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ON THE LYAPUNOV CONSTANTS OF
PLANAR PIECEWISE SMOOTH SYSTEMS
SEPARATED BY AN ANALYTICAL CURVE∗

Qing Zhang1 and Zhengdong Du1,†

Abstract In this paper, we consider the computations of Lyapunov constants
of a class of planar piecewise analytical systems defined in two zones separated
by an analytical curve y = ϕ(x) with ϕ(0) = 0. Assume that the origin (0, 0)
is a pseudo-focus of the system. We propose an extension of the classical
polar coordinates for the subsystem with focus contact, and an extension of
the (R, θ, 1, 2)-generalized polar coordinates for the subsystem with parabolic
contact. Then we present the method on how to calculate the relevant
Lyapunov constants. As applications, we present three planar piecewise
quadratic systems. The first one is of parabolic-parabolic type separated by
y = sin2 x which has four limit cycles bifurcated from (0, 0). The second
one is of focus-parabolic type separated by y = ex − 1 which has five limit
cycles bifurcated from (0, 0). The last one is of focus-focus type separated by
y = sinx which has five limit cycles bifurcated from (0, 0).
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1. Introduction

Many practical problems involving switching, collision and friction are modeled by
piecewise smooth (PWS) systems. Thus in the last decades, a lot of works were
devoted to investigate the number of crossing limit cycles in planar PWS systems
defined in two zones Ω+

L := {(x, y) ∈ R2 : y > 0} and Ω−
L := {(x, y) ∈ R2 : y < 0}

separated by the switching line y = 0 given by the following form:

(ẋ, ẏ)
T
=
(
X±(x, y), Y ±(x, y)

)T
, if (x, y) ∈ Ω±

L , (1.1)

where X±(x, y) and Y ±(x, y) are real analytical functions. A crossing limit cycle
of system (1.1) refers to a limit cycle which intersects y = 0 transversally. In the
sequel, if not specified, all of the limit cycles mentioned are crossing limit cycles.

In particular, many researchers focused their attentions on finding a uniform
upper bound Hc

p(n) of the maximum number of limit cycles of system (1.1) in the
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case when X±(x, y) = X±
n (x, y) and Y ±(x, y) = Y ±

n (x, y) are real polynomials of
degree n. This is a difficult problem even for the simplest case of n = 1. Under the
continuity assumption, Lum and Chua conjectured in 1991 that system (1.1) with
n = 1 has at most one limit cycle [38], which was proved by Freire et al. in [14]. If
system (1.1) is discontinuous and n = 1, then Han and Zhang constructed examples
of (1.1) that have two limit cycles and conjectured that Hc

p(1) = 2 in [23], which
was disproved in [25] by showing that Hc

p(1) ≥ 3. Recently Carmona et al. proved
in [6] that there is a unform upper bound L∗ ≤ 8 for the maximum number of limit
cycles of system (1.1) with n = 1. The problem of finding Hc

p(2) is still open. To
our knowledge, the best result to date is Hc

p(2) ≥ 16 obtained by da Cruz et al.
in [12].

Another important problem for system (1.1) is finding the maximum number of
small amplitude limit cycles that can bifurcate from (0, 0) through degenerate Hopf
bifurcation when (0, 0) is a pseudo-focus, which was first studied by Coll et al. in
their pioneering work [11]. According to [11], there are four types of pseudo-focus,
namely focus-focus (FF), focus-parabolic (FP), parabolic-focus (PF) and parabolic-
parabolic (PP) types. Since then, small amplitude limit cycles bifurcated from a
pseudo-focus of planar PWS quadratic systems defined in two zones separated by
a straight line have been extensively studied. To mention only a few of them,
see [3, 7–9, 11, 16, 18, 35, 40, 44] and the references therein. More recently, Hopf
bifurcation for planar PWS near-Hamiltonian systems with a center of PP or FP
type was studied by Han and Liu in [21] by using the Melnikov method.

On the other hand, Braga and Mello showed in [4] that the shape of the
discontinuity sets of a PWS system can significantly affect the number of limit
cycles. Moreover, there are many problems arising from applications are modeled
by PWS systems whose discontinuity sets consist of multiple lines or nonlinear
curves. Consequently, limit cycle bifurcations of planar PWS systems defined in
two or multiple zones separated by multiple lines or nonlinear curves have been
extensively studied. For example, in [48,49], Küpper etal. investigated limit cycles
arising from Hopf bifurcations emanated from a corner of PWS systems. In [24]
Hosham considerd bifurcation of sliding periodic orbits for n-dimensional PWS
systems by using invariant cones proposed in [45]. The number and distribution of
limit cycles in planar PWS systems defined in three zones separated by two parallel
lines were investigated in [27, 32, 33, 41, 46, 47]. Cardin and Torregrosa studied the
number of limit cycles in planar piecewise linear (PWL) systems defined in two
zones separated by a nonregular line formed by two rays started from (0, 0) and
proved that the irregularity of the separation line can increase the number of limit
cycles in [5]. Limit cycles for PWS systems with a nonregular separation line were
also studied in [2,26,30,31,34,42]. In [36,37], Llibre et al. constructed PWL systems
with infinitely many limit cycles defined in infinitely many zones separated by the
straight lines |x| = 2n − 1 for n = 1, 2, · · · . An example of PWL systems with
infinitely many limit cycles defined in two zones separated by an analytical curve
was given in [17].

Furthermore, there are many works considered systems with algebraic or smooth
separation curves. In [15], Gasull suggested to study L(n), the lower bound of the
maximum number of limit cycles of planar PWL systems with two zones separated
by a branch of algebraic curve of degree n. This problem was investigated by
Andrade et al. in [1] and Novaes in [39]. In particular, Novaes proved in [39] that
L(n) grows as fast as n2. The number of limit cycles bifurcated from a period
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annulus of a class of planar piecewise Ck systems defined in two zones separated by
a Ck curve were studied in [22, 43] by using the Melnikov method. In [29], Li and
Llibre studied the maximum number of planar piecewise polynomial Hamiltonian
systems of degree n with the switching boundary y = xm for m ≥ 1 and n ≥ 1 by
also calculating the Melnikov-like functions.

Although big progress has been made on the study of limit cycle bifurcations
of planar PWS systems, few attentions have been paid to the computations of
the Lyapunov constants of a PWS system when the discontinuity set consists of
nonlinear separation curves passing through (0, 0) and (0, 0) is a pseudo-focus of
the system. It is known that the Lyapunov constants are powerful tools to tackle
center-focus and cyclicity problems for both smooth and PWS systems. Thus in
this paper we aim to make some efforts on this issue.

More precisely, we focus our attentions on the computations of Lyapunov
constants of a class of planar piecewise analytical systems defined in two zones
separated by an analytical curve y = ϕ(x) with ϕ(0) = 0. Assume that the
origin (0, 0) is a pseudo-focus of the system. The main difficulty here is that if
one tries to write the subsystem with focus contact in classical polar coordinates
x = r cos θ, y = r sin θ, or to write the subsystem with parabolic contact in the
well known (R, θ, 1, 2)-generalized polar coordinates as described in [11], then for
an orbit segment of the corresponding subsystem which intersects the switching
curve, the interval of θ varies as the intersections move on the switching curve.
To overcome this difficulty, we propose an extension for each of these two types
of coordinates, so that the interval of θ for any of such kind of orbit segments is
the same. Then we present the method on how to calculate the relevant Lyapunov
constants. As applications, we present three planar piecewise quadratic systems.
The first one is of PP type separated by y = sin2 x which has four limit cycles
bifurcated from (0, 0). The second one is of FP type separated by y = ex − 1 which
has five limit cycles bifurcated from (0, 0). The last one is of FF type separated by
y = sinx which has five limit cycles bifurcated from (0, 0).

Our presentation is organized as follows. In Section 2, we present basic
assumptions and the main results of the paper. In Section 3, we discuss the
properties of the Lyapunov constants of planar piecewise smooth systems separated
by an analytical curve. In Section 4, we discuss the number of limit cycles bifurcated
from (0, 0) for three types of planar piecewise quadratic systems defined in two zones
separated by an analytical curve. Some concluding remarks are given in Section 5.

2. Preliminaries and the main results

Let H(x, y) = y − ϕ(x), where y = ϕ(x) is an analytical function. Without loss of
generality, we assume that:

(H1) y = ϕ(x) is analytical. After translation and rescaling, we assume that ϕ(0) =
0 and there is an integer m0 ≥ 1 such that ϕ(x) = xm0 + O(xm0+1) :=
ϕ′(0)x + ϕ̄(x), implying that ϕ′(0) = 1 when m0 = 1 or ϕ′(0) = 0 when
m0 ≥ 2.

Then R2 is split into two disjoint open sets Ω+ =
{
(x, y) ∈ R2 : H(x, y) > 0

}
and

Ω− =
{
(x, y) ∈ R2 : H(x, y) < 0

}
by the switching curve Σ = {(x, y) ∈ R2 :

H(x, y) = 0}. Let Σ+ = {(x, y) ∈ Σ : x > 0}, Σ− = {(x, y) ∈ Σ : x < 0}.
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(a) m0 ≥ 2 is an even number. (b) m0 ≥ 1 is an odd number.

Figure 1. The two zones Ω+, Ω− separated by the analytical curve y = ϕ(x) = xm0 + O(xm0+1).

The two zones Ω+, Ω− and the discontinuity set Σ = Σ+∪Σ−∪{(0, 0)} for m0 ≥ 2
even and for m0 ≥ 1 odd are sketched in Figures 1 (a) and (b) respectively.

Consider the following planar PWS system:ẋ
ẏ

 =

Z+(x, y) := (X+(x, y), Y +(x, y))T , if (x, y) ∈ Ω+,

Z−(x, y) := (X−(x, y), Y −(x, y))T , if (x, y) ∈ Ω−,
(2.1)

where X±(x, y) and Y ±(x, y) are analytical functions. The subsystem of (2.1) in
the region Ω+ (resp. Ω−) is called the upper (resp. lower) subsystem of (2.1).
Let ⟨·, ·⟩ be the standard scalar product in R2. Following [3], for (x, y) ∈ Σ, let
Z±H(x, y) = ⟨∇H(x, y), Z±(x, y)⟩ be the derivative of H(x, y) in the direction
of the vector fields Z±(x, y), and (Z±)2H(x, y) = ⟨∇(Z±H(x, y)), Z±(x, y)⟩. For
(x, y) ∈ Σ, let

σ(x, y) = Z+H(x, y) · Z−H(x, y)

=
(
−ϕ′(x)X+(x, y) + Y +(x, y)

) (
−ϕ′(x)X−(x, y) + Y −(x, y)

)
.

