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Abstract This paper is concerned with uniform large deviation principles
of fractional stochastic p-Laplacian reaction-diffusion equations driven by ad-
ditive noise defined on unbounded domains. The nonlinear drift is assumed
to be locally Lipschitz continuous. Due to the non-compact of the solution
operator, we will use the method of weak convergence to show the result.
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1. Introduction

In this paper, we would like to think of the uniform large deviation principles of
fractional stochastic p-Laplacian reaction-diffusion equations which are defined on
the whole space Rn and driven by additive noise as well. Given α ∈ (0, 1), consider
the Ito stochastic equation:

du (t) + (−∆)
α
p u (t) dt+ F (t, x, u (t)) dt = g (t, x) dt+

√
εQdW, (1.1)

with initial condition

u (0, x) = u0, x ∈ Rn, t > 0, (1.2)

where ε > 0 is the intensity of noise, −∆α
p is fractional p-Laplacian operator, with

p ≥ 2, F : R×Rn×R → R is a non-linear function satisfying certain conditions, g ∈
L2
loc

(
R,L2 (Rn)

)
is given, Q : L2 (Rn) → H1 (Rn) is a Hilbert-Schmidt operator and

W is a two-side real-valued Wiener process defined on a complete filtered probability
space

(
Ω,F , {Ft}t∈[0,T ],P

)
for some T > 0. Throughout this paper, we write the

inner product and norm of L2 (Rn) as (·, ·) and ∥ · ∥, respectively.
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The fractional partial differential equations arise from lots of applications in [2,3,
5,13,15,18] while the systems with standard p-Laplacian have been well-investigated
in [1, 9]. The solutions and the long term dynamics of these equations have been
extensively studied in the literature, see in [10]. In this paper, we would like to
show the uniform large deviation principle of the stochastic fractional p-Laplacian
reaction-diffusion equation (1.1).

The large deviation principles of stochastic equations are related to exit time and
exit place of the solutions from a domain, and have been studied by many authors
in the literature, see, e.g. [6,7,11,12,14,15,18]. In particular, in [14], the author has
studied the uniform large deviation principle of the non-local fractional stochastic
reaction-diffusion equation defined on the entire space Rn driven by additive noise.
However, when the problem comes to the p-Laplacian in which p > 2 is rigidly, that
means the space Wα,p isn’t a Hilbert space so that the normal way of inner product
cannot be used. To solve this problem, we need the operator A from [17] to finish
the estimate of the solutions of fractional stochastic p-Laplacian reaction-diffusion
equation (1.1) in the space C ([0, T ], H)

⋂
Lp (0, T ;V ). Next, we will recall some

propaedeutics to reach that end.

2. Large deviation principles

In this section, we recall the weak convergence theory for large deviation principles
from [7,8].

2.1. Weak convergence theory for large deviations

Assume E as a Polish space, on which we have a Borel σ-algebra B (E). Let {νε}ε>0

be a family of probability measures on (E ,B (E)). As a beforehand procedure to show
the large deviation principle of {νε}ε>0, we need the definition of rate functions.

Definition 2.1. A function J : E → [0,∞] is said to be a rate function on E if it is
lower semi-continuous on E . A rate function J on E is called a good rate function
on E if for every 0 < s < ∞, the level set Js = {z ∈ E : J (z) < s} is a compact
subset of E .

Then it comes to show the definition of large deviation principles of probability
measures.

Definition 2.2. Let J : E → [0,∞] be a good rate function on E and {νε}ε>0 be a
family of probability measures on (E ,B (E)). We say family {νε}ε>0 satisfies a large
deviation principle on E with rate function J if:

(i) For every s ≥ 0, δ1 > 0 and δ2 > 0, there exists ε0 > 0 such that

νε (N (z, δ1)) ≥ e−
J(z)+δ2

ε , ∀ε ≤ ε0, ∀z ∈ Js,

where N (z, δ1) = {y ∈ E : dist (y, z) < δ1} and Js = {z ∈ E : J (z) ≤ s}.

(ii) For every s0 ≥ 0, δ1 > 0 and δ2 > 0, there exists ε0 > 0 such that

νε (E \ N (Js, δ1)) ≤ e−
s−δ2

ε , ∀ε ≤ ε0, ∀s ≤ s0,

where N (Js, δ1) = {z ∈ E : dist (z, Js) < δ1}.
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Next, we show the large deviation principles of random variables in E .
Let

(
Ω,F , {Ft}t∈[0,T ],P

)
be a complete filtered space satisfying usual condition.

Assume {W (t)}t∈[0,T ] is a two-side real-valued Wiener process with identity covari-

ance operator in a separable Hilbert space H with respect to
(
Ω,F , {Ft}t∈[0,T ],P

)
,

which means there exists another separable Hilbert space U such that the embedding
H ↪→ U is a Hilbert-Schmidt operator and W (t) takes values in U for t ∈ [0, T ].

Given ε > 0, let Gε : C ([0, T ], U) → E be a measurable map and set

Xε = Gε (W ) , ∀ε > 0. (2.1)

By the knowledge of stochastic process we know {Xε} is a family of random variables
in E . Therefore Xε has a distribution law on E and we write it as νε. Then we say
the family {Xε} satisfying the large deviation principle on E if the family {νε}ε>0

satisfies the large deviation principle on E . Given N > 0, denote by

SN =

{
v ∈ L2 (0, T ;H) :

∫ T

0

∥v (t) ∥2Hdt ≤ N

}
. (2.2)

Note that when endowed with weak topology, SN is a Polish space. Let A be the
space of all H-valued stochastic processes v which are progressively measurable with

respect to {Ft}t∈[0,T ] while
∫ T
0
∥v (t) ∥2Hdt <∞ P-almost surely. Set

AN = {v ∈ A : v (ω) ∈ SN for almost all ω ∈ Ω}. (2.3)

We further assume that there exists a measurable map G0 : C ([0, T ], U) → E
such that G0 and the family {Gε}ε>0 satisfy the following conditions:

(H1) If N < ∞ and {vε} ⊆ AN such that {vε} convergences in distribution to

v as SN -valued random variables, then Gε
(
W + ε−

1
2

∫ .
0
vε (t) dt

)
convergences in

distribution to G0
(∫ .

