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NUMERICAL SOLUTION OF FRACTIONAL
SINGULAR PERTURBATION

CAUCHY PROBLEM∗
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Abstract In this work, we consider a singularly perturbed Cauchy prob-
lem where the small parameter ε appears in the highest-order derivative term
(i.e., the fractional derivative). First, we analyze some properties of the frac-
tional singular perturbation problem. Then, a Shishkin mesh is introduced
to address it, as traditional numerical methods for singularly perturbed prob-
lems may lead to numerical instability. Finally, we present numerical results
demonstrating good stability and accuracy.
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1. Preliminary

The singular perturbation problem arises in many fields such as fluid mechanics,
elastic mechanics, quantum mechanics, acoustics, optics, chemical reactions, and
optimal control. Its characteristic is that the differential equation contains a per-
turbation parameter, which can either naturally occur reflecting certain physical
properties or be artificially introduced. Generally their exact solutions can not
be obtained easily. Then it turns to numerical methods for assistance, which is
more efficient than asymptotical method due to the highly developed computing
technology nowadays.

The research of asymptotical method for the traditional singular perturbation
problem with integer order derivative has been an active branch in applied math-
ematics already [3–5, 12, 17]. A large number of literatures have emerged about
research work for asymptotical solution of singular perturbation. The research re-
ferring to numerical method for singular perturbation appears relatively late. The
reason is that the numerical solution of such problems is quite difficult. For ex-
ample, for boundary layer singular perturbation problem, the small parameter ε

†The corresponding author.
1School of Mathematical Sciences, Xiamen University, Xiamen, China
2Fujian Provincial Key Laboratory of Mathematical Modeling and High-
Performance Scientific Computing, Xiamen University, Xiamen, Fujian,
China

∗The authors were supported by the Natural Science Foundation of Fujian
Province of China (Grant Nos. 2022J01035 and 2023J01026) and the National
Natural Science Foundation of China (Grant Nos. 12371372, 12371081 and
12271450).
Email: gotry@xmu.eud.cn(G. Cai), liuqx@xmu.edu.cn(Q. Liu)

http://www.jaac-online.com
http://dx.doi.org/10.11948/20250018


3208 G. Cai & Q. Liu

exists in the highest order derivative term of the differential equation, this leads
to the differential equation’s order will reduce, then its definite solution conditions
will lose partly or totally, when the small parameter ε = 0. Since it is the function
of the small parameter ε, the solution’s great changes have taken place near the
boundary where lose the definite solution condition, which is called boundary layer
singularity.

The same difficulty exists in the fractional order singular perturbation problems.
There were some references on the research of singular perturbation problem with
fractional derivative already [1, 2, 7–9, 15, 16, 18, 20, 22]. However, most of them
involved in numerical method focused on asymptotical method [2,7,9,18,20]. Some
involved in numerical solution were considered with α(1 < α < 2) fractional order
derivative [1, 22], [15]. Several literatures [15] focused on one with α(0 < α < 1)
Caputo fractional order derivative. Mostafa et al. [15] consider singular perturbation
problem with the Caputo-Fabrizio derivative and propose a special solution using
the Laplace iterative methods.

We consider in this work the following singular perturbation problem with frac-
tional derivative:Lε ≡ εα C

0D
α
xu(x) + a(x)u(x) = f(x), x ∈ [0, L],

u(0) = ϕ
(1.1)

where 0 < α ≤ 1, a(x) ≥ β > 0 and the Caputo fractional derivative C
0D

α
x is defined

by [14]:

C
0D

α
xv(x) =

1

Γ(1− α)

∫ x

0

v′(τ)

(x− τ)α
dτ,

and in this paper C
0D

nα
x means C

0D
α
x
C
0D

α
x · · ·C0Dα

x︸ ︷︷ ︸
n-times

.

The properties of the Caputo fractional derivative are listed in the following,
which are referred to in the section of numerical experiment.

Lemma 1.1. C
0D

α
xf(kx) = kC0D

α
xf(x).

One-variable Mittag-Leffler function is defined by [6]:

Eα(z) =
+∞∑
k=0

zk

Γ(1 + kα)
, α > 0, |z| < ∞.

Lemma 1.2. The Caputo derivative of the Mittag-Leffler function satisfies the fol-
lowing linear property:

C
0D

α
xEα(−λxα) = −λEα(−λxα). (1.2)

Proof.

