3H>0. Figure 4. Formic acid graph with labeled vertices.

3
t 3t D2, us(t
| arcsin(us(t))| + "Dy, s( )| .
1000(1 + [¥ D, us(t)])

3
H2pb =—

For any x, y, x1, y1, it is clear that

1
g1(t,,y) — g1(t, w1, y1) < (t+7)4(|$—$1| + [y — 1),

1
go(t, z,y) — ga(t, 22, 92) < mﬂﬂf — 2|+ |y — y2l),
95(1,,1) — g5(t,3,35) < Jocs (12 = 73] + Iy = ).
So we get
L= sup [h(H)] = —— 1= sup |la(t)] = =15 = sup [I5(t)] = —r,
selLo] 4096 selLo] 1024 relLo] 1000
By = 22.3235, By = 23.7510, B3 = 25.7324,

and
(Bl + By + Bg)(ll + 1o + l3) =0.6735 < 1.

Therefore, by Theorem 3.1 system (5.1) has a unique solution on [1, €].
Meanwhile,

0, = 8.0140, 0, = 4.4778,
5.5028¢ — 04 2.9594¢ — 03 0.0452
A= | 3.0747¢ — 04 5.2966¢ — 03 0.0452
3.0747e — 04 2.9594¢ — 03 0.0809

Let
det(AI — A) = (A —0.0824)(A — 0.0003)(\ — 0.0036) = 0,

so we have

A1 =0.0824 <1, X2 =0.0003 <1, X3=0.0036<1.

It follows from Theorem 4.1 that system (5.1) is Ulam-Hyers stable, and by
Remark 4.2, it will be generalized Ulam-Hyers stable.

Ultimately, the simulate iterative process curve and approximate solution to the
fractional differential system (5.1) are carried out by using the iterative method and
numerical simulation. Let u; o = 0, the iteration sequence is as follows,

U 1 (1)
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V8 gt 3 Hps ot
— (4)5 / <log t) b 1 <sin(u17n(t))+ | 1+gl’ @ )ds
NN s) (t+7) 1+ [HD? ugn(t)]

sin |ug,, (1)

1
(5 + 3)5

(1)E(3) " tog) [ -zt

3t/ D3 Wt
X <0.003t|arcsin(u37n(t))| + "D uzn (1)) ds
(t)]

3
1000 + 1000[2 D2, uz

/16(1 —logs)? ﬁ (Sin(ul,n(t))

i) ) e (1)2(3) " (log1) /@(1 log )
LD w01 () )+ ()
1 (. "D} urn(0) (D) (og)
sin(u1 I ds —
<’f+7>4< o 1+|HDf+U1,n(t)|> <<i>—1+<;>—1+<2>‘1>

1
€ i1 HD2 4y, (t
/(1—10g8)2t74<sin(u1,n(t))+ | “i”’ ®)l )ds
1 (t+7) 1+ |HD2 up ,(t)]

¢ 1 1 .
_ (( ) /1 (1 —logs)? m <sm |ug,n (t)]

+|l)12+u2,n(t)|>ds (%)5(%)_1(10gt) /e(]_flogs)%
) (< :

3
1+ D2 ug (1 )

3
3t1H D2, us , (t
1D} s(t) )ds_
1000 4 1000[7 D2, ugz p (t)|

NI
~—
|
—_
—
N =
~—
|
—
—
N[e]
N—
|
—
v
=
—~
N

X <1 + 0.003t| arcsin(ug,, (t))| +

The iterative sequence of ug 41 and us p41 is similar to ug p41. After several
iterations, the approximate solution of fractional differential system (5.1) can be
obtained by using the numerical simulation. Figure 5 is the approximate graph
of the solution of wyug after iterations. Figure 6 is the approximate graph of the
solution of wzug after iterations. Figure 7 is the approximate graph of the solution
of m after iterations.
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-0.05

ut)

015 " " " " "
1

Figure 5. Approximate solution of uj.

12 " " " " "

Figure 6. Approximate solution of us.

u)
b

Figure 7. Approximate solution of us.
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