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UNIFORM LARGE DEVIATION PRINCIPLES
OF FRACTIONAL STOCHASTIC
P-LAPLACIAN REACTION-DIFFUSION
EQUATIONS ON UNBOUNDED DOMAINS*

Mudong Li* and Pengyu Chen’?T

Abstract This paper is concerned with uniform large deviation principles
of fractional stochastic p-Laplacian reaction-diffusion equations driven by ad-
ditive noise defined on unbounded domains. The nonlinear drift is assumed
to be locally Lipschitz continuous. Due to the non-compact of the solution
operator, we will use the method of weak convergence to show the result.
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1. Introduction

In this paper, we would like to think of the uniform large deviation principles of
fractional stochastic p-Laplacian reaction-diffusion equations which are defined on
the whole space R™ and driven by additive noise as well. Given « € (0,1), consider
the Ito stochastic equation:

du (t) + (=A)y u(t)dt + F (t,z,u(t)) dt = g (t,x) dt +/eQdW, (1.1)
with initial condition
uw(0,2) =ug, ze€R™ >0, (1.2)

where € > 0 is the intensity of noise, —A% is fractional p-Laplacian operator, with
p>2,F:RxR"” xR — Ris anon-linear function satisfying certain conditions, g €
L}, (R, L* (R"))is given, Q: L* (R") — H' (R") is a Hilbert-Schmidt operator and
W is a two-side real-valued Wiener process defined on a complete filtered probability
space (Q,]—'7 {ft}te[O,T]v-P) for some T > 0. Throughout this paper, we write the
inner product and norm of L? (R") as (-,-) and || - ||, respectively.
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The fractional partial differential equations arise from lots of applications in [2,3,
5,13,15,18] while the systems with standard p-Laplacian have been well-investigated
in [1,9]. The solutions and the long term dynamics of these equations have been
extensively studied in the literature, see in [10]. In this paper, we would like to
show the uniform large deviation principle of the stochastic fractional p-Laplacian
reaction-diffusion equation (1.1).

The large deviation principles of stochastic equations are related to exit time and
exit place of the solutions from a domain, and have been studied by many authors
in the literature, see, e.g. [6,7,11,12,14,15,18]. In particular, in [14], the author has
studied the uniform large deviation principle of the non-local fractional stochastic
reaction-diffusion equation defined on the entire space R™ driven by additive noise.
However, when the problem comes to the p-Laplacian in which p > 2 is rigidly, that
means the space WP isn’t a Hilbert space so that the normal way of inner product
cannot be used. To solve this problem, we need the operator A from [17] to finish
the estimate of the solutions of fractional stochastic p-Laplacian reaction-diffusion
equation (1.1) in the space C ([0,7T], H)()LP (0,T;V). Next, we will recall some
propaedeutics to reach that end.

2. Large deviation principles

In this section, we recall the weak convergence theory for large deviation principles
from [7,8].

2.1. Weak convergence theory for large deviations

Assume £ as a Polish space, on which we have a Borel o-algebra B (€). Let {ve}es0
be a family of probability measures on (£, B (£)). As a beforehand procedure to show
the large deviation principle of {v. }e~0, we need the definition of rate functions.

Definition 2.1. A function J: & — [0, 00 is said to be a rate function on & if it is
lower semi-continuous on £. A rate function J on £ is called a good rate function
on & if for every 0 < s < oo, the level set J° = {z € £ : J(2) < s} is a compact
subset of £.

Then it comes to show the definition of large deviation principles of probability
measures.

Definition 2.2. Let J: & — [0, 00] be a good rate function on € and {v.}.~0 be a
family of probability measures on (€, B (£)). We say family {v.}.~¢ satisfies a large
deviation principle on £ with rate function J if:

(i) For every s >0, 01 > 0 and Jo > 0, there exists 9 > 0 such that

_ J(2)+682

Ve N (2,01)) > e~ = , Ve<egy, Vzell,

where NV (z,61) ={y € £ : dist (y,2) < 61} and ' ={z € E:J(z) < s}
(ii) For every sg > 0, 6; > 0 and d2 > 0, there exists €9 > 0 such that

P

Ve (E\N (J5,6))) < e =0, Ve<ey, Vs< s,

where N (J°,61) = {z € £ : dist (z, J°) < 01}.
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Next, we show the large deviation principles of random variables in €.

Let (97 F AFi}epo, 15 P) be a complete filtered space satisfying usual condition.
Assume {W (t) }+cjo,7] is a two-side real-valued Wiener process with identity covari-
ance operator in a separable Hilbert space H with respect to (Q, F AFt}epo,r; P),
which means there exists another separable Hilbert space U such that the embedding
H — U is a Hilbert-Schmidt operator and W (t) takes values in U for t € [0, T].