Then according to [28], the crossing region Σc ⊂ Σ and the sliding region Σs ⊂ Σ
of system (2.1) are respectively given by:

Σc = {(x, y) ∈ Σ : σ(x, y) > 0} , Σs = {(x, y) ∈ Σ : σ(x, y) ≤ 0} .

A point in Σs (resp. Σc) is called a sliding (resp. crossing) point of system (2.1).
A point (x, y) ∈ Σs with Z−H(x, y) − Z+H(x, y) = 0 is called a singular sliding
point. The Filippov’s convention is assumed for the solutions of system (2.1) on Σ.
More precisely, according to [28], on the crossing region Σc, the two vector fields
Z+(x, y) and Z−(x, y) have nontrivial normal components of the same sign. The
orbits from Ω+ and Ω− reaching the crossing region are concatenated to form an
orbit of system (2.1). For each of the nonsingular sliding points (hence it is not
isolated) (x, y) ∈ Σs, one associates the following convex combination gs(x, y) of
the two vector fields in Ω+ and Ω−:

gs(x, y) = λsZ
+(x, y) + (1− λs)Z

−(x, y), λs =
Z−H(x, y)

Z−H(x, y)− Z+H(x, y)
.
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At any non-isolated singular sliding point, gs(x, y) and its derivatives can be defined
by continuity. We set gs(x, y) = 0 at any isolated singular sliding point on Σs.
Consequently, we can define a scalar differential equation

(ẋ, ẏ)T = gs(x, y), for (x, y) ∈ Σs, (2.2)

which is smooth on one-dimensional sliding intervals of Σs. Solutions of equation
(2.2) is called sliding solutions [28]. By this method, one can define the orbit of
system (2.1) with a sliding segment as described in [28]. In particular, a limit cycle
of system (2.1) which intersects the line of discontinuity Σ only in crossing points is
called a crossing limit cycle, while a limit cycle which contains some sliding segments
is called a sliding limit cycle. Again, all of the limit cycles mentioned in the sequel,
if not specified, are crossing limit cycles.

An equilibrium (xbe, ϕ(xbe)) ∈ Σs of system (2.2), where the vectors Z± are
transversal to Σs and anti-collinear, is called a pseudo-equilibrium of system (2.1).
Thus a pseudo-equilibrium of system (2.1) is an internal point of the sliding region
Σs [28]. Let (xe, ye) ∈ R2 be a point with (X+(xe, ye), Y

+(xe, ye)) = (0, 0) (resp.
(X−(xe, ye), Y

−(xe, ye)) = (0, 0)). If (xe, ye) ∈ Ω+ (resp. (xe, ye) ∈ Ω−), then it is
called a real equilibrium of system (2.1). If (xe, ye) ∈ Ω− (resp. (xe, ye) ∈ Ω+), then
it is called a virtual equilibrium of system (2.1). If (xe, ye) ∈ Σ, then it is called
a boundary equilibrium of system (2.1). A point (xt, yt) ∈ Σ with Z+H(xt, yt) =
−ϕ′(xt)X+(xt, yt) + Y +(xt, yt) = 0 (resp. Z−H(xt, yt) = −ϕ′(xt)X−(xt, yt) +
Y −(xt, yt) = 0) is called a tangential point of the upper (resp. lower) subsystem of
system (2.1). If it is a tangential point for both of the upper and lower subsystem,
then it is called a double tangential point. A tangential point (xt, yt) ∈ Σ for the
upper (resp. lower) subsystem with (Z+)2H(xt, yt) < 0 (resp. (Z−)2H(xt, yt) > 0)
is called an invisible fold of the upper (resp. lower) system. It is called a visible fold
if (Z+)2H(xt, yt) > 0 (resp. (Z−)2H(xt, yt) < 0). A point (x0, y0) ∈ Σ is called
a singularity of system (2.1) if it is either a boundary equilibrium or a tangential
point of one of the subsystems. An invisible fold is also called a parabolic singularity
of system (2.1). A point (x0, y0) ∈ Σ is called a stable (resp. unstable) pseudo-focus
of system (2.1) if all orbits in a neighborhood of (x0, y0) spiral around and tend to
it as time increases (resp. decreases) [11].

We remark here that a singular sliding point is a singularity of system (2.1), but
not vice versa. We further assume that:

(H2) (0, 0) is a pseudo-focus of system (2.1). For each of the subsystems of system
(2.1), (0, 0) is either a focus, namely, the linear part of the vector field at (0, 0)
has a pair of conjugate complex eigenvalues, or a parabolic singularity. The
flows of system (2.1) in a neighborhood of (0, 0) cross Σ counterclockwise.

Since X±(x, y) and Y ±(x, y) are analytical functions, we assume that they can
be written as:

X±(x, y) = a±00 +

∞∑
i+j=1

a±ijx
iyj , Y ±(x, y) = b±00 +

∞∑
i+j=1

b±ijx
iyj ,

where a±ij , b
±
ij ∈ R are constants. Similar to [11], a pseudo-focus of system (2.1)

satisfying (H1) and (H2) can be classified into four types, namely, FF, FP, PF and
PP types. Here a pseudo-focus of FF (resp. PP) type means that it is a singularity
of focus (resp. parabolic) type for both of the upper and the lower subsystems. A
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pseudo-focus of FP (resp. PF) type means that it is a singularity of focus (resp.
parabolic) type for the upper subsystem and a singularity of parabolic (resp. focus)
type for the lower subsystem. Clearly, a PF type critical point of system (2.1) can be
reduced to the FP type by applying the change of coordinates (x, y, t) 7→ (−x,−y, t).
In this case, the switching curve y = ϕ(x) is transformed to y = −ϕ(−x), which
also satisfies the assumption (H1).

We remark here that, a parabolic type of singularity of the upper (resp. lower)
subsystem of (2.1) is a special case of a singularity of contact of multiplicity k (or
order k− 1) between the upper (resp. lower) subsystem and Σ with k = 2 in terms
of the concept introduced by Novaes and Silva in [40]. Moreover, a pseudo-focus
of PP type corresponds to a (2k+, 2k−)-monodromic tangential singularity in [40]
with k± = 1.

We have the following results.

Proposition 2.1. Suppose that a+00 = b+00 = 0 (resp. a−00 = b−00 = 0) and (H1-H2)
hold. Then (0, 0) is a singularity of focus type for the upper (resp. lower) subsystem
of (2.1) if and only if (a+10− b

+
01)

2+4a+01b
+
10 < 0 and b+10+ϕ

′
(0)(b+01−a

+
10−a

+
01) > 0

(resp. (a−10 − b−01)
2 + 4a−01b

−
10 < 0 and b−10 + ϕ

′
(0)(b−01 − a−10 − a−01) > 0).

Proof. First, (0, 0) is a focus of the upper (resp. lower) subsystem of system (2.1)
if and only if (a+10 − b+01)

2 + 4a+01b
+
10 < 0 (resp. (a−10 − b−01)

2 + 4a−01b
−
10 < 0). Then

under the assumptions (H1-H2), the orbits of system (2.1) cross Σ counterclockwise
in a neighbourhood of (0, 0). Considering the upper subsystem, for sufficiently small
|x| > 0, we have

x
(
Y +(x, y)−X+(x, y)ϕ′(x)

)
> 0,

implying that [
b+10 + ϕ′(0)(b+01 − a+10 − a+01ϕ

′(0))
]
x2 +O(x3) > 0

for sufficiently small |x| > 0. Thus we have b+10+ϕ
′(0)(b+01−a

+
10−a

+
01ϕ

′(0)) > 0. By
(H1), we have ϕ′(0) = 0 or ϕ′(0) = 1. Thus this is equivalent to b+10 + ϕ′(0)(b+01 −
a+10 − a+01) > 0. Similarly, we have b−10 + ϕ′(0)(b−01 − a−10 − a−01) > 0 by considering
the lower subsystem.

The proof is complete.

Proposition 2.2. Suppose that (H1-H2) hold. Then:
(1) If ϕ′(0) = 0, then (0, 0) is of parabolic type for the upper (resp. lower)

subsystem of (2.1) if and only if a+00 < 0, b+00 = 0 and b+10 − ϕ(2)(0)a+00 > 0 (resp.
a−00 > 0, b−00 = 0 and b−10 − ϕ(2)(0)a−00 > 0).

(2) If ϕ′(0) = 1, then (0, 0) is of parabolic type for the upper (resp. lower)
subsystem of (2.1) if and only if a+00 = b+00 < 0 and b+10+b

+
01−a

+
10−a

+
01−ϕ(2)(0)a

+
00 > 0

(resp. a−00 = b−00 > 0 and b−10 + b−01 − a−10 − a−01 − ϕ(2)(0)a−00 > 0).

Proof. We only prove the results for the upper subsystem of (2.1). The proof for
the lower subsystem is similar. Under the assumptions (H1-H2), since the orbits in
a neighborhood of (0, 0) of the upper subsystem cross Σ counterclockwise, we have
a+00 < 0. Moreover, (0, 0) is a parabolic singularity of the upper subsystem if and
only if:

Z+H(0, 0) = b+00 − ϕ′(0)a+00 = 0,

(Z+)2H(0, 0) = a+00(−a
+
10ϕ

′(0)− a+00ϕ
(2)(0) + b+10) + b+00(−a

+
01ϕ

′(0) + b+01) < 0.
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By substituting the condition ϕ′(0) = 0 (resp. ϕ′(0) = 1) into those conditions, we
obtain conditions given in (1) (resp. (2)).

The proof is complete.
According to Propositions 2.1 and 2.2, after some invertible linear transforma-

tions and rescaling, a PP type of system (2.1) can be written into

ẋ
ẏ

 =



 −1 + a+10x+ a+01y + P+(x, y)

−ϕ′(0) + ϱ+x+ b+01y +Q+(x, y)

 , if y > ϕ(x),

 1 + a−10x+ a−01y + P−(x, y)

ϕ′(0) + ϱ−x+ b−01y +Q−(x, y)

 , if y < ϕ(x),

(2.3)

where ϱ± = 4 [1− ϕ′(0)] + ϕ′(0)b±10 and ϱ± + ϕ′(0)(b±01 − a±10 − a±01) ± ϕ(2)(0) > 0,
P±(x, y) and Q±(x, y) are analytical functions given by

P±(x, y) =

∞∑
i+j=2

a±ijx
iyj , Q±(x, y) =

∞∑
i+j=2

b±ijx
iyj ,

where a±ij , b
±
ij ∈ R are constants. A FP type of system (2.1) can be written into

ẋ
ẏ

 =



λ+x− y + P+(x, y)

x+ λ+y +Q+(x, y)

 , if y > ϕ(x),

 1 + a−10x+ a−01y + P−(x, y)

ϕ′(0) + ϱ−x+ b−01y +Q−(x, y)

 , if y < ϕ(x).