0
v (t) dt

)
in E .

(H2) For every N <∞, {G0
(∫ .

0
v (t) dt

)
: v ∈ SN} is a compact subset of E .

Let I : E → [0,∞] be a mapping given by, for every x ∈ E ,

I (x) = inf

{
1

2

∫ T

0

∥v (t) ∥2Hdt : v ∈ L2 (0, T ;H) such thatG0

(∫ .

0

v (t) dt

)
= x

}
,

(2.4)
especially we take the infimum over an empty set as ∞. By assumption (H2),
we can infer the fact of every level set of I is compact in E , so by Definition 2.1
I is a good rate function on E . In addition, it follows from (H1), (H2) and [7]
that {Xε}ε>0 satisfies the large deviation principle in E with rate function I, as
presented below.

Proposition 2.1 ( [7]). If G0 and {Gε}ε>0 satisfy (H1)-(H2), then the family
{Xε}ε>0 as given by (2.1) satisfies the large deviation principle in E with rate
function I as defined by (2.4).

2.2. Uniform large deviation principle

In this subsection, we recall the definition of uniform large deviation principle and
recall the uniform contraction principle for proving such uniform large deviations
in a separable Banach space.
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Definition 2.3. Let Λ be a nonempty set and Z be a separable Banach space.
Given λ ∈ Λ, suppose {νε,λ}ε>0 is a family of probability measures on (Z,B (Z))
and Jλ : Z → [0,∞] is a good rate function. We say the family {νε,λ}ε>0 satisfies
a large deviation principle on Z uniformly in λ ∈ Λ with rate function Jλ if:

(i) For every s ≥ 0, δ1 > 0 and δ2 > 0, there exists ε0 > 0 such that

inf
λ∈Λ

(
νε,λ (N (zλ, δ1)) − e−

Jλ(zλ)+δ2
ε

)
≥ 0,∀ε ≤ ε0,∀zλ ∈ Jsλ, (2.5)

where N (zλ, δ1) = {z ∈ Z : ∥z − zλ∥Z < δ1} and Jsλ = {z ∈ Z, Jλ (z) ≤ s}.

(ii) For every s0 ≥ 0, δ1 > 0 and δ2 > 0, there exists ε0 > 0 such that

sup
λ∈Λ

νε,λ (Z \ N (Jsλ, δ1)) ≤ e−
s−δ2

ε ,∀ε ≤ ε0,∀s ≤ s0, (2.6)

where N (Jsλ, δ1) = {z ∈ Z : dist (z, Jsλ) < δ1}.

Theorem 2.1 (Uniform contraction principle, [14]). Suppose Λ is a nonempty set,
Y and Z are separable Banach spaces. Let {µε}ε>0 be a family of probability mea-
sures satisfying the large deviation principle with rate function I : Y → [0,∞] on
(Y,B (Y )). Given λ ∈ Λ, let Tλ : Y → Z be a locally Lipschitz continuous map-
ping, that is for every R > 0, there exists a constant LR > 0 such that for all
λ ∈ Λ, y1, y2 ∈ Y , with ∥y1∥ ≤ R and ∥y2∥ ≤ R, we have

∥Tλ (y1) − Tλ (y2) ∥Z ≤ LR∥y1 − y2∥Y .

Given λ ∈ Λ and ε > 0, let νε,λ = µε ◦ (Tλ)
−1

. Then we have {νε,λ}ε>0 satisfies
the large deviation principle on Z uniformly in λ ∈ Λ with good rate function Jλ as
given by:

Jλ (z) = inf{I (y) : y ∈ (Tλ)
−1

(z)},∀z ∈ Z.

We will use Theorem 2.1 to prove the uniform large deviation principle of the
solutions of the stochastic equation (1.1) with respect to initial data in a bounded
set.

3. Existence of solutions of fractional p-Laplacian
stochastic equations

In this section, we give the assumption of nonlinear term in stochastic equation
(1.1) and discuss the existence and uniqueness of solutions of the equation as well.

We first recall the concept of fractional p-Laplacian (−∆)
α
p on Rn, where 0 <

α < 1 and 2 ≤ p <∞. Denote by

Lp−1
α (Rn) =

{
u : Rn → Rn is measurable,

∫
Rn

|u (x)|p−1

(1 + |x|)n+pα
dx <∞

}
.

For u ∈ Lp−1
α (Rn) , x ∈ Rn and ϵ > 0, we write

(−∆)
α
p,ϵ u (x) = C (n, p, α)

∫
y∈Rn,|y−x|>ϵ

|u (x) − u (y)|p−2 (u (x) − u (y))

|x− y|n+pα
dy,
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where the normalized constant C (n, p, α) is given by

C (n, p, α) =
α4αΓ

(
pα+p+n−2

2

)
πn/2Γ (1 − α)

, with Γ being the usual Gamma function.

Then the fractional p-Laplacian operator (−∆)
α
p , with 0 < α < 1 and 2 ≤ p <∞ is

defined by

(−∆)
α
p u (x) = lim

ϵ↓0
(−∆)

α
p,ϵ u (x)

=C (n, p, α)P.V.

∫
Rn

|u (x) − u (y)|p−2 (u (x) − u (y))

|x− y|n+pα
dy, x ∈ Rn,

if the limits exist, where P.V. means the principle value of the integral. The frac-
tional Sobolev space Wα,p (Rn), with 0 < α < 1 and 2 ≤ p <∞ is defined as:

Wα,p (Rn) =

{
u ∈ Lp (Rn) :

∫
Rn

∫
Rn

|u (x) − u (y)|p

|x− y|n+pα
dxdy <∞

}
, (3.1)

endowed with the norm

∥u∥Wα,p(Rn) =

(∫
Rn

|u (x)|pdx+ ∥u∥p
Ẇα,p(Rn)

) 1
p

, ∀u ∈Wα,p (Rn) , (3.2)

where

∥u∥p
Ẇα,p(Rn)

=

∫
Rn

∫
Rn

|u (x) − u (y) |p

|x− y|n+pα
dxdy, u ∈Wα,p (Rn) , (3.3)

is the so-called Gagliardo semi-norm on Wα,p (Rn).
Moreover, we can find in [4] that the inequality below is established:(

|a|p−2a− |b|p−2b
)

(a− b) ≥ β|a− b|p for all p ∈ [2,∞) , (3.4)

where β is a positive constant only depending on p.
For convenience, in the rest of the paper, we write H = L2 (Rn), and V =

Wα,p (Rn). We also use L2 (H1, H2) for the space of Hilbert-Schmidt operators
from separable Hilbert space H1 to separable Hilbert space H2 endowed with the
norm ∥ · ∥L2(H1,H2).