Given € > 0, let G : C ([0, T],U) — £ be a measurable map and set

XE=G=(W), Ve>O0. (2.1)

By the knowledge of stochastic process we know { X¢} is a family of random variables
in £. Therefore X¢ has a distribution law on £ and we write it as v.. Then we say
the family {X¢} satisfying the large deviation principle on & if the family {v.}.>0
satisfies the large deviation principle on &. Given N > 0, denote by

Sy = {v € L2(0,T; H) : /T o (t) 1% dt < N} . (2.2)
0

Note that when endowed with weak topology, Sy is a Polish space. Let A be the
space of all H-valued stochastic processes v which are progressively measurable with

respect to {F; }eejo,r) While fOT v (t)||%dt < oo P-almost surely. Set
Av={veA:v(w) e Sy foralmost all w € Q}. (2.3)

We further assume that there exists a measurable map G° : C ([0,T],U) — &
such that G° and the family {G®}.~ satisfy the following conditions:
(H1) If N < oo and {v°} C Ay such that {v.} convergences in distribution to
v as Sy-valued random variables, then G° (W +e2 fo ve (t) dt) convergences in
distribution to G° ([, v (t) dt) in E.

(H2) For every N < oo, {G% (f; v (t)dt) : v € Sy} is a compact subset of £.
Let I : £ — [0,00] be a mapping given by, for every z € £,

I(z) = inf{;/o v (t) ||%dt : v € L? (0, T; H) such thatG° </O-v(t) dt) = x} ,

(2.4)
especially we take the infimum over an empty set as co. By assumption (H2),
we can infer the fact of every level set of I is compact in £, so by Definition 2.1
I is a good rate function on £. In addition, it follows from (H1), (H2) and [7]
that {X®}.s0 satisfies the large deviation principle in £ with rate function I, as
presented below.

Proposition 2.1 ( [7]). If G and {G®}.~o satisfy (H1)-(H2), then the family
{X¢®}es0 as given by (2.1) satisfies the large deviation principle in € with rate
function I as defined by (2.4).

2.2. Uniform large deviation principle

In this subsection, we recall the definition of uniform large deviation principle and
recall the uniform contraction principle for proving such uniform large deviations
in a separable Banach space.
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Definition 2.3. Let A be a nonempty set and Z be a separable Banach space.
Given A € A, suppose {ve}e>0 is a family of probability measures on (Z, B(Z2))
and Jy : Z — [0,00] is a good rate function. We say the family {ve x}e>0 satisfies
a large deviation principle on Z uniformly in A € A with rate function J) if:

(i) For every s > 0, 61 > 0 and d2 > 0, there exists €9 > 0 such that

_ Ia(=a)+52

/\1r€11fx (Va)\ (N (2x,61)) — e c > > 0,Ve < gp,Vzy € J3, (2.5)

where N (zx,01) ={z € Z : ||z — 25|z < 01} and J§ = {z € Z, J) (2) < s}.
(ii) For every sg > 0, 6; > 0 and d2 > 0, there exists €9 > 0 such that

sup e\ (Z \ N (J3,61)) Se_%,vggao,v(sgso, (2.6)
AEA

where N (J5,61) = {z € Z : dist (2, J§) < 61}

Theorem 2.1 (Uniform contraction principle, [14]). Suppose A is a nonempty set,
Y and Z are separable Banach spaces. Let {pc}e>0 be a family of probability mea-
sures satisfying the large deviation principle with rate function I :' Y — [0,00] on
(Y,B(Y)). Given A € A, let T\ : Y — Z be a locally Lipschitz continuous map-
ping, that is for every R > 0, there exists a constant Ly > 0 such that for all
A€ Ny, y2 €Y, with ||y1]] < R and ||y2|| < R, we have

ITx (1) = Tx (y2) |z < Lrllyr — v2|ly-

Given A € A and e > 0, let v,y = pe 0 (’7}\)_1. Then we have {ve x}e>0 satisfies
the large deviation principle on Z uniformly in A € A with good rate function Jy as
given by:

Ia(z) = inf{I(y) :y € (T) " (2)},Vz € 2.

We will use Theorem 2.1 to prove the uniform large deviation principle of the
solutions of the stochastic equation (1.1) with respect to initial data in a bounded
set.

3. Existence of solutions of fractional p-Laplacian
stochastic equations

In this section, we give the assumption of nonlinear term in stochastic equation
(1.1) and discuss the existence and uniqueness of solutions of the equation as well.

We first recall the concept of fractional p-Laplacian (—A)g on R™, where 0 <
a < 1and 2 < p < oo. Denote by

u ()P~

LR = {u :R" - R" is measurable,/ —_—
[e ( ) Rn (1+ |x|)n+pa

dx<oo}.