(2.4)

A FF type of system (2.1) can be written into

ẋ
ẏ

 =



λ+x− y + P+(x, y)

x+ λ+y +Q+(x, y)

 , if y > ϕ(x),

λ−x− y + P−(x, y)

x+ λ−y +Q−(x, y)

 , if y < ϕ(x).

(2.5)

For the case that (0, 0) is a singularity of focus type for the upper (resp. lower)
subsystem of (2.1), if one tries to write the subsystem in classical polar coordinates
by the transformation x = r cos θ, x = r sin θ, then for an orbit segment of
the corresponding subsystem which intersects Σ transversally, the corresponding
interval for θ varies as the intersections move on Σ. This imposes additional
difficulties for the computations of the Lyapunov constants. For this reason, we
extend the classical polar coordinate transformation as following:x = r [cos θ − ϕ′(0) sin θ] ,

y = r [ϕ′(0) cos θ + sin θ] + ϕ̄ (r [cos θ − ϕ′(0) sin θ]) .
(2.6)
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Clearly, the transformation (2.6) satisfies:

det

(
∂(x, y)

∂(r, θ)

)
=
[
1 + (ϕ′(0))

2
]
r > 0

for r > 0. It is easy to see that, by using transformation (2.6), for an orbit of the
upper (resp. lower) subsystem of (2.1) starting from a point on Σ+ (resp. Σ−) and
intersects Σ− (resp. Σ+) without leaving Ω+ (resp. Ω−), θ varies from θ = 0 to
θ = π (resp. from θ = π to θ = 2π).

Similar issue arises for the case in which the flow of system (2.1) has a parabolic
contact with Σ at the singularity. Moreover, as in [11], this case presents more
difficulties, because if one tries to write the system in polar coordinates, it is not clear
if the return maps are analytical. For these reasons, we extend the aforementioned
(R, θ, 1, 2)-generalized polar coordinates to the following form:x = RCs(θ)− ϕ′(0)R2 Sn(θ),

y = ϕ′(0)RCs(θ) +R2 Sn(θ) + ϕ̄
(
RCs(θ)− ϕ′(0)R2 Sn(θ)

)
,

(2.7)

where Cs(θ) and Sn(θ) are the solution of the Cauchy problem:

Ċs(θ) = −Sn(θ), Ṡn(θ) = Cs3(θ),

Cs(0) = 1, Sn(0) = 0.

The transformation (2.7) satisfies:

det

(
∂(x, y)

∂(R, θ)

)
=
[
1 + (ϕ′(0))

2
]
R2 > 0

for R > 0. Let Γ(s) be the usual Gamma function for s ∈ (0,+∞). Then both
Cs(θ) and Sn(θ) are periodic functions with period T = 2τ [10], where τ is given by

τ =
Γ
(
1
2

)
Γ
(
1
4

)
√
2Γ
(
3
4

) =
1

2
√
π

[
Γ

(
1

4

)]2
.

Clearly, Cs4(θ) + 2 Sn2(θ) = 1 for any θ ∈ R, Cs(0) = 1, Cs(τ) = −1, Cs(2τ) = 1,
Sn(0) = Sn(τ) = Sn(2τ) = 0. It is easy to see that, by using transformation (2.7),
for an orbit of the upper (resp. lower) subsystem of (2.1) starting from a point on
Σ+ (resp. Σ−) and intersects Σ− (resp. Σ+) without leaving Ω+ (resp. Ω−), θ
varies from θ = 0 to θ = τ (resp. from θ = τ to θ = 2τ).

Let Ξ± = ϱ± + ϕ′(0)(b±01 − a±10 − a±01)± ϕ(2)(0) and ∆±(θ) = Cs2(θ) +α± Sn(θ),
where α± = ±2[1 + ϕ′(0)]/Ξ±. Then ∆(0) = ∆(τ) = 1. Let

Λ±(θ, k) =
[∆±(θ)]

k[
kCs2k(θ)

] .
In the following we only need the value of Λ±(θ, k) at θ = 0 and θ = τ , which are
well defined. We have the following result:
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Lemma 2.1. Let n be a positive integer and ν > 0 be a constant such that 2ν −
2n− 3 > 0, β be the positive real number β = 2ν − 2n− 3. Then∫

Csβ(θ) Snn(θ)

[∆±(θ)]
ν dθ =

(
α±)−(n+1)

n∑
i=0

(−1)i
(
n

i

)
Λ±(θ, n− i− ν + 1) + C,

where C is the arbitrary integration constant.

We remark here that under the conditions of Lemma 2.1, we have n− i−ν ̸= −1
for i = 0, 1, · · · , n.
Proof. Let x = α± Sn(θ)/Cs2(θ). Then by the definitions of Sn(θ) and Cs(θ) and
the identity Cs4(θ) + 2 Sn2(θ) = 1, we have:∫

Csβ(θ) Snn(θ)

[∆±(θ)]
ν dθ =

∫
Csβ(θ) Snn(θ)[

Cs2(θ) + α± Sn(θ)
]ν dθ

=
(
α±)−(n+1)

∫
xn

(1 + x)
ν dx,

which can be computed by repeatedly applying the method of integration by parts.
The proof is complete.
In the following, we take system (2.1) of FP type, namely, system (2.4), as an

example to explain the concept of the Lyapunov constants. The concepts of the
Lyapunov constants for the PP type and FF type, namely, system (2.3) and system
(2.5) respectively, are similar.

To simplify notations, let

R±(θ) = −(−1)ϕ
′(0)
{1
2

[
3ϕ(2)(0)− 2a±20 + 2a±02 + 2b±11 + ϕ′(0)(−λ±ϕ(2)(0)

−2b±02 + 2b±20 + 2a±11)
]
cos3 θ +

1

2

[
λ±ϕ(2)(0) + 2b±02 − 2b±20

−2a±11 + ϕ′(0)(3ϕ(2)(0)− 2a±20 + 2a±02 + 2b±11)
]
cos2 θ sin θ

+
1

4

[
−4ϕ(2)(0)− 4a±02 − 4b±11 + ϕ′(0)(λ±ϕ(2)(0)− ϕ(2)(0) + 2a±02

+6b±02 − 2a±11 + 6a±20 + 2b±11 − 2b±20)
]
cos θ − 1

4

[
4b±02 + ϕ′(0)(λ±ϕ(2)(0)

+ϕ(2)(0) + 2a±02 − 6b±02 − 2a±11 + 2a±20 + 2b±11 − 2b±20)
]
sin θ

}
,

Θ±(θ)= −(−1)ϕ
′
(0)
{1
2

[
λ±ϕ(2)(0) + 2b±02 − 2b±20 − 2a±11 + ϕ′(0)(3ϕ(2)(0)− 2a±20

+2a±02 + 2b±11)
]
cos3(θ) +

1

2

[
−3ϕ(2)(0) + 2a±20 − 2a±02 − 2b±11

+ϕ′(0)(λ±ϕ(2)(0) + 2b±02 − 2b±20 − 2a±11)
]
cos2 θ sin θ +

1

4

[
4a±11 − 4b±02

+ϕ′(0)(−3λ±ϕ(2)(0)− 3ϕ(2)(0)− 6a±02 + 2b±02 − 2a±11 + 2a±20 − 2b±11

+6b±20)
]
cos θ +

1

4

[
4a±02 + ϕ′(0)(λ±ϕ(2)(0) + 3ϕ(2)(0)− 6a±02 − 2b±02

+2a±11 − 2a±20 + 2b±11 − 2b±20)
]
sin θ

}
,

g±0 (θ) = ∓ [ϕ′(0) + 1]Cs3(θ) + Ξ± Cs(θ) Sn(θ),
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h±0 (θ) = −1

2

[
(2a±10 − b±01)ϕ

(2)(0)∓ ϕ(3)(0)− 2b±20 + ϕ′(0)(3ϕ(2)(0)a±01

+2a±11 + 2a±20 − 2b±11 + 2a±02 − 2b±02)
]
Cs3(θ) +

[
b±01 − 2a±10

−ϕ′(0)(±3ϕ(2)(0) + 3b±10 + 3a±01 − a±10 + 2b±01)
]
Cs(θ) Sn(θ).

Let g±(θ) = g±0 (θ)/(Ξ
±∆±(θ)), h±(θ) = h±0 (θ)/(Ξ

±∆±(θ)). We transform the
upper system of (2.4) by using the transformation (2.6) and obtain:

dr

dθ
=
λ+r +R+(θ)r2 +O(r3)

1 + Θ+(θ)r +O(r2)
, θ ∈ [0, π]. (2.8)

It is clear that system (2.8) is analytical for sufficiently small r > 0. Then
we transform the lower system of (2.4) to the following form by applying the
transformation (2.7) and obtain:

dR

dθ
=

g−(θ)R+O(R2)

1 + h−(θ)R+O(R2)
, θ ∈ [τ, 2τ ]. (2.9)

It is easy to prove that Sn(θ) ≤ 0 for θ ∈ [τ, 2τ ]. Moreover, Ξ− > 0 by our
assumption. Thus Ξ−∆−(θ) > 0 for θ ∈ [τ, 2τ ], implying that system (2.9) is
analytical for sufficiently small R > 0.

We define the positive half-return map Π+ : R+ → R− of system (2.4) by
Π+(ρ) = −r+(ρ, π), where r+(ρ, θ) is the solution of (2.8) satisfying r+(ρ, 0) = ρ
with ρ > 0 sufficiently small. Clearly, we have −r+(ρ, π) < 0. Note that under the
extended polar coordinates (2.6), (ρ, ϕ(ρ)) ∈ Σ+ and (−r+(ρ, π), ϕ(−r+(ρ, π))) =
(Π+(ρ), ϕ(Π+(ρ))) ∈ Σ− for ρ > 0 sufficiently small. Thus the map Π+ : R+ → R−

is well defined. Similarly, under the coordinates (2.7), (η, ϕ(η)) ∈ Σ− for η < 0.
Thus we can define the negative half-return map Π− : R− → R+ of system
(2.4) by Π−(η) = R−(−η, 2τ), where R−(−η, θ) is the solution of (2.9) satisfying
R−(−η, τ) = −η > 0 with −η > 0 sufficiently small. Similarly, we have
(R−(−η, 2τ), ϕ(R−(−η, 2τ))) = (Π−(η), ϕ(Π−(η))) ∈ Σ+. Please see Figure 2 for
the construction of the positive and the negative half-return maps.