For the nonlinear term F in equation (1.1), we assume F : R× Rn × R → R is
continuous, such that for every (t, x, u) ∈ R× Rn × R, we have:

F (t, x, u)u ≥ λ|u|q−ψ1 (t, x) , ψ1 ∈ L1
loc

(
R, L1 (Rn)

)
, (3.5a)

|F (t, x, u)| ≤ ψ2 (t, x) |u|q−1 + ψ3 (t, x) ,

ψ2 ∈ L∞
loc (R, L∞ (Rn)) , ψ3 ∈ Lq̂loc

(
R, Lq̂ (Rn)

)
, (3.5b)

∂

∂u
F (t, x, u) ≤ ψ4 (t, x) , ψ4 ∈ L∞

loc (R, L∞ (Rn)) , (3.5c)

where λ > 0, q > 1 are constants, q̂ denotes the conjugate exponent of q.

Definition 3.1. For every t ∈ [0, T ], ω ∈ Ω, a continuous function u : H → H is
said to be the weak solution of problem (1.1)-(1.2), if

u ∈ C ([0, T ], H)
⋂
Lp ([0, T ], V )
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and
du

dt
∈ L

p
p−1

(
[0, T ],W−α, p

p−1 (Rn)
)

and for every ξ ∈ H
⋂
V ,

d

dt
(u, ξ)

+
C (n, p, α)

2

∫
Rn

∫
Rn

|u (x) − u (y)|p−2 (u (x) − u (y)) (ξ (x) − ξ (y))

|x− y|n+pα
dxdy

=

∫
Rn

F (t, x, u (t)) ξ (x) dx+

∫
Rn

g (t, x) ξ (x) dx+

∫
Rn

(
ξ (x) ,

√
εQdW

)
. (3.6)

By [16] we know, when the conditions (3.5a), (3.5b), (3.5c) satisfied, there exists
the unique solution of problem (1.1)-(1.2).

Throughout this paper, we assume that (Ω,F , {Ft}t∈R, P ) is a complete filtered
space with usual condition. We also assume that W is a two-side real-valued Wiener
process with identity covariance operator in H, that means there exists another
separable Hilbert space U such that the embedding H ↪→ U is a Hilbert-Schmidit
operator and W takes value in U . Next, we discuss the uniform large deviation
principle of the solutions of linear equation.

4. Large deviation principle of linear equations

In this section, we think of the large deviation principle of the linear equation of
the fractional stochastic p-Laplacian reaction-diffusion equation (1.1):

dzε (t) + (−∆)
α
p z

ε (t) dt =
√
εQdW (t) , zε (0) = 0. (4.1)

We will show the family of the distributions of the solutions zε of problem (4.1)
satisfies the large deviation principle in C ([0, T ], H)

⋂
Lp (0, T ;V ) as ε → 0. It is

easy to prove the existence and uniqueness of problem (4.1) for every ε > 0. Then as
an immediately result, there exists a Borel measurable mapping Gε : C ([0, T ], U) →
C ([0, T ], H)

⋂
Lp (0, T ;V ) such that zε = Gε (W ) P -almost surely.

Given v ∈ L2 (0, T ;H), consider the control equation of problem (4.1):

dzv
dt

(t) + (−∆)
α
p zv (t) = Qv (t) , zv (0) = 0. (4.2)

It is obviously that for every v ∈ L2 (0, T ;H), the problem (4.2) has the unique
solution zv ∈ C ([0, T ], H)

⋂
Lp (0, T ;V ).

Next, let G0 : C ([0, T ], U) → C ([0, T ], H)
⋂
Lp (0, T ;V ) be the mapping given

below, for every ξ ∈ C ([0, T ], U),

G0 (ξ) =

 zv if ξ =
∫ ·
0
v (t) dt for some v ∈ L2 (0, T ;H) ,

0, otherwise,
(4.3)

where zv is the solution of (4.2).
Given ϕ ∈ C ([0, T ], H)

⋂
L2 (0, T ;V ), denote by

I (ϕ) = inf

{
1

2

∫ T

0

∥v (s) ∥2Hds : v ∈ L2 (0, T ;H) , zv = ϕ

}
, (4.4)
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where zv is the solution of problem (4.2). Again, we let the infimum of empty sets
be ∞.

We next show the solutions of problem (4.2) satisfy the large deviation principle
in C ([0, T ], H)

⋂
Lp (0, T ;V ) with the rate function as we have given in (4.4). First,

we will show the solutions of problem (4.2) are locally Lipschitz continuous with
respect to v.

Lemma 4.1. For every T > 0, there exists a constant C1 > 0 depending on T ,
such that for every v, v1, v2 ∈ L2 (0, T ;H), the solutions zv, zv1 , zv2 of (4.2) satisfy

∥zv∥2C([0,T ],H) + ∥zv∥2L2(0,T ;V ) ≤ C1∥v∥2L2(0,T ;H),

and

∥zv1 − zv2∥2C([0,T ],H) + ∥zv1 − zv2∥2L2(0,T ;V ) ≤ C1

(
∥v1 − v2∥2L2(0,T ;H)

)
.

Proof. We first take an operator A : V → V ∗, for every u, v ∈ V ,

⟨A (u) , v⟩(V ∗,V )

=
C (n, p, α)

2

∫
Rn

∫
Rn

|u (x) − u (y)|p−2 (u (x) − u (y)) (v (x) − v (y))

|x− y|n+pα
dxdy.