For u € LP71 (R™),z € R™ and € > 0, we write

8@ = Clna) [ u (@) —u @I @) —uw)

b, —
’ yER? |y—z|>€ |$ y|n+po¢

)
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where the normalized constant C (n, p, «) is given by

adeT (POL+P2+7L—2)

, with T' being the usual Gamma function.

Then the fractional p-Laplacian operator (—A)Z, withO<a<land2<p<oois
defined by

(—4), u(z) =lim (=A)} u(x)

P el0

=C (n,p, @) P.V./ [u@) —u @) @) —u) ) e

o =g

n

if the limits exist, where P.V. means the principle value of the integral. The frac-
tional Sobolev space WP (R™), with 0 < @ < 1 and 2 < p < oo is defined as:

|u (@ (y)P
WP (R™ e L? (R™) —— o0 1
(R™) = {u / / |x |n+pa rdy < , (3.1)

endowed with the norm

ez = ([ @0 410k, ) W@, 6

where o )7
u «, n
il = [ [ P ey, wewer @, (53)

is the so-called Gagliardo semi-norm on W (R").
Moreover, we can find in [4] that the inequality below is established:

(la["~%a — |b]P2b) (a — b) > Bla —b|> forall p € [2,00), (3.4)

where 3 is a positive constant only depending on p.

For convenience, in the rest of the paper, we write H = L? (R"), and V =
WP (R™). We also use Lo (Hy, Hs) for the space of Hilbert-Schmidt operators
from separable Hilbert space H; to separable Hilbert space Hs endowed with the
norm || : ||Lz(H1,H2)'

For the nonlinear term F' in equation (1.1), we assume F': R x R® x R — R is
continuous, such that for every (¢,z,u) € R x R™ x R, we have:

F (t,z,u)u > Mu|'=y (t,2), 1 € Lj,, (R, L' (R™)), (3.5a)
|F (t,x,u)| < o (8 ) [ul ™+ 3 (¢, 2)

vy € Ly, (R, L™ (R™)), 45 € Lf,. (R, L% (R™)), (3.5b)
%F (t,x,u) <y (t,z), g € L7s, (R, L (R™)), (3.5¢)

where A > 0,q > 1 are constants, § denotes the conjugate exponent of q.

Definition 3.1. For every ¢t € [0,T], w € , a continuous function v : H — H is
said to be the weak solution of problem (1.1)-(1.2), if

ue (| ﬂLP ([0, ],
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and
W e 1ot (jo,1), et (')
and for every £ € HV,
)
C (n,p,) u (@) —u ()P~ (u(z) —u(y)) € (x) —£(y)
:/ F(t,z,u(t))&(x)de + / g (t,z) & (z) do + / (5 (x), \/EQdW) . (3.6)
R™ R™ n

By [16] we know, when the conditions (3.5a), (3.5b), (3.5¢) satisfied, there exists
the unique solution of problem (1.1)-(1.2).

Throughout this paper, we assume that (Q, F, {F; }ter, P) is a complete filtered
space with usual condition. We also assume that W is a two-side real-valued Wiener
process with identity covariance operator in H, that means there exists another
separable Hilbert space U such that the embedding H — U is a Hilbert-Schmidit
operator and W takes value in U. Next, we discuss the uniform large deviation
principle of the solutions of linear equation.

4. Large deviation principle of linear equations

In this section, we think of the large deviation principle of the linear equation of
the fractional stochastic p-Laplacian reaction-diffusion equation (1.1):

dz (t) + (—A);, 27 (t) dt = /eQdW (t), 27 (0) = 0. (4.1)

We will show the family of the distributions of the solutions z° of problem (4.1)
satisfies the large deviation principle in C ([0,T], H)(L? (0,T;V) as € — 0. It is
easy to prove the existence and uniqueness of problem (4.1) for every € > 0. Then as
an immediately result, there exists a Borel measurable mapping G¢ : C ([0,T],U) —
C([0,T],H)(LP (0,T;V) such that 2 = G* (W) P-almost surely.

Given v € L?(0,T; H), consider the control equation of problem (4.1):

dz,
dt

It is obviously that for every v € L? (0, T; H), the problem (4.2) has the unique
solution 2, € C ([0, T], H) (L* (0, T; V).
Next, let G° : C ([0,7],U) — C ([0, T], H) (L (0,T;V) be the mapping given
below, for every £ € C ([0,T],U),

(1) + (=03 2 () = Quit), 20 (0)=0. (12)

z if &= [ju(t)dt forsome wve L?(0,T;H),

G’ = (4.3)

0, otherwise,

where z,, is the solution of (4.2).
Given ¢ € C ([0,7], H)( L?(0,T; V), denote by

T
I(¢) = inf{;/o v (s)|%ds:ve L*(0,T;H), z, = ¢} , (4.4)
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where z, is the solution of problem (4.2). Again, we let the infimum of empty sets
be co.