The return map Π : R+ → R+ for (2.4) is given by Π(ρ) := Π−(Π+(ρ)). The
displacement function d : R+ → R is defined by d(ρ) = Π(ρ) − ρ for ρ > 0 small
enough, which can be expanded as [11]:

d(ρ) = V1ρ+ V2ρ
2 + V3ρ

3 + · · · . (2.10)

Vk is called the k-th Lyapunov constant of system (2.4). Similar results can be
obtained for the PP type system (2.3) and FF type system (2.5), respectively, by
following the above process.

Clearly, it is only necessary to compute Vk when V1 = V2 = · · · = Vk−1 = 0. It
is known that for smooth systems, for the first nonzero Lyapunov constant Vk, k
must be an odd number. But in general this is not true for non-smooth systems, see
e.g. [11,16]. In fact, it has been proved in [13,40] that for a planar PWS system with
a (2k+, 2k−)-monodromic tangential singularity, in particular for a critical point of
PP type, defined in two zones separated by the straight line y = 0, the index of the
first nonzero Lyapunov constant is always an even number. Similarly, for system
(2.3), we have the following result:
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Figure 2. The construction of the positive and the negative half-return maps.

Theorem 2.1. The ideal generated by all Lyapunov constants of system (2.3) is
equal to the ideal generated by the Lyapunov constants of even order i.e. V2n+1 = 0
if Vk = 0 for every k = 2, · · · , 2n. Thus the index of the first nonzero Lyapunov
constant of system (2.3) is always an even number. Moreover, we have the following
results for system (2.3):

(i) If ϕ′(0) = 0, then V2 = ν+ − ν−, where

ν± =

[
8± 3ϕ(2)(0)

]
b±01 + ϕ(3)(0) + 8a±10 ± 2b±20

±12 + 3ϕ(2)(0)
.

(ii) If ϕ′(0) = 1, then V2 = (κ+/γ+ − κ−/γ−)/6, where

γ± = ϕ(2)(0)±
(
b±10 + b±01 − a±10 − a±01

)
,

κ± = −6(a±01)
2 + (∓8γ± + 6b±10 + 8b±01 − 10a±10 ± 8)a±01 − 2(b±01)

2 − (γ±)2

+(±8γ± − 2b±10 + 6a±10 ∓ 8)b±01 + 4a±10b
±
10 − 4(a±10)

2 + 4γ± ± 4b±11 ± 4b±20

∓4a±02 ± 4b±02 + 2ϕ(3)(0)∓ 4a±11 ∓ 4a±20.

Novaes and Silva proved the following result in [40]. Let ZΛ be an ℓ-parameter
family of planar PWS systems defined in two zones separated by the straight line
y = 0 having a (2k+, 2k−)-monodromic tangential singularity at (0, 0), Λ ∈ U ⊂ Rℓ

be the parameter vector, where U ⊂ Rℓ is an open set. Let V2i(Λ) be the 2i-th
Lyapunov constant for i = 1, 2, · · · , ℓ + 1. Let Vℓ = (V2, V4, · · · , V2ℓ) : U 7→ Rℓ.
If for some Λ0 ∈ U , Vℓ(Λ0) = 0, det(DVℓ(Λ0)) ̸= 0 and V2ℓ+2(Λ0) ̸= 0, then ℓ
hyperbolic limit cycles can bifurcate from (0, 0). It is easy to see that, by Theorem
2.1, this result is also true for system (2.3).

However, for the the FP type system (2.4) and FF type system (2.5), as can be
seen from the following results, the index of the first nonzero Lyapunov constant
can be either even or odd. Thus for system (2.4) and system (2.5) it is possible to
generate k limit cycles only from V1, V2, · · · , Vk+1. For system (2.4) and system
(2.5), we have the following result which will be proved in Section 3:
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Proposition 2.3. For system (2.4), we have V1 = eλ
+π − 1. For system (2.5), we

have V1 = e(λ
++λ−)π − 1 = eλ

−π(eλ
+π − e−λ−π).

By Proposition 2.3, for system (2.4), V1 = 0 implies that λ+ = 0. Thus
to compute higher order Lyapunov constants for system (2.4), we assume that
λ+ = 0. For system (2.5), V1 = 0 implies that λ+ + λ− = 0. In the sequel,
to simplify computations, to compute higher order Lyapunov constants for system
(2.5), we further assume that λ+ = λ− = 0. In fact, our computations show
that the expressions of V2 and V3 for system (2.5) are very complicated even when
λ+ + λ− = 0 and λ+λ− ̸= 0. Let

ω±= ±a±11(a
±
02 + a±20)∓ b±20(b

±
11 + 2a±20)± b±02(2a

±
02 − b±11)

±b±21 ± 3b±03 ± a±12 ± 3a±30,

ζ± = 5a±20 + b±11 − b±20 + a±02 − 5b±02 − a±11.

We have the following results:

Theorem 2.2. Assume that λ+ = 0 in system (2.4), then V1 = 0. Moreover, we
have the following results for system (2.4):

(i) If ϕ′(0) = 0, then

V2 =
2

3
(a+11 + b+20 + 2b+02)− ν−,

where ν− is the same as that given in Theorem 2.1. If V2 = 0, then we have
V3 = π

8ω
+.

(ii) If ϕ′(0) = 1, then

V2 =
ϕ(2)(0)

2
− 1

3
ζ+ − κ−

6γ−
,

where κ− and γ− are the same as those given in Theorem 2.1. If V2 = 0, then
we have V3 = π

4ω
+.

Theorem 2.3. Assume that λ+ = λ− = 0 in system (2.5), then V1 = 0. Moreover,
we have the following results for system (2.5):

(i) If ϕ′(0) = 0, then

V2 =
2

3
(a+11 + b+20 + 2b+02 − a−11 − b−20 − 2b−02).

If V2 = 0, then we have

V3 =
π

8
(ω+ − ω−).

(ii) If ϕ′(0) = 1, then

V2 =
1

3
(ζ− − ζ+).

If V2 = 0, then we have

V3 =
π

4
(ω+ − ω−).
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As applications, and by using Lemmas 4.1 and 4.2 given in Section 4, in the
following we present three examples of planar PWS quadratic systems of FF, FP
and PP types respectively.

Proposition 2.4. Consider the following planar PWS quadratic systems of PP
type:

ẋ
ẏ

 =



−1 + a1xy + b1y
2

4x+ c1x
2

 , if y > sin2 x,1 + d1xy + f1y
2

4x+ g1x
2

 , if y < sin2 x.

(2.11)

System (2.11) has four limit cycles bifurcating from the origin.

It is easy to see that for system (2.11), we have y = ϕ(x) = sin2 x = 1
2 (1 −

cos(2x)) with ϕ′(0) = 0. In fact, we have

y = ϕ(x) = x2 − 8

4!
x4 + · · ·+ (−1)k+1 2

2k−1

(2k)!
x2k + · · · .

Proposition 2.5. Consider the following planar PWS quadratic systems of FP
type:

ẋ
ẏ

 =



λx− y + a2xy + b2y
2

x+ λy − a2x
2

 , if y > ex − 1,1− y + d2x
2 + f2y

2

1 + x+ g2xy + h2y
2

 , if y < ex − 1.

(2.12)

System (2.12) has five limit cycles bifurcating from the origin.

For system (2.12), we have y = ex − 1 with ϕ′(0) = 1:

y = ϕ(x) = x+
x2

2!
+ · · ·+ xk

k!
+ · · · .

Proposition 2.6. Consider the following planar PWS quadratic systems of FF
type:

ẋ
ẏ

 =



 λx− y + a3xy + b3y
2

x+ λy + c3x
2 + d3xy + f3y

2

 , if y > sinx, λx− y + g3xy + h3y
2

x+ λy + l3x
2 +m3xy + n3y

2

 , if y < sinx.

(2.13)

System (2.13) has five limit cycles bifurcating from the origin.

For system (2.13), we have y = sinx with ϕ′(0) = 1:

y = ϕ(x) = x− x3

3!
+ · · ·+ (−1)k

x2k+1

(2k + 1)!
+ · · · .
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3. On the Lyapunov constants

In this section, we prove Theorems 2.1 and 2.2 by considering the Lyapunov
constants of system (2.3) and (2.4), respectively. The proof of Theorem 2.3 is
similar. Thus it is omitted for brevity.

We first consider system (2.3). To prove Theorem 2.1, we need the following
result, which was proved in [40]:

Lemma 3.1. Let I ⊂ R be an interval with 0 ∈ I and ℓ is a positive integer. Let
φ,ψ : I → R be C2ℓ+1 involutions around 0. If φ(0) = ψ(0) and φ(i)(0) = ψ(i)(0)
for i = 1, 2, · · · , 2ℓ, then φ(2ℓ+1)(0) = ψ(2ℓ+1)(0).

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. We transform the upper system of (2.3) by applying the
transformation (2.7) and obtain:

dR

dθ
=

g+(θ)R+O(R2)

1 + h+(θ)R+O(R2)
, θ ∈ [0, τ ]. (3.1)

Again, it is easy to prove that system (3.1) is analytical for sufficiently small R > 0.
We assume that for small R > 0, system (3.1) can be expanded as

dR

dθ
=

∞∑
k=1

P+
k (θ)Rk, θ ∈ [0, τ ]. (3.2)

Similarly, the lower system of (2.3) can be transformed to (2.9) by applying the
transformation (2.7) and assume that for small R > 0, it can be expanded as

dR

dθ
=

∞∑
k=1

P−
k (θ)Rk, θ ∈ [τ, 2τ ], (3.3)

where

P±
1 (θ) = −1

2

(∆±)′(θ)

∆±(θ)
.