(4.5)

The hemicontinuous, monotone and boundedness of operator A can be found in [17]
and hence for the problem (4.2), we can change it into an operator equation:

dzv (t) +Azv (t) dt = Qv (t) dt, zv (0) = 0. (4.6)

Moreover, by [4] we observe that such operator equation satisfies the energy equation
below

d

dt
∥zv (t) ∥2 + C (n, p, α) ∥zv (t) ∥p

Ẇα,p(Rn)
= 2 (Qv (t) , zv (t)) ,

then we have

d

dt
∥zv (t) ∥2 + C (n, p, α) ∥zv (t) ∥p

Ẇα,p(Rn)
≤ ∥zv (t) ∥2 + ∥Q∥2L2(H,H)∥v (t) ∥2.

By Gronwall’s Lemma we know

∥zv (t) ∥2 ≤ ∥Q∥2L2(H,H)∥v∥
2
L2(0,T ;H)e

T ,

and hence we have

∥zv∥2C([0,T ],H) ≤ eT ∥Q∥2L2(H,H)∥v∥
2
L2(0,T ;H),

and
∥zv∥2L2(0,T ;H) ≤ TeT ∥Q∥2L2(H,H)∥v∥

2
L2(0,T ;H).

Thus we know the Gagliardo semi-norm ∥zv∥Ẇα,p(Rn) is bounded while v is bounded.

Next, we will show when v is bounded, the norm of zv in space Lp (Rn) is
bounded to complete the proof. Multiplying (4.6) by |zv|p−2zv and integrating over
Rn we have

1

p

d

dt
∥zv∥pLp(Rn) +

∫
Rn

Azv|zv|p−2zvdx = 2
(
Qv, |zv|p−2zv

)
. (4.7)
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For the second term on left-hand of (4.7), by the definition of operator A and
the condition (3.4) we have∫

Rn

Azv|zv|p−2zvdx ≥ C (n, p, α)β

2

∫
Rn

∫
Rn

|zv (x) − zv (y)|2p−2

|x− y|n+pα
dxdy ≥ 0. (4.8)

Then by (4.7) and (4.8) we have

1

p

d

dt
∥zv∥pLp(Rn) ≤ 2∥Q∥L2(H,H)∥v∥∥zv∥p−1

which implies that

∥zv∥pLp(Rn) ≤ 2pT∥Q∥L2(H,H)∥v∥L2(0,T ;H)∥zv∥p−1
L2([0,T ],H),

and then the desired estimate established immediately.
By Lemma 4.1 we see that the solution zv of (4.2) is continuous in the space

C ([0, T ], H)
⋂
Lp (0, T ;V ) with respect to v in the norm topology of L2 (0, T ;H).

Next, we prove such continuous holds with respect to v in the weak topology of
L2 (0, T ;H). To that end, define an operator T : L2 (0, T ;H) → C ([0, T ], H) by

T (v) (t) =

∫ t

0

Qv (s) ds, ∀v ∈ L2 (0, T ;H) . (4.9)

It follows from [14] that the operator T has the following property.

Lemma 4.2 ( [14]). Let T be the operator as defined in (4.9), then we have:

(i) T is continuous from the weak topology of Lp (0, T ;V ) to the strong topology
of C ([0, T ], H).

(ii) T : L2 (0, T ;H) → C ([0, T ], H) is compact with respect to the strong topology
of C ([0, T ], H).

Next, we consider the convergence of the solutions of problem (4.2).

Lemma 4.3. Suppose Q ∈ L2 (H,H), v, vn ∈ L2 (0, T ;H) for all n ∈ N and zv, zvn
are the solutions of problem (4.2), respectively. If vn → v weakly in L2 (0, T ;H),
then zvn → zv strongly in C ([0, T ], H)

⋂
Lp (0, T ;V ).

Proof. Suppose vn → v weakly in L2 (0, T ;H). Then {vn}∞n=1 is bounded in
L2 (0, T ;H). By Lemma 4.1 we see that there exists c1 = c1 (t) > 0 such that

∥zvn∥C([0,T ],H) + ∥zv∥C([0,T ],H) + ∥zvn∥L2(0,T ;V ) + ∥zv∥L2(0,T ;V ) ≤ c1, ∀n ∈ N.
(4.10)

By problem (4.2) we have

d

dt
(zvn − zv) + (−∆)

α
p (zvn − zv) = Q (vn − v) , zvn (0) = zv (0) = 0, (4.11)

which shows that zvn − zv is the solution of problem (4.2) with respect to vn − v.
Then use operator A again we have

d

dt
∥zvn − zv∥2 + C (n, p, α) ∥zvn − zv∥pẆα,p(Rn)

= 2 (Q (vn − v) , zvn − zv) . (4.12)
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For each n ∈ N and t ∈ [0, T ], set

ψn (t) =

∫ t

0

Q (vn (s) − v (s)) ds. (4.13)

Since vn → v weakly in L2 (0, T ;H), by Lemma 4.2 we get

ψn (t) → 0 in C ([0, T ], V ) as n→ ∞, (4.14)

then we consider the right side of (4.12), by (4.13) and (4.14) we have

2 (Q (vn (t) − v (t)) , zvn (t) − zv (t))

=2

(
d

dt
ψn (t) , zvn (t) − zv (t)

)

=2
d

dt
(ψn (t) , zvn (t) − zv (t)) − 2

(
ψn (t) ,

d

dt
(zvn (t) − zv (t))

)

=2
d

dt
(ψn (t) , zvn (t) − zv (t)) − 2 (ψn (t) , Q (vn − v))

+ 2 (ψn (t) , A (zvn (t) − zv (t)))

≤2
d

dt
(ψn (t) , zvn (t) − zv (t)) + 2∥ψn (t) ∥∥Q∥L2(H,H)∥vn − v∥

+ 2∥ψn (t) ∥V ∥A∥ (∥zvn (t) ∥V + ∥zv (t) ∥V ) . (4.15)

By (4.12)-(4.15) we get for t ∈ (0, T ),

d

dt
∥zvn (t) − zv (t) ∥2 + C (n, p, α) ∥zvn (t) − zv (t) ∥p

Ẇα,p(Rn)