We next show the solutions of problem (4.2) satisfy the large deviation principle
in C ([0,T),H)( LP (0, T; V) with the rate function as we have given in (4.4). First,
we will show the solutions of problem (4.2) are locally Lipschitz continuous with
respect to v.

Lemma 4.1. For every T > 0, there exists a constant C7 > 0 depending on T,
such that for every v,vi,ve € L?(0,T; H), the solutions z,, zy,, v, of (4.2) satisfy

”ZUHQC([O,T],H) + ||ZU||%2(O,T;V) < Cl||”||2L2(0,T;H)a
and
|20, — sz||20([0,T],H) + (20, — Zv2||2L?(07T;V) <G (HUl - U2H%2(O,T;H)) :
Proof. We first take an operator A : V — V*, for every u,v € V,

(A (u) 7U>(V*,V)
_Cpa [ [ jo@) —u )P @ @) —u @) @ =vw) o )

o =y

The hemicontinuous, monotone and boundedness of operator A can be found in [17]
and hence for the problem (4.2), we can change it into an operator equation:

dz, (1) + Az, (1) dt = Qu (t)dt, z,(0) =0. (4.6)

Moreover, by [4] we observe that such operator equation satisfies the energy equation
below

L llew ()1 +C (00,00 20 (1) By gy = 2@ 1), 20 (1),

then we have

d
Zlz0 O 17+ C (np,0) 120 (8) [Ty gy < 20 (12 + IQUZ, (a1, 1 () 1%
By Gronwall’s Lemma we know

|20 (2) ||2 < ”QH%Q(H,H)H’UH%Q(O,T;H)eT’

and hence we have

”ZWH%’([O,T],H) < eT”QH%:z(H,H)||’UH%2(O,T;H)7

and
”ZDH%Z(O,T;H) < T6T||Q||2£2(H,H)”vH%Z(O,T;H)'
Thus we know the Gagliardo semi-norm ||z, ||yj;a.» (gny is bounded while v is bounded.
Next, we will show when v is bounded, the norm of z, in space LP (R") is

bounded to complete the proof. Multiplying (4.6) by |z,|[P~22, and integrating over
R"™ we have

1d

—— |z ||P Azy|2p|P 2 2pdz = 2 WP 722, 4.7
ey + [ Anoleo P e =2 (Qu P 2) (47)



3102 M. Li & P. Chen

For the second term on left-hand of (4.7), by the definition of operator A and
the condition (3.4) we have

_ 2p—2
/sz|zv|” Zydx>M// 2 @) =2 WP, S0 (1)

T

Then by (4.7) and (4.8) we have

1d

2l @y < 20Q ez llollll2o P~
)

which implies that

2ol 7 gy < 20TN@Q 22 o, 11) 10| 2 0. 202 (0,71

and then the desired estimate established immediately. O
By Lemma 4.1 we see that the solution z, of (4.2) is continuous in the space
C ([0, T), H)(L? (0,T;V) with respect to v in the norm topology of L? (0,T; H).
Next, we prove such continuous holds with respect to v in the weak topology of
L?(0,T; H). To that end, define an operator 7 : L? (0,T; H) — C ([0,T], H) by

= /t Qu(s)ds, YveL*(0,T;H). (4.9)
0

It follows from [14] that the operator T has the following property.
Lemma 4.2 ( [14]). Let T be the operator as defined in (4.9), then we have:

(i) T is continuous from the weak topology of LP (0,T;V) to the strong topology
of C([0,T], H).

(ii) T : L*(0,T; H) — C ([0, T), H) is compact with respect to the strong topology
of C([0,T], H).

Next, we consider the convergence of the solutions of problem (4.2).

Lemma 4.3. Suppose Q € Lo (H, H), v,v, € L?>(0,T; H) for alln € N and z,, z,,
are the solutions of problem (4.2), respectively. If v, — v weakly in L*(0,T;H),
then z,, — z, strongly in C ([0,T], H)(L* (0,T;V).

Proof. Suppose v, — v weakly in L2 (0,7; H). Then {v,}3; is bounded in
L?(0,T; H). By Lemma 4.1 we see that there exists ¢; = ¢; (t) > 0 such that

20, lco,m,m) + l2ollcqo,m,m) + 2o, l220. vy + I20ll2200,m3v) < €1, In f N. )
4.10

By problem (4.2) we have

d

7 (20, = 20) + (=A)5 (20, — 20) = Q (v, =), 2y, (0) = 2,(0) =0, (4.11)

which shows that z,, — z, is the solution of problem (4.2) with respect to v, — v.
Then use operator A again we have

d 2 p —
a”zvn —zl”+C(n,p,a) |2, — Zv”Wa,p(Rn) =2(Q (vn —v), 20, —20). (412)