C
0D

α
xEα(−λxα) = C

0D
α
x

∞∑
k=1

(−λxα)k

Γ(kα+ 1)

=

∞∑
k=1

(−λ)kC0D
α
xx

kα

Γ(kα+ 1)
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=

∞∑
k=1

(−λ)k
Γ(kα+ 1)x(kα+1−α)

Γ(kα− α)Γ(kα+ 1)

= −λ

∞∑
k=0

(−λxα)k

Γ(kα+ 1)

= −λEα(−λxα).

due to the formula C
0D

α
xC = 0 (C is a const) and C

0D
α
xx

γ = Γ(γ+1)
Γ(γ−α+1)x

γ−α (γ > α).

2. Properties of fractional singular perturbation
Cauchy problem’s solution

To deduce the properties of the solution for the singular perturbation problem (1.1),
introduce the Maximum theorem of the fractional derivative.

Lemma 2.1 (Maximum theorem). [11] For f ∈ C1(0, X) ∩ C[0, X], f(x0) =
min

x∈[0,X]
f(x), 0 < α < 1, then C

0 D
α
x0
f(x0) ≤ 0.

Utilizing the Maximum theorem, the following lemmas are obtained.

Lemma 2.2. Suppose

• (i) v is a smooth function;

• (ii) v(0) ≥ 0, X > 0;

• (iii) Lεv(x) ≥ 0 for x ∈ [0, X],

then it holds v(x) ≥ 0,∀x ∈ [0, X].

Proof. Proof by contradiction is considered in the following. Denote that

v(x0) = min
x∈[0,X]

v(x),

suppose that
v(x0) < 0,

then
C
0 D

α
x0
v(x0) ≤ 0

due to Lemma 2.1, it is contrast to

Lεv(x) ≡ εαC
0D

α
xv + a(x)v(x) ≥ 0,

then v(x) ≥ 0.

Lemma 2.3 (Stability inequality). Suppose

• (i) v is a smooth function;

• (ii) X > 0;

then |v(x)| ≤ |v(0)|+ 1
β max

0≤y≤x
|Lεv(y)|, a(x) ≥ β > 0.



3210 G. Cai & Q. Liu

Proof. Construct two functions

w+(x) = |v(0)|+ 1

β
max
0≤y≤x

|Lεv(y)|+ v(x),

w−(x) = |v(0)|+ 1

β
max
0≤y≤x

|Lεv(y)| − v(x),

it is clear w+(x) ≥ 0, w−(x) ≥ 0. Then it has

Lεw±(x) = a(x)|v(0)|+ a(x)

β
max
0≤y≤x

|Lεv(y)| ± Lεv(x) ≥ 0.

From Lemma 2.2, it obtains w±(x) ≥ 0, x ∈ [0, X].
In the following we prove the solution fulfils the property when the coefficient

a(x) is a constant.

Theorem 2.1. Suppose

• (i) X > 0;

• (ii) Lε ≡ εαC
0D

α
x + a;

then for any v(x) which fulfils∣∣C
0D

nα
x Lεv(x)

∣∣ ≤ C, for n ≥ 0, 0 < x < X,

the following estimate holds∣∣C
0D

nα
x v(x)

∣∣ ≤ Cε−nα, n ≥ 0, 0 < x < X.

If av(0) = Lεv(0),then∣∣C
0D

nα
x v(x)

∣∣ ≤ C(2 + ε(1−n)α), n ≥ 0, 0 < x < X,

where C is independence to ε.

Proof. Due to Lεv(x) = εαC
0D

α
xv + av, we get

C
0D

α
xv =

1

εα
[Lεv(x)− av(x)],

based on the assumption, it obtains∣∣C
0D

α
xv(x)

∣∣ ≤ Cε−α,

and ∣∣C
0D

2α
x v(x)

∣∣ = 1

εα
∣∣C
0D

α
x [Lεv − av]

∣∣
=

1

εα
∣∣C
0D

α
xLεv − aC0D

α
xv

∣∣
=

1

εα

∣∣∣∣C0Dα
xLεv − a

1

εα
[Lεv(x)− av(x)]

∣∣∣∣
≤ Cε−2α,
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due to Lemma 1.1.

We then have by the Mathematical induction that

∣∣C
0D

nα
x v(x)

∣∣ = 1

εα

∣∣∣C0D(n−1)α
x (Lεv(x)− av(x))

∣∣∣ .
If
∣∣∣C0D(n−1)α

x v(x)
∣∣∣ ≤ Cε−(n−1)α, then

∣∣C
0D

nα
x v(x)

∣∣ ≤ Cε−nα.

So far, we arrive the first part of the conclusion.