≤2
d

dt
(ψn (t) , zvn (t) − zv (t)) + 2∥ψn (t) ∥∥Q∥L2(H,H)∥vn − v∥

+ 2∥ψn (t) ∥V ∥A∥ (∥zvn (t) ∥V + ∥zv (t) ∥V ) ,

which shows that for all t ∈ [0, T ],

∥zvn (t) − zv (t) ∥2 + C (n, p, α)

∫ t

0

∥zvn (s) − zv (s) ∥p
Ẇα,p(Rn)

ds

≤2 (ψn (t) , zvn (t) − zv (t)) + 2∥Q∥L2(H,H)

∫ t

0

∥ψn (s) ∥∥vn (s) − v (s) ∥ds

+ 2∥A∥
∫ t

0

∥ψn (s) ∥V (∥zvn (s) ∥V + ∥zv (s) ∥V ) ds

≤2∥ψn (t) ∥∥zvn (t) − zv (t) ∥

+ 2∥Q∥L2(H,H)∥ψn∥C([0,T ],H)

∫ t

0

(∥vn (s) ∥ + ∥v (s) ∥) ds

+ 2∥A∥∥ψn∥C([0,T ],V )

∫ t

0

(∥zvn (s) ∥V + ∥zv (s) ∥V ) ds
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≤1

2
∥zvn (t) − zv (t) ∥2 + 2∥ψn∥2C([0,T ],H)

+ 2T
1
2 ∥Q∥L2(H,H)∥ψn∥C([0,T ],H)

(
∥vn∥L2(0,T ;V ) + ∥v∥L2(0,T ;V )

)
+ 2T

1
2 ∥A∥∥ψn∥C([0,T ],V )

(
∥zvn∥L2(0,T ;V ) + ∥zv∥L2(0,T ;V )

)
. (4.16)

By (4.16) we see that

sup
0≤t≤T

(
∥zvn (t) − zv (t) ∥2 + 2C (n, p, α)

∫ t

0

∥zvn (s) − zv (s) ∥p
Ẇα,p(Rn)

ds

)
≤4∥ψn∥2C([0,T ],H) + 4T

1
2 ∥Q∥L2(H,H)∥ψn∥C([0,T ],H)

(
∥vn∥L2(0,T ;V ) + ∥v∥L2(0,T ;V )

)
+ 4T

1
2 ∥A∥∥ψn∥C([0,T ],V )

(
∥zvn∥L2(0,T ;V ) + ∥zv∥L2(0,T ;V )

)
. (4.17)

Since {vn}∞n=1 is bounded in L2 (0, T ;H), by (4.10) and (4.13) we find that the
right-hand side of (4.17) converges to zero as n→ ∞, from which we have

lim
n→∞

∥zvn (t) − zv (t) ∥2 = 0, (4.18)

and

lim
n→∞

∫ t

0

∥zvn (s) − zv (s) ∥p
Ẇα,p

= 0. (4.19)

Next, mutiplying (4.11) by |zvn − zv|p−2 (zvn − zv) and integrating over Rn we
have

1

p

d

dt
∥zvn − zv∥pLp(Rn) +

∫
Rn

(−∆)
α
p (zvn − zv) |zvn − zv|p−2 (zvn − zv) dx

=

∫
Rn

Q (vn − v) |zvn − zv|p−2 (zvn − zv) dx. (4.20)

Again, for the second term on left-hand of (4.20), by the definition of p-Laplacian
operator and the condition (3.4) we have∫

Rn

(−∆)
α
p (zvn − zv) |zvn − zv|p−2 (zvn − zv) dx

≥C (n, p, α)β

2

∫
Rn

∫
Rn

|(zvn − zv) (x) − |(zvn − zv) (y)|2p−2

|x− y|n+pα
dxdy

≥0. (4.21)

And for the right-hand of (4.20) we have∫
Rn

Q (vn − v) |zvn − zv|p−2 (zvn − zv) dx

=
(
Q (vn − v) , |zvn − zv|p−2 (zvn − zv)

)
≤ |
(
Q (vn − v) , |zvn − zv|p−1

)
|
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=

∣∣∣∣( d

dt
ψn (t) , |zvn − zv|p−1

)∣∣∣∣
=

∣∣∣∣ ddt (ψn (t) , |zvn − zv|p−1
)
−
(
ψn (t) ,

d

dt
|zvn − zv|p−1

)∣∣∣∣
=

∣∣∣∣ ddt (ψn (t) , |zvn − zv|p−1
)
−
(
ψn (t) , (p− 1) (zvn − zv)

p−2 d

dt
(zvn − zv)

)∣∣∣∣
=

∣∣∣∣ ddt (ψn (t) , |zvn − zv|p−1
)
−
(
ψn (t) , (p− 1) (zvn − zv)

p−2
Q (vn (t) − v (t))

)
+
(
ψn (t) , (p− 1) (zvn − zv)

p−2
A (zvn (t) − zv (t))

)∣∣∣
≤
∣∣∣∣ ddt (ψn (t) , |zvn − zv|p−1

)∣∣∣∣+
∣∣∣(ψn (t) , (p− 1) (zvn − zv)

p−2
Q (vn (t) − v (t))

)∣∣∣
+
∣∣∣(ψn (t) , (p− 1) (zvn − zv)

p−2
A (zvn (t) − zv (t))

)∣∣∣ . (4.22)

Then integrating (4.20)-(4.22) on [0, T ] we have

1

p
∥zvn − zv∥pLp(Rn) ≤ ∥ψn∥∥zvn − zv∥p−1

+ (p− 1) ∥ψn∥C([0,T ],H)

∫ T

0

∥ (zvn (t) − zv (t)) ∥p−2∥Q (vn (t) − v (t)) ∥dt

+ (p− 1) ∥ψn∥C([0,T ],H)

∫ T

0

∥A∥∥zvn (t) − zv (t) ∥p−1dt

≤ (p− 1) ∥ψn∥C([0,T ],H)∥Q∥L2(H,H)∥vn − v∥C([0,T ],H)

∫ T

0

∥ (zvn (t) − zv (t)) ∥p−2dt

+ (p− 1) ∥ψn∥C([0,T ],H)∥A∥
∫ T

0

∥ (zvn (t) − zv (t)) ∥p−1dt+ ∥ψn∥∥zvn − zv∥p−1.