Uniform LDP of fractional stochastic p-Laplacian ... 3103

For each n € N and ¢ € [0, T, set

¢
0= [ Qun(s) = v(9)ds. (4.13)
0
Since v,, — v weakly in L? (0,T; H), by Lemma 4.2 we get
Yo (t) =0 in C([0,T],V) as n— oo, (4.14)
then we consider the right side of (4.12), by (4.13) and (4.14) we have
2(Q (vn (1) = v (1)), 20, (t) — 20 (1))
d
=2 <dt¢n (t), 20, (t) — 2y (t)>

=2 0 ()20, 6= 20 0) =2 (0 0, 1 o (0= 20 0))

:2% (Y () 5 20, () = 20 (£) = 2 (¢ (£),Q (v, — v))
+2 (Y (t), A2, (t) — 20 (1))
SQ% (Wn (1) s 20, () = 20 () + 2l1ton () [1Qll o (11,11 lon = 0]

+ 2[[¢n (&) VAL (20, () v + 120 () V) - (4.15)
By (4.12)-(4.15) we get for ¢t € (0,T),
d
D e 1) = 20 02+ C (1.9, 2, (6) = 20 0) By
d
<2 (U (8) s 20, () = 20 (1) + 2[[¥n () 1 Qll 2o, [ — 0]
+ 2[[¢n () VIl (120, (&) lv + 1120 () V),
which shows that for all ¢ € [0, T7,

I () = 20 ()12 + € (0.2,0) [ o, ()= 20 (5) e gy
<20 8) 20 () = 20 (0) + 20 Qs [ 0 () e (5) = 0 (5) s

+2||A||/0 [ (8) [lv (120, () v + ll20 () [lv') ds

<2[|¢pn (8) [ll20,, (£) = 20 (8) |

t
+2/Qll o (a0 [[¥nll 0,718 /O (o () 1 +lv (s) 1) ds

t
2 Al ooy / (120, (3) v + l120 (5) [lv) ds
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1
<520, ) = 20 (O 7 + 20 8nlEo,1,m)

1
+ 272 (|Ql 2o o, 1) | | o 0,77, 1) (1onll 20,7y + 10l 22 (0,73)

1
+ 2Tz | Al [¥nllco,r1,vy (1Zo, 120, 05v) + 120l 20, 75vy) - (4.16)

y (4.16) we see that

sup. (o, (0= 20 ()12 420 (05.0) [0, ) = 0 6) [y s

0<t<T
<Al o 11,80 + AT QN o, 1¥nll oo, rry (lonll2o.zv) + 0l 20,75v)

1
+4T= | Allllnllcqo,rr,v) (12o,ll220,75v) + 20l L20,75v)) - (4.17)

Since {v,}22; is bounded in L2 (0,T; H), by (4.10) and (4.13) we find that the
right-hand side of (4.17) converges to zero as n — oo, from which we have

lim [z, (£) — 20 (t) |2 =0, (4.18)
and .
Jim [z (5) = 20 (5) W, =0, (4.19)

Next, mutiplying (4.11) by |2,, — 2,[P 72 (24, — 2») and integrating over R™ we
have

1d P -
e, = ey + [ (A = 20) o = 5l (e, = )

= Q (vn, — ) |20, — 20|P % (20, — 2,) de. (4.20)
R"'L

Again, for the second term on left-hand of (4.20), by the definition of p-Laplacian
operator and the condition (3.4) we have

/ (_A)g (20, — 20) |20, — Zvlp_2 (2, — 2v) dx

ZM /71 /n |(20,, — 20) () — (20, — 20) (y)|2p—2 dady

o =yl

>0. (4.21)

And for the right-hand of (4.20) we have
Q (v — ) |20, — 20|P "2 (20, — 20) d:
RTL

= (Q (Un — ), |Zvn - Zv‘p72 (Zvn - ZU))
< |(Q (Un - 'U) ) |Zvn - zv|p_1)|
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_|(4d _ -1
= | (Gon Ol =2

d d
= | 0 0 o =P = (1), Gyl =2 )|

- % (ton (1) 120, = 2lP71) = (wn (), (p = 1) (20, = 2)" % (20, — z,,>> ‘

- % (n (8), 120, = 217) = (80 (1), (0= 1) (20, = 200" Q (0 (8) = v (1))

(60 (0, 0= 1) (20, = 20" Az, () = 20 (1))

< ’jt (Y (), 120, = 207 |+ | (0 (1), (0= 1) (2, = 2P 2 Q 0 (1) =0 (1))

+ ‘ (7/’71 (t) s (p - 1) (Zvn - Zv)p_2 A (Zvn (t) — v (t))) ‘ . (4-22)

Then integrating (4.20)-(4.22) on [0, 7] we have

1 _
il = 2ol to@ny < Mnllllzo, — 2P~

T
+ 0= 1) [l / 1 2o () — 20 (8)) [P7211Q (v (1) — v () [t
+ 0= 1) [Wnlleqorm / 1Al 120, (£) = 20 (2) [P~ 2dt