Now we focus our attention on (3.2), the discussions for (3.3) are similar. By
the change of variables:

R̃ = R exp

(
−
∫ θ

0

P+
1 (s)ds

)
=
[
∆+(θ)

] 1
2 R,

system (3.2) can be transformed to:

dR̃

dθ
=

∞∑
k=2

Q+
k (θ)R̃

k, (3.4)

where for k ≥ 2, we have

Q+
k (θ) = exp

(
(k − 1)

∫ θ

0

P+
1 (s)ds

)
P+
k (θ) =

P+
k (θ)

[∆+(θ)]
k−1
2

.
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Let R̃+(ρ, θ) be the solution of (3.4) with R̃+(ρ, 0) = ρ for sufficiently small
ρ > 0. It can be expanded as:

R̃+(ρ, θ) = ρ+

∞∑
k=2

u+k (θ)ρ
k, (3.5)

with u+k (0) = 0 for all k ≥ 2. Let R+(ρ, θ) be the solution of (3.2) satisfying
R+(ρ, 0) = ρ. Then

R+(ρ, θ) = ρ+

∞∑
k=1

w+
k (θ)ρ

k =
[
∆+(θ)

]− 1
2

[
ρ+

∞∑
k=2

u+k (θ)ρ
k

]
.

Furthermore, for all k ≥ 2, we have

w+
1 (θ) =

[
∆+(θ)

]− 1
2 − 1, w+

k (θ) =
[
∆+(θ)

]− 1
2 u+k (θ).

Note that w+
1 (τ) = 0, we have

Π+(ρ) = R+(ρ, τ) = ρ+ w+
2 (τ)ρ

2 + w+
3 (τ)ρ

3 + · · · .

Since ∆+(τ) = 1, we have w+
k (τ) = u+k (τ) for any k ≥ 2.

For (3.3), we can similarly define the functions w−
1 (θ) and u−k (θ), w

−
k (θ) for

θ ∈ [τ, 2τ ] and k ≥ 2. Moreover, we have

w−
1 (θ) =

[
∆−(θ)

]− 1
2 − 1, w−

k (θ) =
[
∆−(θ)

]− 1
2 u−k (θ).

Consequently, we have

Π−(ρ) = ρ+ w−
2 (2τ)ρ

2 + w−
3 (2τ)ρ

3 + · · · .

In particular, we have w−
k (2τ) = u−k (2τ) for any k ≥ 2.

From the above analysis, we obtain the displacement function of system (2.3)
given by d(ρ) = Π−(Π+(ρ))− ρ for ρ > 0 small enough, which can be expanded as

d(ρ) = V2ρ
2 + V3ρ

3 + · · · .

Hence we have V1 = 0. Furthermore, by using the same method as in the proof of
Proposition 3 of [13], we can prove that the half maps Π+ and Π− of system (2.3)
are proper analytical involutions at the origin. Thus by Lemma 3.1, the index of
the first nonzero Lyapunov constant of system (2.3) is always an even number.

To compute V2, substituting (3.5) into (3.4) and comparing the coefficient of ρ2

yields

u+2 (θ) =

∫ θ

0

Q+
2 (s)ds = Υ+(θ)−Υ+ (0) .

Here the integral can be computed by using Lemma 2.1. Similarly, we have u−2 (θ) =
Υ−(θ)−Υ−(τ), where:

(1) For ϕ′(0) = 0, we have

Υ±(θ) = ±ν± +
1

±12

{[
− 3Λ±

(
θ,−3

2

)
+ 3
(
± Λ±

(
θ,−1

2

)
− 1
)
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×ϕ(2)(0) + 12Λ±
(
θ,−1

2

)
∓ 8
]
b±01 +

3

4

(
Λ±
(
θ,−3

2

)
∓ 4

3

)(
ϕ(3)(0)

+8a±10 ± 2b±20

)}
.

Thus w+
2 (τ) = u+2 (τ) = ν+, w−

2 (2τ) = u−2 (2τ) = −ν−. Hence we obtain V2 =
w+

2 (τ) + w−
2 (2τ) = ν+ − ν− as given in Theorem 2.1.

(2) For ϕ′(0) = 1, we have

Υ±
2 (θ) = ± κ±

6γ±
+

1

12γ±

{
3
[
− 3(a±01)

2 + (±4∓ γ± + 3b±10 + 4b±01 − 5a±10)a
±
01

−(b±01)
2 + (∓4± γ± − b±10 + 3a±10)b

±
01 + (γ±)2 + 2b±10a

±
10 − 2(a±10)

2 +

2γ± ∓ 2a±11 ∓ 2a±20 ± 2b±11 ± 2b±20 ± 2b±02 ∓ 2a±02 + ϕ(3)(0)
]
Λ±
(
θ,−3

2

)
±12(a±01)

2 +
[
− 16∓ 16b±01 +

(
16∓ 3Λ±

(
θ,−1

2

))
γ± ∓ 12b±10 ± 20a±10

]
a±01 ± 4(b±01)

2 +
[
16 +

(
± 3Λ±

(
θ,−1

2

)
− 16

)
γ± ± 4b±10 ∓ 12a±10

]
b±01 +

±4− 3Λ±
(
θ,− 1

2

)
2

(γ±)2 ∓ 8γ± ∓ 8a±10b
±
10 ± 8(a±10)

2 + 8a±11 + 8a±20 −

8b±11 − 8b±20 − 8b±02 + 8a±02 ∓ 4ϕ(3)(0)
}
.

Thus w+
2 (τ) = u+2 (τ) = κ+/(6γ+), w−

2 (2τ) = u−2 (2τ) = −κ−/(6γ−). Hence we
obtain V2 = w+

2 (τ) + w−
2 (2τ) = (κ+/γ+ − κ−/γ−)/6 as given in Theorem 2.1.

The proof is complete. □
Before proving Theorem 2.2, we first prove Proposition 2.3.

Proof of Proposition 2.3. For the upper subsystem of (2.4), from (2.8), we have

dr

dθ
= λ+r +O(r2), (3.6)

which is analytic for sufficiently small r > 0. Let r(ρ, θ) = v1(θ)ρ + O(ρ2) be the
solution of (3.6) with r(ρ, 0) = ρ > 0. Substituting it into (3.6) yields

dv1(θ)/dθ = λ+v1(θ), v1(0) = 1.

Hence we have v1(θ) = eλ
+θ. Thus, Π+(ρ) = r(ρ, π) = eλ

+πρ+O(ρ2). For the lower
subsystem of (2.4), from the proof of Theorem 2.1, we obtain Π−(ρ) = ρ + O(ρ2).

Consequently, we have Π(ρ) = Π−(Π+(ρ))−ρ = (eλ
+π−1)ρ+O(ρ2), implying that

V1 = eλ
+π − 1 for system (2.4).

Similarly, for the upper subsystem of (2.5), we have Π+(ρ) = eλ
+πρ + O(ρ2);

for the lower subsystem , we have Π−(ρ) = eλ
−πρ + O(ρ2). Thus we have Π(ρ) =[

e(λ
++λ−)π − 1

]
ρ+O(ρ2), implying that V1 = e(λ

++λ−)π−1 = eλ
−π(eλ

+π−e−λ−π)

for system (2.5).
The proof is complete. □
In the following we prove Theorem 2.2.

Proof of Theorem 2.2. As explained in Secton 2, when λ+ = 0, we can transform
the upper system of (2.4) to (2.8) by using the transformation (2.6), which is analytic
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for sufficiently small r > 0. Assume that it can be expanded as:

dr

dθ
=

R+(θ)r2 +O(r3)

1 + Θ+(θ)r +O(r2)
=

∞∑
k=2

T+
k (θ)rk, θ ∈ [0, π] (3.7)

for sufficiently small r > 0. The solution r+(ρ, θ) of (3.7) satisfying r+(ρ, 0) = ρ
can be expanded as

r+(ρ, θ) =

∞∑
k=1

v+k (θ)ρ
k, θ ∈ [0, π]. (3.8)

Substitute (3.8) into (3.7) and compare the coefficients of ρk, we obtain v+1 (0) = 1
and v+k (0) = 0 for k ≥ 2 and

v+2 (θ) = T̃+
2 , v+3 (θ) = T̃+

3 + (T̃+
2 )2,

where for any function f(θ), we use the notation f̃ = f̃(θ) for

f̃ = f̃(θ) =

∫ θ

0

f(s)ds.

Moreover, we have

Π+(ρ) = r+(ρ, π) = ρ+ v+2 (π)ρ
2 + v+3 (π)ρ

3 + · · · .

By direct computation, when ϕ
′
(0) = 0, we get

v+2 (π) =
2

3
(a+11 + b+20 + 2b+02), v+3 (π) =

π

8
ω+ + (v+2 (π))

2,

when ϕ′(0) = 1, we get

v+2 (π) = −1

3
ζ+ +

ϕ(2)(0)

2
, v+3 (π) =

π

4
ω+ + (v+2 (π))

2.

The half-return map of the lower subsystem of (2.4) can be computed as that
for the lower subsystem of (2.3) as given in the proof of Theorem 2.1 above, and
again we have

Π−(ρ) = R−(ρ, 2τ) = ρ+ u−2 (2τ)ρ
2 + u−3 (2τ)ρ

3 + · · · ,

where when ϕ
′
(0) = 0, we have

u−2 (2τ) = −ν−, u−3 (2τ) = (ν−)2,

when ϕ
′
(0) = 1, we have

u−2 (2τ) = − κ−

6γ−
, u−3 (2τ) =

(
κ−

6γ−

)2

.

Thus for system (2.4) with λ+ = 0, we have

V2 = v+2 (π) + u−2 (2τ), V3 = v+3 (π) + u−3 (2τ) + 2v+2 (π)u
−
2 (2τ). (3.9)
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In particular, when ϕ′(0) = 0, we have

V2 =
2

3
(a+11 + b+20 + 2b+02)− ν−,

when ϕ′(0) = 1, we have

V2 =
ϕ(2)(0)

2
− 1

3
ζ+ − κ−

6γ−
.

If V2 = 0, then from (3.9), we get v+2 (π)+u
−
2 (2τ) = 0. Thus V3 = v+3 (π)−(v+2 (π))

2.
Consequently, if V2 = 0, then when ϕ′(0) = 0, V3 = π

8ω
+; when ϕ′(0) = 1, V3 =

π
4ω

+.
The proof is complete. □

4. Limit cycles

In this section, we consider limit cycles bifurcated from planar PWS quadratic
systems by proving Propositions 2.4, 2.5 and 2.6.