(4.23)

Then by the convergence of zvn − zv in space H and Lemma 4.1 we have

lim
n→∞

∥zvn − zv∥pLp(Rn) = 0,

along with (4.19) and the definition of the norm on space V we can infer that

lim
n→∞

∫ T

0

∥zvn − zv∥V dt = 0.

together with (4.18) show that the Lemma 4.3 comes into existence.

To prove the solutions of (4.1) satisfy the large deviation principle under the
rate function given by (4.4) in the space C ([0, T ], H)

⋂
Lp (0, T ;V ) , we need the

satisfaction of condition (H2) about the such solutions.
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Lemma 4.4. For every N <∞, the set

KN =

{
G0

(∫ ·

0

v (t) dt

)
: v ∈ SN

}
, (4.24)

is a compact subset of C ([0, T ], H)
⋂
Lp (0, T ;V ), where SN is the set as we have

defined in (2.2).

Proof. By (4.3) and (4.24) we have

KN =

{
zv : v ∈ L2 (0, T ;H) ,

∫ T

0

∥v (t) ∥2Hdt ≤ N

}
,

where zv is the solution of (4.2).
Let {zvn} be a sequence in KN , then by the definition of KN we know that∫ T

0
∥v (t) ∥2Hdt ≤ N , which means there exists v ∈ SN and a subsequence {vnk

}∞k=1

of {vn}∞n=1 such that vnk
→ v weakly in L2 (0, T ;H). Then use Lemma 4.3 we get

the fact that zvnk
→ uv strongly in the space C ([0, T ], H)

⋂
Lp (0, T ;V ). Thus the

Lemma is established.
Furthermore, such property of the measurable map Gε below is needed to prove

(H1).

Lemma 4.5. Let v ∈ AN for some N < ∞ and zεv = Gε
(
W + ε−

1
2

∫ ·
0
v (t) dt

)
.

Then zεv is the unique solution to

dzεv + (−∆)
α
p z

ε
vdt = Qvdt+

√
εQdW, zεv (0) = 0. (4.25)

In addition, there exists C2 = C2 (T,N) > 0 such that for any v ∈ AN , the solution
zεv satisfies for all ε ∈ (0, 1),

E
(
∥zεv∥2C([0,T ],H)

)
+ E

(
∥zεv∥2L2(0,T ;V )

)
≤ C2. (4.26)

Proof. The proof of Lemma 4.5 is the same as the proof in [14, Lemma 4.6] so
we omit it here.

Then we are ready to show G0 and Gε satisfying the condition (H1) to complete
this subsection.

Lemma 4.6. Let {vε} ⊆ AN for some N < ∞. If {vε} converges in distribution

to v as SN -valued random variables, then Gε
(
W + ε−

1
2

∫ ·
0
vε (t) dt

)
converges to

G0
(∫ ·

0
v (t) dt

)
in C ([0, T ], H)

⋂
Lp (0, T ;V ) in distribution.

Proof. Let zv = G0
(∫ ·

0
v (t) dt

)
. By (4.3) we see that zv is the solution of (4.2).

Let zεvε = Gε
(
W + ε−

1
2

∫ ·
0
vε (t) dt

)
. By lemma 4.5 we know that zεvε is the solution

to the equation:

dzεvε + (−∆)
α
p z

ε
vεdt = Qvεdt+

√
εQdW, zεvε (0) = 0. (4.27)

To show that zεvε converges to zv in C ([0, T ], H)
⋂
Lp (0, T ;V ) in distribution

as ε → 0, we first establish the convergence of zεvε − zvε with G0
(∫ ·

0
vε (t) dt

)
. By

(4.2) we have
dzvε + (−∆)

α
p zvεdt = Qvεdt, zvε (0) = 0. (4.28)
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By (4.27) and (4.28) we get

d (zεvε − zvε) + (−∆)
α
p

(
zεvε − zvε

)
dt =

√
εQdW. (4.29)

By (4.9) and under Definition 3.1 with operator A we have for t ∈ [0, T ],

∥zεvε (t) − zvε (t) ∥2 + C (n, p, α)

∫ t

0

∥zεvε (s) − zvε (t) ∥p
Ẇα,p

ds

=2
√
ε

∫ t

0

(zεvε (s) − zvε (s) , QdW ) , (4.30)

which implies that for all t ∈ [0, T ],

E
(

sup
0≤r≤t

(
∥zεvε (r) − zvε (r) ∥2 + C (n, p, α)

∫ t

0

∥zεvε (s) − zvε (s) ∥p
Ẇα,p

ds

))
≤2

√
εE
(

sup
0≤r≤t

|
∫ r

0

(zεvε (s) − zvε (s) , QdW )|
)
. (4.31)

For the right-hand of (4.31), by the Burkholder inequality we get for ε ∈ (0, 1),

2
√
εE
(

sup
0≤r≤t

|
∫ r

0

(zεvε (s) − zvε (s) , QdW )|
)

≤6
√
ε∥Q∥L2(H,H)E

((∫ t

0

∥zεvε (s) − zvε (s) ∥2ds
) 1

2

)

≤3
√
ε∥Q∥L2(H,H) + 3

√
ε∥Q∥L2(H,H)

∫ t

0

E
(
∥zεvε (s) − zvε (s) ∥2

)
ds, (4.32)

which along with (4.31) implies that for all t ∈ [0, T ] and ε ∈ (0, 1),

E
(

sup
0≤r≤t

(
∥zεvε (r) − zvε (r) ∥2 + C (n, p, α)

∫ t

0

∥zεvε (s) − zvε (s) ∥p
Ẇα,p

ds

))
≤3

√
ε∥Q∥L2(H,H) + 6

√
ε∥Q∥L2(H,H)

∫ t

0

∥zεvε (s) ∥2 + ∥zvε (s) ∥2ds. (4.33)

On the other hand, by Lemmas 4.1 and 4.5 we see that there exists c1 = c1 (T,N) >
0 such that for all ε ∈ (0, 1),