T
< (= D lalleqom,mlQlezirmlvn = vlleqo.m,m /0 I (20, (£) = 20 (8)) |P~2dt
T
+(-1) ||1/Jn||C([o,T],H)||A||/O I (20, (8) = 20 (O) P71t + [9hnl 120, — 2ol
(4.23)
Then by the convergence of z,,, — 2, in space H and Lemma 4.1 we have
. _p _
nh_?;o [ ZvHLp(Rn) 0,

along with (4.19) and the definition of the norm on space V' we can infer that

T
lim |20, — 2v|lvdt = 0.
n—oo
together with (4.18) show that the Lemma 4.3 comes into existence. O

To prove the solutions of (4.1) satisfy the large deviation principle under the
rate function given by (4.4) in the space C ([0,T], H)(L* (0,T;V) , we need the
satisfaction of condition (H2) about the such solutions.
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Lemma 4.4. For every N < oo, the set

KN:{QO (/O'U(t)dt> :UESN}, (4.24)

is a compact subset of C ([0, T],H)(L? (0,T;V), where Sy is the set as we have
defined in (2.2).

Proof. By (4.3) and (4.24) we have

T
Ky = {ZU cv e L? (O,T;H),/ v (t) ||§{dt§N},
0

where z, is the solution of (4.2).
Let {z,,} be a sequence in Ky, then by the definition of Ky we know that

fOT lv () |3;dt < N, which means there exists v € Sy and a subsequence {v,, }3°
of {v,}2; such that v,, — v weakly in L? (0,T; H). Then use Lemma 4.3 we get
the fact that 2, — u, strongly in the space C (0,77, H)(L? (0,T;V). Thus the
Lemma is established. O

Furthermore, such property of the measurable map G¢ below is needed to prove

(H1).
Lemma 4.5. Let v € Ax for some N < oo and z = G° (W—!—e_% Jouv(t) dt).
Then 25 is the unique solution to

dzs + (—A)2 25dt = Qudt + eQdAW, 25 (0) = 0. (4.25)

v

In addition, there exists Cy = Co (T, N) > 0 such that for any v € Ay, the solution
z5 satisfies for all € € (0,1),

E (161201 ) +E (161320020 ) < Co. (4.26)

Proof. The proof of Lemma 4.5 is the same as the proof in [14, Lemma 4.6] so

we omit it here. O
Then we are ready to show G° and G¢ satisfying the condition (H1) to complete

this subsection.

Lemma 4.6. Let {v°} C Ay for some N < co. If {v°} converges in distribution

to v as Sn-valued random wvariables, then G° (W tez fo v () dt) converges to
GO (fyv (t)dt) in C([0,T]),H)L? (0,T;V) in distribution.
Proof. Let z, = G° ([, v (t)dt). By (4.3) we see that z, is the solution of (4.2).

Let 25. = G° (W +e2 Jove (1) dt). By lemma 4.5 we know that zZ. is the solution
to the equation:

dzge + (=A), zpedt = Quedt +/eQdW,  z; (0) = 0. (4.27)

Ve

To show that z5. converges to z, in C ([0,T], H)(L* (0,T;V) in distribution
as € — 0, we first establish the convergence of z5_ — z, with G° ([, v (t) dt). By
(4.2) we have

dzpe + (—A) zpedt = Quidt,  2pe (0) = 0. (4.28)
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By (4.27) and (4.28) we get
d(z5e — 20e) + (=A)7 (25, — 2ve) dt = VeQdW. (4.29)

P

By (4.9) and under Definition 3.1 with operator A we have for ¢ € [0, T,
2500 =20 @12+ C .0 [z 6) = 2 (D1

_oE /0 (5. () — 20e (5),QdW), (4.30)

which implies that for all ¢ € [0, T,

IE( sup <||z§5 (r) = zpe (r) ||2+C(n7p,a)/0t|zis (5) = 2ve (8) |17}, , s ))

0<r<t
r

<2yeE ( sup | [ (25 (s) — zue (5), QdW)|> . (4.31)

o<r<t Jo

For the right-hand of (4.31), by the Burkholder inequality we get for € € (0, 1),

s

2@5( sup | [ (25 () — zee (s)7QdW)I>

0<r<t JO

<6V Ql ey E ((/Ot 125 (5) = 20 (s) 2ds) é)

t
§3\@||Q||z:2(H,H>+3\@IIQH1:2(H,H>/O E (ll5 (s) = 2o (s) |I?) ds (4.32)

which along with (4.31) implies that for all ¢ € [0, 7] and € € (0, 1),

— e 2 e — Zye
e (sup, (15 0) =20 17 +C () [ 125 (9= 20 9 ) )
<BVENRcama + VEIQNcssan [ o5 )+ e ()P (439