Since Lεv = εαC
0D

α
x + av, it holds

v(x) =
1

a
[Lεv(x)− εαC

0D
α
xv(x)].

Let z(x) = − 1
a
C
0D

α
xv(x), then

v(x) =
1

a
Lεv(x) + εαz(x),

then the function z(x) fulfils Lεz(x) = −1

a
Lεv(x),

z(0) = 0.

In fact,

z(x) =
1

εα
[v(x)− 1

a
Lεv(x)],

and

Lεz(x) =
1

εα
[Lεv(x)− (εα

1

a
C
0D

α
xLεv(x) + a

1

a
Lεv(x))] = −1

a
Lεv(x),

and the initial condition can be acquired from v(0) = 1
aLεv(0) + εαz(0), it leads

z(0) = 0 under the condition av(0) = Lεv(0).

Applying the first part of the conclusions to z(x), it leads to∣∣C
0D

nα
x z(x)

∣∣ ≤ Cε−nα.

Again from

v(x) =
1

a
Lεv(x) + εαz(x),

it arrives ∣∣C
0D

nα
x v(x)

∣∣ ≤ ∣∣∣∣1aC
0D

nα
x v(x)

∣∣∣∣+ εα
∣∣C
0D

nα
x z(x)

∣∣ ≤ C(1 + ε−(1−n)α).
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3. Numerical solution

3.1. Difference scheme with uniform mesh nodes

Discretize the Caputo fractional derivative as the following form [21]:

C
0D

α
x,hf(xk) =

h−α

Γ(2− α)

k∑
j=0

b
(1−α)
j [f(xk+1−j)− f(xk−j)], (3.1)

where
b
(α)
j = (j + 1)α − jα. (3.2)

And
C
0D

α
xf(xk) =

C
0D

α

x,hf(xk) +Rk (3.3)

where
|Rk| ≤ Cτ2−α.

Then we give the difference scheme for the problem (1.1):
εα

k∑
j=0

b
(1−α)
j [uk+1−j − uk−j ] + νak+1uk+1 = νfk+1,

u0 = ϕ

which can be rewritten as
(εαb

(1−α)
0 + νak+1)uk+1 = νfk+1 + b0uk +

k−1∑
j=0

b
(1−α)
k−j (uj+1 − uj),

u0 = ϕ

(3.4)

for k = 1, 2, · · · , N and ν = hαΓ(2− α).
Since the change of the solution is minimal outside the boundary layer, numerical

simulations on uniform grids result in excessive computational costs. We refer
to the treat of the traditional singular perturbation problem with integer order.
Numerical approximation with Shishkin mesh nodes can reduce the calculation cost
while maintain the accuracy [12].

3.2. Difference scheme with Shishkin mesh nodes

Let N be a positive even number and take the breaking point σ as

σ = min{1
2
,
2ε

c
ln(N)},

which is selected as experiment parameter in singular perturbation problem [12,13,
19].

In this section we take
σ = 2ε ln(N).

Then equally devide the intervals [0, σ] and [σ, T ] as follows:

xk =


2σ

N
k, 0 ≤ k ≤ N

2
,

σ +
2(1− σ

N

(
k − N

2

)
,

N

2
< k ≤ N,
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and mesh step hk = xk − xk−1 satisfies

hk =


h1 =

2σ

N
, 0 ≤ k ≤ N

2
,

h2 =
2(1− σ)

N
,

N

2
< k ≤ N.

Next, we construct the numerical discretization for the Caputo derivative at the
nodes which cross the breaking point σ, i.e. k > N

2 ,

C
0D

α
x,hf(xk)

=
1

Γ(1− α)

∫ xk+1

0

f ′(τ)

(xk+1 − τ)α
dτ

=
1

Γ(1− α)

k∑
j=0

∫ xj+1

xj

f ′(τ)

(xk+1 − τ)α
dτ

=
1

Γ(2− α)

N
2 −1∑
j=0

fj+1 − fj
h1

[(xk+1 − xj)
1−α − (xk+1 − xj+1)

1−α]

+
1

Γ(2− α)

k∑
j=N

2

b
(1−α)
k−j

fj+1 − fj
hα
2

.