E
(
∥zεvε − zvε∥2C([0,T ],H)

)
+ C (n, p, α)E

(∫ T

0

∥zεvε (s) − zvε (s) ∥p
Ẇα,p

ds

)
≤3

√
ε∥Q∥L2(H,H) + 6

√
εTc1∥Q∥L2(H,H). (4.34)

By (4.34) we see that

lim
ε→0

E
(
∥zεvε − zvε∥2C([0,T ],H)

)
= 0,

and

lim
ε→0

E

(∫ T

0

∥zεvε (s) − zvε (s) ∥p
Ẇα,p

ds

)
= 0.
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Moreover we can use the same method as the one we used in Lemma 4.3 when
proving the convergence of ∥zvn − zv∥Lp(Rn) in space H to get the condition below:

lim
ε→0

E
(
∥zεvε−zvε∥

p
Lp(Rn)

)
= 0,

so we omit the proof. Then by the three conditions above, we have

lim
ε→0

(zεvε − zvε) = 0 in probability in C ([0, T ], H)
⋂
Lp (0, T ;V ) . (4.35)

Since {vε} converges in distribution to v in SN , by Skorokhod’s theorem, there

exists a probability space
(

Ω̃, F̃ , P̃
)

and SN -valued random variables ṽε and ṽ on(
Ω̃, F̃ , P̃

)
such that ṽε and ṽ have the same distribution as vε and v respectively,

and ṽε converges to ṽ almost surely in SN which is endowed with weak topology.
By Lemma 4.3 we find that

zṽε → zṽ in C ([0, T ], H)
⋂
Lp (0, T ;V ) almost surely,

and hence

zṽε → zṽ in C ([0, T ], H)
⋂
Lp (0, T ;V ) in distribution,

which implies that

zvε → zv in C ([0, T ], H)
⋂
Lp (0, T ;V ) in distribution,

along with (4.35) shows that

zεvε → zv in C ([0, T ], H)
⋂
Lp (0, T ;V ) in distribution,

as desired.
Then by Proposition 2.1 and Lemmas 4.4 and 4.6, we obtain the large deviation

principle of the solutions of the linear equation (4.2), as described below.

Lemma 4.7. If zε is the solution of (4.2), then the family {zε} satisfies the large
deviation principle in C ([0, T ], H)

⋂
L2 (0, T ;V ) with good rate function as given

by (4.4) as ε→ 0.

In the next we show the uniform large deviation principle of stochastic p-
Laplacian reaction-diffusion equation (1.1), which is the main result of the paper.

5. Uniform large deviation principle of nonlinear
equations

In this section, we will use the method mentioned in Theorem 2.1 to prove the
uniform large deviation principle of (1.1)-(1.2) with respect to u0 in a bounded
subset of H.

Given u0 ∈ H and z ∈ C ([0, T ], H), consider the deterministic equation:

dũ

dt
+ (−∆)

α
p ũ+ F (t, x, ũ+ z) = g, ũ (0) = 0. (5.1)
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Under condition (3.5a)-(3.5c), it is easy to show that for every u0 ∈ H and
z ∈ C ([0, T ], H), such deterministic equation (5.1) has a unique solution ũ ∈
C ([0, T ], H)

⋂
Lp (0, T ;V ). For convenience, we write the solution of problem (5.1)

as ũ (t, u0, z).
Note that if uε and zε are the solutions of (1.1)-(1.2) and (4.2), respectively, then

ũε = uε−zε is a solution of (5.1) with z replaced by zε. To prove the uniform large
deviation principle of the solution of (1.1), we need the locally Lipshitz continuity
of the solutions of (5.1) first.

Lemma 5.1. If ( (3.5a)-(3.5c) hold and T > 0. Then for every R1 > 0 and R2 > 0,
there exists a positive constant LR1,R2

depending on R1, R2 and T such that the
solution of (5.1) satisfies

∥ũ (·, u0, z1) − ũ (·, u0, z2) ∥C([0,T ],H)
⋂
Lp(0,T ;V ) ≤ LR1,R2

∥z1 − z2∥C([0,T ],H),

for all u0 ∈ H with ∥u0∥ ≤ R1 and z1, z2 ∈ C ([0, T ], H) with ∥z1∥C([0,T ],H) ≤ R2

and ∥z2∥C([0,T ],H) ≤ R2.

Proof. Let z1, z2 ∈ C ([0, T ], H) with ∥z1∥C([0,T ],H) ≤ R1 and ∥z2∥C([0,T ],H) ≤ R2.
For v (t) = ũ (t, u0, z1) − ũ (t, u0, z2), by (5.1) we have

d

dt
v (t) + (−∆)

α
p v (t) = − F (t, x, ũ (t, u0, z1) + z1 (t))

+ F (t, x, ũ (t, u0, z2) + z2 (t)) , (5.2)

with v (0) = 0. Then by (5.2) we have

d

dt
∥v (t) ∥2 + C (n, p, α) ∥v (t) ∥p

Ẇα,p(Rn)

≤2∥F (t, ·, ũ (t, u0, z1) + z1 (t)) − F (t, ·, ũ (t, u0, z2) + z2 (t)) ∥∥v (t) ∥. (5.3)

For the right-hand of (5.3), by (3.5c) we have

2∥F (t, ·, ũ (t, u0, z1) + z1 (t)) − F (t, ·, ũ (t, u0, z2) + z2 (t)) ∥∥v (t) ∥

= 2∥ ∂
∂u
F (t, x, u′) (ũ (t, u0, z1) + z1 (t) − ũ (t, u0, z2) − z2 (t)) ∥∥v (t) ∥

≤ ∥ψ4 (t, ·) (v (t) + z1 (t) − z2 (t)) ∥∥v (t) ∥
≤ ∥ψ4∥L∞(Rn)

(
2∥v (t) ∥2 + ∥z1 (t) − z2 (t) ∥2

)
, (5.4)

where u′ is a point in [ũ (t, u0, z1) , ũ (t, u0, z2)], then by (5.3)-(5.4) and Gronwall’s
Lemma we obtain for all t ∈ [0, T ],