On the other hand, by Lemmas 4.1 and 4.5 we see that there exists ¢; = ¢; (T, N) >
0 such that for all € € (0,1),

T
E <||Zf;e - ZUEH?J([O,T],H)) +C(n,p,0) E (/0 125 (8) = 2ve (8) 17,0, @ )

<BVellQllzo .1y + 6Tt | Qll 2, (1, 1) (4.34)

y (4.34) we see that

I IE( P ):
lim B ([l25e = 2o lloqo,m,m) ) = 05

T
: € _ . 110~ —
lim E ( /0 125, (5) = 2oe (s) ||Wa,pds> 0.

and
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Moreover we can use the same method as the one we used in Lemma 4.3 when
proving the convergence of ||z,, — 2u||rrrn) in space H to get the condition below:

: £ p —
;%E (szefz,,,a Lp(Rn)) - Oa

so we omit the proof. Then by the three conditions above, we have

lim (25. — 2,2) =0 in probability in  C ([0,T], H)(|L" (0,T;V).  (4.35)

e—0
Since {v°} converges in distribution to v in Sy, by Skorokhod’s theorem, there
exists a probability space (ﬁ,]? , ﬁ) and Sy-valued random variables v® and ¥ on

((NZ, F , ]3> such that v¢ and ¥ have the same distribution as v® and v respectively,

and v¢ converges to v almost surely in Sy which is endowed with weak topology.
By Lemma 4.3 we find that

zge = 2y in C([0,T),H) ﬂ L?(0,T;V) almost surely,
and hence

zye = 2y in C([0,T], H) n L?(0,7;V) in distribution,
which implies that

Zpe = 2y in C([0,T], H) ﬂ L?(0,7;V) in distribution,
along with (4.35) shows that

25 =z, in C([0,T],H) ﬂ L?(0,7;V) in distribution,

as desired. O
Then by Proposition 2.1 and Lemmas 4.4 and 4.6, we obtain the large deviation
principle of the solutions of the linear equation (4.2), as described below.

Lemma 4.7. If 2° is the solution of (4.2), then the family {z°} satisfies the large
deviation principle in C ([0, T], H)(L*(0,T;V) with good rate function as given
by (4.4) as e — 0.

In the next we show the uniform large deviation principle of stochastic p-
Laplacian reaction-diffusion equation (1.1), which is the main result of the paper.

5. Uniform large deviation principle of nonlinear
equations

In this section, we will use the method mentioned in Theorem 2.1 to prove the
uniform large deviation principle of (1.1)-(1.2) with respect to up in a bounded
subset of H.

Given ug € H and z € C' ([0,T], H), consider the deterministic equation:

du

E+(—A)25+F(t7x,ﬂ+z):g7 u (0) = 0. (5.1)
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Under condition (3.5a)-(3.5¢), it is easy to show that for every wy € H and
z € C([0,T],H), such deterministic equation (5.1) has a unique solution u €
C([0,T],H)(L? (0, T;V). For convenience, we write the solution of problem (5.1)
as u (t, ug, 2).

Note that if u® and z° are the solutions of (1.1)-(1.2) and (4.2), respectively, then
u® = u® — 2° is a solution of (5.1) with z replaced by 2°. To prove the uniform large
deviation principle of the solution of (1.1), we need the locally Lipshitz continuity
of the solutions of (5.1) first.

Lemma 5.1. If ((3.5a)-(3.5¢) hold and T > 0. Then for every Ry > 0 and Ry > 0,
there exists a positive constant Lg, g, depending on Ry, Ry and T such that the
solution of (5.1) satisfies

% (-, w0, 21) — U (-, u0, 22) oo, 1) A Lr0,13v) < LRy Ro 121 — 22|l (0,17, 1)5

for all ug € H with |lugl| < Ry and 21,20 € C([0,T], H) with ||z1|lcqo,r),m5) < Re
and || z2]|co,m,m) < Ra.

Proof. Let z1, 25 € C ([O,T], H) with ||21HC([O,T],H) < R; and ||22||C([O,T]7H) < Rs.
For v (t) = w (¢, uo, 21) — w (¢, uo, 22), by (5.1) we have

—v(t) + (=A), v (t) == F(t,z,u(t, uo, 21) + 21 ()
+ F (t,x,u (¢, ug, 22) + 22 (1)), (5.2)
with v (0) = 0. Then by (5.2) we have
d 2
I @ +C (n,p,0) [0(8) Ia s my
S2||F (t7 "a(taumzl) + 21 (¢ )) - F(t’ U <t7u0vz2) + 22 (t)) HHU (t> H (5.3)
For the right-hand of (5.3), by (3.5¢) we have
2| F (8- (t,uo, 21) + 21 (8)) = F (8- @ (t, uo, z2) + 22 () [|[|v (2) |
= 2l b, o) 0 (1 g, 22) 21 (1) = T (100, 22) — 22 (6) o ()