In general, it is very difficult to solve the center-focus and cyclicity problems
of system (2.1) because this involves in finding the common zeros of the Lyapunov
constants. To tackle this problem, in [19] and [20, p. 45-46], Han presented a result
for planar smooth systems which allows one to estimate the number of limit cycles
by considering the linear terms of the Lyapunov constants. In [44], Tian and Yu
generalized this result to planar PWS systems defined in two zones separated by
the straight line y = 0 whose critical point is of FF type given the following form:ẋ

ẏ

 =

 (δx− y + P+(x, y, µ), x+ δy +Q+(x, y, µ))T , if y > 0,

(δx− y + P−(x, y, µ), x+ δy +Q−(x, y, µ))T , if y < 0,
(4.1)

where µ = (µ1, · · · , µm) ∈ Rm is a parameter vector with µ1 = δ. The following
result was proved in [44] (see Lemma 4 in [44]):

Lemma 4.1. Assume that there exists a sequence of Lyapunov constants of (4.1),
Vi0 , Vi1 , · · · , Vim , with 1 = i0 < i1 < · · · < im, such that Vj = O(∥(Vi0 , · · · , Viℓ)∥)
for any iℓ < j < iℓ+1. If for system (4.1) at the critical point µ = µ0, Vi0 = Vi1 =
· · · = Vim−1

= 0, Vim ̸= 0, and

rank

[
∂(Vi0 , Vi1 , · · · , Vim−1)

∂(µ1, · · · , µm)
(µ0)

]
= m,

then m limit cycles can appear near the origin of system (4.1) for some µ near µ0.

From the proof of Lemma 4 in [44], one can see that Lemma 4.1 can be naturally
extended to be applicable to system (2.4) and (2.5). For system (2.3), it is easy
to see that Theorem E of [40] can be easily generalized to be applicable to system
(2.3). Namely, we have the following result:

Lemma 4.2. Let Λ ∈ U ⊂ Rℓ be the parameter vector of system (2.3), where U ⊂ Rℓ

is an open set. Let V2i(Λ) be the 2i-th Lyapunov constant for i = 1, 2, · · · , ℓ+1. Let
Vℓ = (V2, V4, · · · , V2ℓ) : U 7→ Rℓ. If for some Λ0 ∈ U , Vℓ(Λ0) = 0, det(DVℓ(Λ0)) ̸= 0
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and V2ℓ+2(Λ0) ̸= 0, then there exists an neighborhood W ⊂ U of Λ0 such that system
(2.3) has ℓ hyperbolic limit cycles for every Λ ∈ W. Moreover, as Λ → Λ0, all of
the limit cycles converge to the origin.

Proof of Propositions 2.4. By Theorem 2.1, the index of the first nonzero
Lyapunov constant of system (2.11) is an even number. Thus in the following we
only need to consider V2, V4, · · · for system (2.11). With the help of the computer
algebra system Maple, we have

V2 =
1

6
(c1 − 3g1).

Solving V2 = 0, we obtain c1 = 3g1. Substituting it into system (2.11), we obtain

V4 =
4

135
(27a1 + 9d1 + 10g1).

Thus from V2 = V4 = 0, we obtain:

c1 = 3g1, d1 = −10

9
g1 − 3a1. (4.2)

Substituting (4.2) into system (2.11), yields

V6 = − 1

360
g51 −

424

2457
g31 −

194

231
a1g

2
1 +

1

93555
(46844 + 32439b1 − 31185f1)g1

+
256

135
a1.

Assume that g1 ̸= 0 and solve V6 = 0 for b1, we have

b1 =
1

3373656g1

(
27027g51 + 8171280a1g

2
1 + 1679040g31 + 3243240f1g1

− 18450432a1 − 4871776g1) . (4.3)

Substituting (4.2) and (4.3) into system (2.11), we obtain

V8 =
1

715661137808416800g1

[
165137170287375g81 − 35191690799542200g61

+(−94727187283528800f1 + 83336453755389120)g41

−152271601441759800a1g
5
1 + 1135640927894649696a1g

3
1

+(5389558992166078080a21 + 16669563275439360f1

−171546908182374400)g21 − 18475277635129835520a21

+(2193427181107768320f1 − 5529393871686397440)a1g1] .

Assume that

g1(−158245395g31 + 366420412a1 + 278471440g1) ̸= 0, (4.4)

and solve V8 = 0 for f1, we have

f1 =
−1

598609440g1(−158245395g31 + 366420412a1 + 278471440g1)
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×
(
165137170287375g81 − 152271601441759800a1g

5
1 − 35191690799542200g61

+538955899216607808a21g
2
1 + 1135640927894649696a1g

3
1

+83336453755389120g41 − 18475277635129835520a21

−5529393871686397440a1g1 − 171546908182374400g21
)
. (4.5)

Thus under conditions (4.2-4.5), we have V2 = V4 = V6 = V8 = 0.
In particular, let ξ = (a1, b1, c1, d1, f1, g1) ∈ R6 be the vector of the parameters

of system (2.11) and let

ξ0 =

(
0,

527745075055

745593840672
, 3,−10

9
,
24647401611248021

14393689094172960
, 1

)
∈ R6

be a point in the parameter space of system (2.11) satisfying conditions (4.2-4.5).
Then from the computations given above, we have

V2 = · · · = V8 = 0, V10 = −80758974634867270018827085047016621

80411072152726343238482369622096000
̸= 0.

Let ξ̄ = (ā1, b̄1, c̄1, d̄1, f̄1, ḡ1) be a vector such that ∥ξ̄∥ ≪ 1. Consider a small
perturbation of ξ0 given by ξ = ξ0 + ξ̄. Then the Jacobian matrix J1 of V2, V4, V6,
V8 with respect to ā1, · · · , ḡ1 at ξ̄ = 0 is

J1 = (λ1, λ2, λ3, λ4)
T ,

which is a 4× 6 matrix, and λ1, λ2, λ3, λ4 are column vectors given by

λ1 =

(
0, 0,

1

9
, 0, 0,−1

3

)T

,

λ2 =

(
4

5
, 0,

8

81
,
4

15
, 0, 0

)T

,

λ3 =

(
1417

2970
,
983

2835
,
189701719038651299

906802412932896480
,− 73

378
,−1

3
,

−120748062512414321

100755823659210720

)T

,

λ4 =

(
162687940585448017

40482250577361450
,
72896

243243
,
6620205901221563449

14690199089512922976
,

477158672409854143

340050904849836180
,− 319

1701
,−221850483179743417

429537985073477280

)T

.

It is easy to see that the rank of J1 is 4. Thus by Lemma 4.2, system (2.11) has
four limit cycles in a small neighbourhood of (0, 0) with ∥ξ − ξ0∥ sufficiently small
for any ξ ∈ R6.

The proof is complete. □
Take the parameters ξ0 =

(
− 1

3 ,−
442362579251

34145244663648 , 3,−
1
9 ,−

61864231085488417
659173948231724640 , 1

)
∈

R6 in (2.11). Then we have V2 = · · · = V8 = 0 and

V10 =
19122055839425899781546410850094369209

1180510155085693449929022903725165232000
≈ 0.016198129052.
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(a) ΓPP
ρ3

and ΓPP
ρ4

. (b) ΓPP
ρ1

and ΓPP
ρ2

in the boxed area of

Figure 3 (a).

Figure 3. The four limit cycles of system (2.11) corresponding to the parameters ξ = ξ0 + ξ̄.

Let ξ̄ = (0, 0.000845320239, 2 × 10−10,−1.188889 × 10−7, 0.000851146957, 0) and
consider the perturbation of ξ0 given by ξ = ξ0 + ξ̄. Then we can numeri-
cally find that the displacement function d(ρ) has four positive zeros given by
ρ1 ≈ 0.030738372395, ρ2 ≈ 0.063566620254, ρ3 ≈ 0.105505091439 and ρ4 ≈
0.179670968383, corresponding to the four limit cycles ΓPP

ρk
(1 ≤ k ≤ 4) bifurcated

from (0, 0). The two outer limit cycles ΓPP
ρ3

and ΓPP
ρ4

are shown in Figure 3 (a).

The two inner limit cycles ΓPP
ρ1

and ΓPP
ρ2

are shown in Figure 3 (b).

Proof of Propositions 2.5. From Theorem 2.2, for system (2.12), V1 = 0 if and
only if λ = 0. Thus in the following we assume that λ = 0.

With the help of Maple, we have

V2 =
1

3
(−b2 + d2 + f2 − g2 − h2) +

1

2
.

Solving V2 = 0 for b2, we obtain

b2 = d2 + f2 − g2 − h2 +
3

2
. (4.6)

Substituting (4.6) into system (2.12), yields

V3 =
π

8
a2(2d2 + 2f2 − 2h2 − 2g2 + 3).

Assume that a2 ̸= 0 and solve V3 = 0 for f2, we obtain

f2 = −d2 + h2 + g2 −
3

2
. (4.7)

Substituting (4.6) and (4.7) into system (2.12), we obtain

V4 =
1

120
(43g2 + 4h2 − 8d2 − 61).
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Solving V4 = 0 for h2, we have

h2 =
1

4
(−43g2 + 61) + 2d2. (4.8)

Substituting (4.6-4.8) into system (2.12), we obtain V5 = 0 and

V6 =
1

10080

[
3216d22 + (−41076g2 + 59963) d2 + 104364g22 − 305630g2 + 223420

]
.

Solving d2 from V6 = 0 yields

d2 =
3423

536
g2 +

1

6432

√
344699280g22 − 994456056g2 + 721486489− 59963

6432
. (4.9)

Substituting (4.6-4.9) into system (2.12) with a2 ̸= 0 and λ = 0, we obtain V1 =
V2 = · · · = V7 = 0 and

V8 =

√
344699280g22 − 994456056g2 + 721486489

125730290810880

×
(
−6024124800g22 + 8184333252g2 − 1045721975

)
− 2920546057

1819014624
g32

+
1821683207663

291042339840
g22 −

41633473539689

5238762117120
g2 +

413048449542637

125730290810880
.

Now let η = (λ, a2, b2, d2, f2, g2, h2) ∈ R7 be the vector of the parameters of
system (2.12) and let

η0 =

(
0,−2, 0,

1

6432

(
−18887 +

√
71729713

)
,

1

6432

(
6841 +

√
71729713

)
,

1,
1

3216

(
−4415 +

√
71729713

))
∈ R7 (4.10)

be a point in the parameter space of system (2.12) satisfying conditions (4.6-4.9)
with a2 ̸= 0 and λ = 0. Then we have V1 = · · · = V7 = 0 and

V8 =
1114486477

√
71729713− 1055913159323

125730290810880
̸= 0.