∥v (t) ∥2 ≤ ∥ψ4∥L∞(Rn)T∥z1 − z2∥2C([0,T ],H)e
2T∥ψ4∥L∞(Rn) . (5.5)

and we also have

C (n, p, α)

∫ T

0

∥v (t) ∥p
Ẇα,p(Rn)

dt

≤∥ψ4∥L∞(Rn)

∫ T

0

∥v∥ (∥v∥ + ∥z1 − z2∥) dt

≤2T
1
2 ∥ψ4∥L∞(Rn)∥v∥2L2(0,T ;H) + ∥ψ4∥L∞(Rn)T∥z1 − z2∥2C([0,T ],H). (5.6)
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For convenience we write c2 = ∥ψ4∥L∞(Rn)Te
2T∥ψ4∥L∞(Rn) , and hence we have

∥v∥L2(0,T ;H) =

(∫ T

0

∥v (t) ∥2dt

) 1
2

≤ T
1
2 c

1
2
2 ∥z1 − z2∥C([0,T ],H). (5.7)

Then by (5.6) and eq5.7 we have∫ T

0

∥v (t) ∥p
Ẇα,p(Rn)

dt ≤ c3∥z1 − z2∥2C([0,T ],H), (5.8)

where c3 =
2c22T

3
2 ∥ψ4∥L∞(Rn)+T∥ψ4∥L∞(Rn)

C(n,p,α) is a positive constant.

Next, multiplying (5.2) by |v (t)|p−2v (t) and integrating over Rn we get

1

p

d

dt
∥v (t) ∥pLp(Rn) +

∫
Rn

(−∆)
α
p v (t) |v (t)|p−2v (t) dx

=
(
F (t, x, ũ (t, u0, z2) + z2 (t)) − F (t, x, ũ (t, u0, z1) + z1 (t)) , |v (t)|p−2v (t)

)
.

(5.9)

As we have shown in (4.21), we know the second term on the left-hand of (5.9) is
non-negative and hence together with condition (3.5c) we have

1

p

d

dt
∥v (t) ∥pLp(Rn) ≤ ∥ψ4∥L∞(Rn)∥z1 (t) − z2 (t) + v (t) ∥∥v (t) ∥p−1

≤ ∥ψ4∥L∞(Rn)∥z1 (t) − z2 (t) ∥∥v (t) ∥p−1

+ ∥ψ4∥L∞(Rn)∥v (t) ∥p. (5.10)

Then integrating on [0, t] and together with (5.5) we get

∥v (t) ∥pLp(Rn) ≤
(
c

p−1
2

2 + c
p
2
2

)
pT∥ψ4∥L∞(Rn)∥z1 − z2∥pC([0,T ],H). (5.11)

Then the Lemma is established as a result of (5.5), (5.8) and (5.11).
Next, we discuss the uniform large deviation of the distributions of solutions of

(1.1)-(1.2).
Given T > 0 and u0 ∈ H, let Tu0 : C ([0, T ], H)

⋂
 Lp (0, T ;V ), be the mapping

given by

Tu0
(z) = ũ (·, u0, z) , ∀z ∈ C ([0, T ], H)

⋂
 Lp (0, T ;V ) , (5.12)

where ũ (·, u0, z) is the solution of (5.1). Given ϕ ∈ C ([0, T ], H)
⋂

 Lp (0, T ;V ),
define

Ju0 (ϕ) =inf{I (ψ) : ψ ∈ C ([0, T ], H)
⋂
Lp (0, T ;V ) ,

ψ + Tu0
(ψ) = ϕ, ϕ (0) = 0}, (5.13)

where I is the rate function given by (4.4).
We are now ready to show the main result of the paper regarding the uniform

large deviation principle of (1.1)-(1.2) in C ([0, T ], H)
⋂
Lp (0, T ;V ).
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Theorem 5.1. Suppose (3.5a)-(3.5c) hold and T > 0. Given u0 ∈ H, let uε (·, u0)
be the solutions of (1.1)-(1.2), and νε,u0

be the distribution law of uε (·, u0) in
C ([0, T ], H)

⋂
Lp (0, T ;V ). Then the family {νε,u0}ε>0 satisfies a large deviation

principle in C ([0, T ], H)
⋂
Lp (0, T ;V ) with rate function Ju0 uniformly with respect

to u0 in a bounded subset of H.

Proof. Given u0 ∈ H, let Tu0 and Ju0 be the mappings as defined by (5.7) and
(5.8), respectively. Then by Lemma 5.1 we find that z + Tu0

(z) is locally Lipschitz
continuous in z ∈ C ([0, T ], H)

⋂
Lp (0, T ;V ), uniformly with respect to u0 in a

bounded subset of H.
Let zε be the solution of (4.2), and µε be the distribution law of zε. Then we

have uε (·, u0) = ũε (·, u0, zε) + zε = (I + Tu0) (zε). Since νε,u0 is the distribution

law of uε (·, u0), we have νε,u0 = µε ◦ (I + Tu0)
−1

.
By Lemma 4.7 we know that the family {µε}ε>0 satisfies the large deviation

principle in C ([0, T ], H)
⋂
Lp (0, T ;V ) with rate function I as given by (4.4), which

along with Theorem 2.1 implies that the family {νε,u0
}ε>0 satisfies the large de-

viation principle on C ([0, T ], H)
⋂
Lp (0, T ; V ) uniformly with respect to u0 in a

bounded subset of H with rate function given as below:

Ju0 (ϕ) = inf{I (ψ) : ψ ∈ (I + Tu0
)
−1

({ϕ})}
= inf{I (ψ) : ψ ∈ C ([0, T ], H) ∩ Lp (0, T ;V ) , ψ + Tu0

= ϕ},

for every ϕ ∈ C ([0, T ], H)
⋂
Lp (0, T ;V ), which concludes the proof.
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Laplacian, Hölder type continuity and continuous dependence of solutions to
associated parabolic equations on bounded domains, Nonlinear Anal., 2016, 135,
129–157.

[18] J. Xu, T. Caraballo and J. Valero, Dynamics and large deviations for fractional
stochastic partial differential equations with Lévy noise, SIAM J. Math. Anal.,
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