)
< s (8,7) (v (8) + 21 (1) — 22 (8)) [[l[o (2) ]
< vall oy N0 () 17 + ll21 (8) = 22 () ) (5-4)

where v’ is a point in [@ (¢, uo, 21) , U (¢, ug, 22)], then by (5.3)-(5.4) and Gronwall’s
Lemma we obtain for all ¢ € [0, 77,

lo () 17 < all e mmy Tll21 = 2201 o 7y, ry e 212 7. (5.5)

and we also have
T
C0.0,0) [ 100yt
’ T
SIIMIILw(Rn)/O [oll (loll + llz1 = z2|) dt

1
<2T% |[¢hal| oo @) 101|720, 711y + ¥all e @y Tllz1 — 22llE 0 7.1y (5.6)
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For convenience we write ¢a = ||th4|| oo () T2 T 1¥4ll2 @) and hence we have

1
2

T 1
[/l 20,7y = (/ lvo (£) ||2dt> < T2¢3 |21 = 22l oqo.rm- (5.7)
0
Then by (5.6) and eq5.7 we have

T
/0 [0 6) 1B oyt < e3llz2 = 2oy (5.8)

3
2c3T2 ny+T oy s "
where c3 = =2 HWHL;((W; Wallzoo@n) g5 5 positive constant.

Next, multiplying (5.2) by |v (#)[P~2v (t) and integrating over R" we get

L0y + [ (AR OP 0 () do

= (F (t,z,u(t,uo, 22) + 22 (t)) — F (t, 2,0 (t,u0,21) + 21 (t)) , [v ()P0 (1)) .
(5.9)

As we have shown in (4.21), we know the second term on the left-hand of (5.9) is
non-negative and hence together with condition (3.5¢) we have

1d
20 @O 1 @y < Ialloe@nyllzn () = 22 (8) + 0 (@) v @) [P~

< N[allpoe ey ll2 () = 22 (&) [l]lo (&) [P~
+ 19l Loo eyl (2) |17 (5.10)

Then integrating on [0, ¢] and together with (5.5) we get

1o () ey < (@27 +f ) pT Il oy llon = 22l 20 (5.11)
Then the Lemma is established as a result of (5.5), (5.8) and (5.11). O
Next, we discuss the uniform large deviation of the distributions of solutions of

(1.1)-(1.2).
Given T > 0 and ug € H, let T, : C([0,T], H)(LP (0, T;V), be the mapping
given by
Tuo (2) =1 (yuo,2), ¥z € C([0,T],H)(L” (0,T;V), (5.12)
where @ (-, ug, z) is the solution of (5.1). Given ¢ € C([0,T],H) L (0,T;V),
define

JU (¢) =inf{I (v) : ¢ € C([0,T],H)(L" (0,T;V),
Y+ Tu () =9, ¢(0) =0}, (5.13)

where T is the rate function given by (4.4).
We are now ready to show the main result of the paper regarding the uniform
large deviation principle of (1.1)-(1.2) in C ([0, T], H)( L? (0,T; V).
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Theorem 5.1. Suppose (3.5a)-(3.5¢) hold and T > 0. Given ug € H, let u® (-, up)
be the solutions of (1.1)-(1.2), and v, be the distribution law of u® (-, ug) in
C([0,T],HY(L? (0,T;V). Then the family {ve u,}e>0 Satisfies a large deviation
principle in C ([0,T], H) ( L? (0, T; V) with rate function J“° uniformly with respect
to ug in a bounded subset of H.

Proof. Given ug € H, let T,, and J*° be the mappings as defined by (5.7) and
(5.8), respectively. Then by Lemma 5.1 we find that z + Ty, (2) is locally Lipschitz
continuous in z € C([0,T],H)(L* (0,T;V), uniformly with respect to ug in a
bounded subset of H.

Let 2° be the solution of (4.2), and u. be the distribution law of 2. Then we
have u® (-, ug) = 0® (-, up, 2°) + 2° = (I + Ty,) (7). Since ve,, is the distribution
law of uf (-, ug), we have ve uy = pre 0 (I + To) ™"

By Lemma 4.7 we know that the family {u.}.>0 satisfies the large deviation
principle in C ([0, T, H) (| L? (0, T; V') with rate function I as given by (4.4), which
along with Theorem 2.1 implies that the family {ve ., }e>0 satisfies the large de-
viation principle on C ([0, T], H)(L* (0,T; V) uniformly with respect to ug in a
bounded subset of H with rate function given as below:

JU (¢) = inf{I (v) : ¢ € (I +Top) ™" ({61}
= inf{I (¢) : ¢ € C([0,T), H)NLP (0, T; V), % + Toy = 0},

for every ¢ € C ([0,T], H)( LP (0,T’; V'), which concludes the proof. O
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