Let η̄ = (λ̄, ā2, b̄2, d̄2, f̄2, ḡ2, h̄2) be a vector such that ∥η̄∥ ≪ 1. Consider a small
perturbation of η0 given by η = η0 + η̄. Then the Jacobian matrix J2 of V1, V2, V3,
V4, V6 with respect to λ̄, ā2, b̄2, d̄2, f̄2, ḡ2, h̄2 at η̄ = 0 is

J2 =

π O1×6

α J̃2

 ,

whereO1×6 is the 1×6 zero matrix, α ∈ R4 is a column vector, J̃2 = (α1, α2, α3, α4)
T

is a 4× 6 matrix, and α1, α2, α3, α4 are column vectors given by

α1 =

(
0,−1

3
,
1

3
,
1

3
,−1

3
,−1

3

)T

,

α2 =

(
0,−1

3
− π

2
,
1

3
,
1

3
,−1

3
,−1

3

)T

,
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α3 =

(
0,−143

90
− 5

8
π,

63967

192960
+

7
√
71729713

192960
,
76831

192960
+

7
√
71729713

192960
,

− 7687

192960
− 7

√
71729713

192960
,− 70399

192960
− 7

√
71729713

192960

)T

,

α4 =

(
0,−321757

30240
− 1463

384
π,−1039753037

8687831040
+

199055
√
71729713

1737566208
,

−4644406637

8687831040
+

1207531
√
71729713

8687831040
,
5708245769

8687831040

− 938191
√
71729713

8687831040
,
2842079837

8687831040
− 670459

√
71729713

8687831040

)T

.

Hence the rank of J2 is 5. Thus by Lemma 4.1, system (2.12) has five limit cycles
in a small neighbourhood of (0, 0) with ∥η − η0∥ sufficiently small for any η ∈ R7.

The proof is complete. □
Let the parameters η0 of (2.12) be the same as given in (4.10). Then we have

V1 = · · · = V7 = 0 and V8 ≈ 0.066674873834. Let η̄ = (−2.7 × 10−13, 0, 5.05 ×
10−8,−0.001138865772,−0.001036813772, 0,−0.002175731542). Consider the per-
turbation of η0 given by η = η0 + η̄. Then we can numerically find that the
displacement function d(ρ) has five positive zeros given by ρ1 ≈ 0.002922111610,
ρ2 ≈ 0.005410494609, ρ3 ≈ 0.018614104731, ρ4 ≈ 0.049598511581, ρ5 ≈
0.102896889137, corresponding to the five limit cycles ΓFP

ρk
(1 ≤ k ≤ 5) bifurcated

from (0, 0). The two outer limit cycles ΓFP
ρ4

and ΓFP
ρ5

are shown in Figure 4 (a).

The three inner limit cycles ΓFP
ρ1

, ΓFP
ρ2

and ΓFP
ρ3

are shown in Figure 4 (b). Note
that the amplitudes of the limit cycles in Ω− are so small that those limit cycles
in Ω− are almost overlapped with the switching curve Σ. Thus we also present the
enlargements for specific areas of the limit cycles in Figure 4.

Proof of Propositions 2.6. By Theorem 2.3, for system (2.13), V1 = 0 if and
only if λ = 0. In the following we assume that λ = 0.

With the help of Maple, we obtain

V2 =
1

3
(−b3 + 5f3 + a3 − d3 + c3 + h3 − 5n3 − g3 +m3 − l3) .

Solving V2 = 0 for b3, yields

b3 = 5f3 + a3 − d3 + c3 + h3 − 5n3 − g3 +m3 − l3. (4.11)

Substituting (4.11) into system (2.13), yields

V3 = −π
2

[
−1

2
a23 +

a3
2
(l3 − 7f3 − h3 + 5n3 + d3 − c3 + g3 −m3)− 5f23

+

(
l3 − h3 + 5n3 +

3

2
d3 − c3 + g3 −m3

)
f3 +

m3

2
(l3 + n3)

−h3
2
(g3 + 2n3) +

1

2
c3d3

]
.

In order to simplify the computations, we further assume that

a3 = f3 = m3 = 0, c3 = −h3. (4.12)
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(a) ΓFP
ρ4

and ΓFP
ρ5

. (b) ΓFP
ρk

(k = 1, 2, 3) in the black boxed

area of Figure 4 (a).

(c) Enlargement of the red boxed area of
Figure 4 (b).

(d) Enlargement of the red boxed area of
Figure 4 (c).

Figure 4. The five limit cycles of system (2.12) corresponding to the parameters η = η0 + η̄.

Substituting (4.12) into (4.11) and the expression of V3, yields

b3 = −d3 − 5n3 − g3 − l3, (4.13)

and

V3 =
π

4

(
2n3 + g3 + d3

)
h3.

Assume that h3 ̸= 0 and solve d3 from V3 = 0, we obtain

d3 = −2n3 − g3. (4.14)

Substituting (4.12-4.14) into system (2.13), yields

V4 =
1

30

[
−8n33 + 4(2h3 + 5g3 − 2l3)n

2
3 +

(
−15 + 12g23 + 4(h3 − l3)g3

)
n3

−5(h3 + g3 + l3)] .
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Solving V4 = 0 for h3, we obtain

h3 = −12g23n3 + 20n23g3 − 4g3n3l3 − 8n33 − 8n23l3 − 5g3 − 15n3 − 5l3
4g3n3 + 8n23 − 5

. (4.15)

Substituting (4.12-4.15) into system (2.13), yields

V5 =
n3π

96g3n3 + 192n23 − 120

(
12g23n3 + 20n23g3 − 4g3n3l3 − 8n33 − 8n23l3

−5g3 − 15n3 − 5l3

)(
2n3 + g3

)(
2n3 + 11g3

)
.

It’s clear that V5 = 0 under the condition of

n3 = −11

2
g3. (4.16)

Substituting (4.12-4.16) into system (2.13), we have

V6 = − 11g3
2520(44g23 − 1)3

(
161975672320g103 − 25977712640g93l3 + 804136960g83l

2
3

−56650070400g83 + 16789998720g73l3 − 1580705280g63l
2
3 + 49251840g53l

3
3

−1093842464g63 + 168286272g53l3 − 6772480g43l
2
3 + 42762472g43

−9802616g33l3 + 759360g23l
2
3 − 19840g3l

3
3 − 3444g23 + 672g3l3 − 35

)
.

Now let ζ = (λ, a3, b3, c3, d3, f3, g3, h3, l3,m3, n3) ∈ R11 be the vector of the
parameters of system (2.13) and let

ζ0 =

(
0, 0,

62

9
,−1, 0, 10, 1, 1,

173

18
, 0,−11

2

)
∈ R11

be a point in the parameter space of system (2.13) satisfying conditions (4.12-4.16).
Then we have

V1 = · · · = V5 = 0, V6 =
1118267051

1837080
̸= 0.

Let ζ̄ = (λ̄, ā3, b̄3, c̄3, d̄3, f̄3, ḡ3, h̄3, l̄3, m̄3, n̄3) be a vector such that ∥ζ̄∥ ≪ 1.
Consider a small perturbation of ζ0 given by ζ = ζ0 + ζ̄. Then the Jacobian matrix
J3 of V1, · · · , V5 with respect to λ̄, ā3, b̄3, c̄3, d̄3, f̄3, ḡ3, h̄3, l̄3, m̄3, n̄3 at ζ̄ = 0 is

J3 =

2π O1×10

γ J̃3

 ,

where O1×10 is the 1 × 10 zero matrix, γ ∈ R4, J̃3 = (γ1, γ2, γ3, γ4)
T is a 4 × 10

matrix, and γ1, γ2, γ3, γ4 are column vectors given by

γ1 =

(
−1

3
,
1

3
,
1

3
,−1

3
,
5

3
,
1

3
,−1

3
,−1

3
,
1

3
,−5

3

)T

,

γ2 =

(
322

81
,
31π

18
− 322

81
,−5π

2
− 322

81
,
π

4
+

322

81
,
17π

18
− 1610

81
,−5π

2
− 322

81
,
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π

4
+

322

81
,
322

81
,−37π

36
− 322

81
,
π

2
+

1610

81

)T

,

γ3 =

(
−25π

12
− 43555

1458
,−11465π

486
+

734347

7290
,
2125π

24
+

37253

729
,−12255π

216

−188647

3645
,−890π

243
+

999067

3645
,
2125π

54
+

84955

1458
,−1255π

216
− 43507

1458
,

−25π

12
− 27245

729
,
33835π

1944
+

272813

3645
,−965π

54
− 146275

729

)T

,

γ4 =

(
385π

9
+

26760343

118098
,
155

12
π2 +

2165651π

4374
− 882314543

590490
,−75

4
π2

−321185π

648
− 35804171

59049
,
15

8
π2 +

127583π

1296
+

182472373

295245
,
85

12
π2

+
4890133π

17496
− 993262433

295245
,−75

4
π2 − 321185π

648
− 86748943

118098
,
15

8
π2

+
94913π

1296
+

26690791

118098
,
385π

9
+

21302579

59049
,−185

24
π2 − 11692583π

34992

−304428907

295245
,
15

4
π2 +

207773π

648
+

121075345

59049

)T

.

Hence the rank of J3 is 5. Thus by Lemma 4.1, system (2.13) has five limit cycles
in a small neighbourhood of (0, 0) with ∥ζ − ζ0∥ sufficiently small for any ζ ∈ R11.

The proof is complete. □
Take the parameters ζ0 =

(
0, 0, 25 ,−

31
140 , 1, 0,

1
10 ,

31
140 ,

5
4 , 0,−

11
20

)
∈ R11 in (2.13).

Then we have V1 = · · · = V5 = 0 and

V6 = − 1185371

1646400000
≈ −0.000719977527.

Let ζ̄ = (7.5 × 10−12, 0.159992943255, 0, 0, 0.25634299, 0, 0, 0.0519, 0, 0,−0.00889)
and consider the perturbation of ζ0 given by ζ = ζ0 + ζ̄. Then we can numerically
find that the displacement function d(ρ) has five positive zeros given by ρ1 ≈
0.005281640247, ρ2 ≈ 0.010086776800, ρ3 ≈ 0.033533743005, ρ4 ≈ 0.105475265409,
ρ5 ≈ 0.347350801466, corresponding to the five limit cycles ΓFF

ρk
(1 ≤ k ≤ 5)

bifurcated from (0, 0). The two outer limit cycles ΓFF
ρ4

and ΓFF
ρ5

are shown in

Figure 5 (a). The two inner limit cycles ΓFF
ρ2

and ΓFF
ρ3

are shown in Figure 5 (b).

The inner limit cycle ΓFF
ρ1

is shown in Figure 5 (c).

5. Concluding remarks

In this paper we consider the computations of Lyapunov constants of a class of
planar piecewise analytical systems defined in two zones separated by an analytical
curve y = ϕ(x) with ϕ(0) = 0, namely, system (2.1), which has a pseudo-focus
at (0, 0). We extend the classical polar coordinates to the form (2.6) for focus
contact, and the (R, θ, 1, 2)-generalized polar coordinates given in [11] to the form
(2.7) for parabolic contact. Under those transformations, for any orbit segment
of system (2.1) which intersects the switching curve, the interval of θ is the same.
Consequently, we are able to present a systematic procedure to compute the relevant
Lyapunov constants, which can be easily implemented in the computer algebra
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(a) ΓFF
ρ4

and ΓFF
ρ5

. (b) ΓFF
ρ2

and ΓFF
ρ3

in the boxed area of

Figure 5 (a).

(c) ΓFF
ρ1

in the boxed area of Figure 5 (b).

Figure 5. The five limit cycles of system (2.12) corresponding to the parameters ζ = ζ0 + ζ̄.

system Maple. In particular, we show that, similar to system with a straight
separation line given in [40], the index of the first nonzero Lyapunov constant of
system (2.1) of PP type is an even number.

To illustrate our theoretical results, we present three concrete planar piecewise
quadratic systems. The first one is of PP type separated by y = sin2 x which has four
limit cycles bifurcated from (0, 0), namely, system (2.11). The four limit cycles are
obtained by linear perturbations of parameters satisfying V2 = V 4 = V6 = V8 = 0
and V10 ̸= 0. The second one is of FP type separated by y = ex − 1 which has five
limit cycles bifurcated from (0, 0), namely, system (2.12). The five limit cycles are
obtained by linear perturbations of parameters satisfying V1 = · · · = V7 = 0 and
V8 ̸= 0. The last one is of FF type separated by y = sinx which has five limit cycles
bifurcated from (0, 0), namely, system (2.13). The five limit cycles are obtained by
linear perturbations of parameters satisfying V1 = · · · = V5 = 0 and V6 ̸= 0.

It is worth mentioning that, for systems (2.11) and (2.13), by using linear
perturbations, we have obtained the maximum numbers of small amplitude limit
cycles bifurcated from (0, 0). However, for system (2.12), by using higher order
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perturbations up to the seventh order, we still get five limit cycles, which is less than
the possible maximum number, namely, seven. Thus in our opinion, the maximum
number of limit cycles bifurcated from (0, 0) of system (2.12) is five. However, due
to computational difficulties, we are unable to verify this in this paper.
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Lyapunov coefficients for an invisible fold-fold singularity in planar piecewise
Hamiltonian systems, J. Math. Anal. Appl., 2020, 484(1), 123692, 19 pages.

[4] D. de Carvalho Braga and L. F. Mello, More than three limit cycles in
discontinuous piecewise linear differential systems with two zones in the plane,
Internat. J. Bifur. Chaos, 2014, 24(4), 1450056, 10 pages.

[5] P. T. Cardin and J. Torregrosa, Limit cycles in planar piecewise linear
differential systems with nonregular separation line, Phys. D, 2016, 337, 67–
82.

[6] V. Carmona, F. Fernández-Sánchez and D. D. Novaes, Uniform upper bound for
the number of limit cycles of planar piecewise linear differential systems with
two zones separated by a straight line, Appl. Math. Lett., 2023, 137, 108501, 8
pages.

[7] T. Chen, L. Huang and P. Yu, Center condition and bifurcation of limit cycles
for quadratic switching systems with a nilpotent equilibrium point, J. Differ.
Equ., 2021, 303, 326–368.

[8] T. Chen and J. Llibre, Nilpotent center in a continuous piecewise quadratic
polynomial hamiltonian vector field, Internat. J. Bifur. Chaos, 2022, 32(8),
2250116, 23 pages.

[9] X. Chen, V. G. Romanovski and W. Zhang, Degenerate Hopf bifurcations in
a family of FF-type switching systems, J. Math. Anal. Appl., 2015, 432(2),
1058–1076.

[10] B. Coll, A. Gasull and R. Prohens, Differential equations defined by the sum of
two quasi-homogeneous vector fields, Canad. J. Math., 1997, 49(2), 212–231.

[11] B. Coll, A. Gasull and R. Prohens, Degenerate Hopf bifurcations in
discontinuous planar systems, J. Math. Anal. Appl., 2001, 253(2), 671–690.



3156 Q. Zhang & Z. Du

[12] L. P. C. da Cruz, D. D. Novaes and J. Torregrosa, New lower bound for the
Hilbert number in piecewise quadratic differential systems, J. Differ. Equ., 2019,
266(7), 4170–4203.

[13] M. Esteban, E. Freire, E. Ponce and F. Torres, On normal forms and return
maps for pseudo-focus points, J. Math. Anal. Appl., 2022, 507(1), 125774, 31
pages.

[14] E. Freire, E. Ponce, F. Rodrigo and F. Torres, Bifurcation sets of continuous
piecewise linear systems with two zones, Internat. J. Bifur. Chaos, 1998, 8(11),
2073–2097.

[15] A. Gasull, Some open problems in low dimensional dynamical systems, SeMA
J., 2021, 78(3), 233–269.

[16] A. Gasull and J. Torregrosa, Center-focus problem for discontinuous planar
differential equations, Internat. J. Bifur. Chaos, 2003, 13(7), 1755–1765.

[17] A. Gasull, J. Torregrosa and X. Zhang, Piecewise linear differential systems
with an algebraic line of separation, Electron. J. Differential Equations, 2020,
Paper No. 19, 14 pages.

[18] L. F. S. Gouveia and J. Torregrosa, Local cyclicity in low degree planar piecewise
polynomial vector fields, Nonlinear Anal.-Real World Appl., 2021, 60, 103278,
19 pages.

[19] M. Han, Liapunov constants and Hopf cyclicity of Liénard systems, Ann.
Differential Equations, 1999, 15(2), 113–126.

[20] M. Han, Bifurcation Theory of Limit Cycles, Science Press, Beijing, 2013.

[21] M. Han and S. Liu, Hopf bifurcation in a class of piecewise smooth near-
Hamiltonian systems, Bull. Sci. Math., 2024, 195, 103471, 30 pages.

[22] M. Han and J. Yang, The maximum number of zeros of functions with
parameters and application to differential equations, J. Nonlinear Modeling
and Analysis, 2021, 3(1), 13–34.

[23] M. Han and W. Zhang, On Hopf bifurcation in non-smooth planar systems, J.
Differ. Equ., 2010, 248(9), 2399–2416.

[24] H. A. Hosham, Bifurcation of periodic orbits in discontinuous systems,
Nonlinear Dynam., 2017, 87, 135–148.

[25] S. Huan and X. Yang, On the number of limit cycles in general planar piecewise
linear systems, Discrete Contin. Dyn. Syst., 2012, 32(6), 2147–2164.

[26] S. Huan and X. Yang, Limit cycles in a family of planar piecewise linear
differential systems with a nonregular separation line, Internat. J. Bifur. Chaos,
2019, 29(8), 1950109, 22 pages.

[27] A. Ke, M. Han and W. Geng, The number of limit cycles from the perturbation
of a quadratic isochronous system with two switching lines, Commun. Pure
Appl. Anal, 2022, 21(5), 1793-1809.

[28] Yu. A. Kuznetsov, S. Rinaldi and A. Gragnani, One-parameter bifurcations in
planar Filippov systems, Internat. J. Bifur. Chaos, 2003, 13(8), 2157–2188.

[29] T. Li and J. Llibre, Limit cycles in piecewise polynomial Hamiltonian systems
allowing nonlinear switching boundaries, J. Differ. Equ., 2023, 344, 405–438.



Lyapunov constants of PWS systems 3157

[30] F. Liang, V. G. Romanovski and D. Zhang, Limit cycles in small perturbations
of a planar piecewise linear Hamiltonian system with a non-regular separation
line, Chaos Solit. Fract., 2018, 111, 18–34.

[31] H. Liu, Z. Wei and I. Moroz, Limit cycles and bifurcations in a class of planar
piecewise linear systems with a nonregular separation line, J. Math. Anal.
Appl., 2023, 526(2), 127318, 25 pages.

[32] S. Liu and M. Han, Limit cycle bifurcations near double homoclinic and double
heteroclinic loops in piecewise smooth systems, Chaos Solit. Fract., 2023, 175,
113970, 11 pages.

[33] S. Liu and M. Han, Homoclinic and heteroclinic bifurcations in piecewise
smooth systems via stability-changing method, Comput. Appl. Math., 2024,
43(5), 274, 24 pages.

[34] X. Liu, X. Yang and S. Huan, Existence of four-crossing-points limit cycles in
planar sector-wise linear systems with saddle-saddle dynamics, Qual. Theory
Dyn. Syst., 2022, 21(3), 63, 31 pages.

[35] J. Llibre and A. C. Mereu, Limit cycles for discontinuous quadratic differential
systems with two zones, J. Math. Anal. Appl., 2014, 413(2), 763–775.

[36] J. Llibre and E. Ponce, Piecewise linear feedback systems with arbitrary number
of limit cycles, Internat. J. Bifur. Chaos, 2003, 13(4), 895–904.

[37] J. Llibre, E. Ponce and X. Zhang, Existence of piecewise linear differential
systems with exactly n limit cycles for all n ∈ N, Nonlinear Anal., 2003, 54(5),
977–994.

[38] R. Lum and L. O. Chua, Global properties of continuous piecewise linear vector
fields, part I: Simplest case in R2, Int. J. Circuit Theory Appl., 1991, 19(3),
251–307.

[39] D. D. Novaes, On the Hilbert number for piecewise linear vector fields with
algebraic discontinuity set, Phys. D, 2022, 441, 133523, 15 pages.

[40] D. D. Novaes and L. A. Silva, Lyapunov coefficients for monodromic tangential
singularities in Filippov vector fields, J. Differ. Equ., 2021, 300, 565–596.

[41] C. Pessoa and R. Ribeiro, Bifurcation of limit cycles from a periodic annulus
formed by a center and two saddles in piecewise linear differential system with
three zones, Nonlinear Anal.-Real World Appl., 2024, 80, 104171, 17 pages.

[42] L. Sun and Z. Du, Crossing limit cycles in planar piecewise linear systems
separated by a nonregular line with node-node type critical points, Internat. J.
Bifur. Chaos, 2024, 34(4), 2450049, 23 pages.

[43] H. Tian and M. Han, Limit cycle bifurcations of piecewise smooth near-
Hamiltonian systems with a switching curve, Discrete Contin. Dyn. Syst. Ser.
B, 2021, 26(10), 5581–5599.

[44] Y. Tian and P. Yu, Center conditions in a switching Bautin system, J. Differ.
Equ., 2015, 259(3), 1203–1226.
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