Denote ν1 = hα
1Γ(2 − α), ν2 = hα

2Γ(2 − α), ν21 = hα
2 /h1, the numerical scheme

with Shishkin mesh nodes is constructed as:

εα
k∑

j=0

b
(1−α)
j [uk+1−j − uk−j ] + ν1ak+1uk+1 = ν1fk, 0 ≤ k ≤ N

2
,

εα(ν21

N
2 −1∑
j=0

[(xk+1 − xj)
1−α − (xk+1 − xj+1)

1−α][uk+1−j − uk−j ]

+

k∑
j=N

2

b
(1−α)
j [uk+1−j − uk−j ]) + ν2ak+1uk+1 = ν2fk,

N

2
< k ≤ N,

u0 = ϕ,

(3.5)
which can be written as:

for 0 ≤ k ≤ N
2 ,

(εαb
(1−α)
0 + ν1ak+1)uk+1 = ν1fk + εα{b(1−α)

0 uk −
k−1∑
j=0

b
(1−α)
j [uk+1−j − uk−j ]},

for N
2 < k ≤ N ,

(εαb
(1−α)
0 + ν2ak+1)uk+1

=ν2fk + εα{b(1−α)
0 uk −

k−1∑
j=N

2

b
(1−α)
j [uk+1−j − uk−j ]
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+ ν21

N
2 −1∑
j=0

[(xk+1 − xj)
1−α − (xk+1 − xj+1)

1−α][uk+1−j − uk−j ]}.

3.3. Stability analysis

Lemma 3.1 (Discrete Maximum theorem). For a mesh function fi (i = 0, 1, · · · ),
suppose fi0 = min{fi}, 0 < α < 1, then C

0 D
α
x,hf(xi0) ≤ 0.

Proof. Rewrite the discretization of the Caputo fractional derivative (3.1) as

C
0D

α
x,hf(xk) =

h−α

Γ(2− α)
[b

(1−α)
0 fk − b

(1−α)
k−1 f0 −

k−1∑
j=1

(b
(1−α)
j−1 − b

(1−α)
j )f(xk−j)].

Due to fi0 = min{fi}, it obtains

C
0D

α
x,hfi0 =

h−α

Γ(2− α)
[b

(1−α)
0 fi0 − b

(1−α)
i0−1 f0 −

i0−1∑
j=1

(b
(1−α)
j−1 − b

(1−α)
j )fi0−j ]

≤ h−α

Γ(2− α)
[b

(1−α)
0 − b

(1−α)
i0−1 −

i0−1∑
j=1

(b
(1−α)
j−1 − b

(1−α)
j )]fi0

= 0

since −fj ≤ −fi0 and b
(1−α)
j > 0, b

(1−α)
j−1 − b

(1−α)
j > 0 for j = 0, 1, · · · .

Similar to Lemmas 2.2 and 2.3, the following lemmas, and stability inequality
are obtained.

Lemma 3.2. Suppose

• (i) vi (i = 0, 1, 2, · · · ) is a mesh function;

• (ii) v0 ≥ 0;

• (iii) Lh
εvi = εαC

0D
α
x,hvi + aivi ≥ 0, i = 1, 2, · · · ,

then it holds vi ≥ 0,∀i = 1, 2, · · · .

Lemma 3.3. Suppose that vi (i = 0, 1, 2, · · · ) is a mesh function, and X > 0, then
it holds |vi| ≤ |v(0)|+ 1

βmax|Lh
εvj |, ai ≥ β > 0.

Therefore, we have the following Discrete Stability inequality due to the above
lemmas.

Theorem 3.1 (Discrete Stability inequality). The solution of difference equations
uh
i satisfies ∣∣uh

i

∣∣ ≤ |ϕ|+ 1

β
max

0≤ih≤X
|f(xj)| .
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4. Numerical experiments

4.1. An example with homogeneous term

In this section we first consider the following homogeneous problem: εαC
0D

α
xu(x) + u(x) = 0, x ∈ (0, 1],

u(0) = 1,

where α = 0.95 and the exact solution is u(x) = Eα(−xα

εα ).
Tables 1 - 4 show the numerical errors using the numerical scheme (3.5) with

uniform mesh nodes when the small parameter ε are taken as 1.0e-2 - 1.0e-5. These
tables show that the numerical scheme with uniform mesh nodes gives a great
performance, while it can not achieve a good result since the small parameter ε
equals to 1.0e-5, in other words, when the singular perturbation behaves fierce and
the inner boundary layer turns very thin.

Table 1. The numerical error, rate and CPU time using regular nodes with ε = 1.0e-2.

Nuni τ error order CPU time

10000 1.0000e-04 2.0254e-03 —- 0.721210

20000 5.0000e-05 1.0282e-03 0.978044 2.100715

40000 2.5000e-05 5.2200e-04 0.978040 9.226536

80000 1.2500e-05 2.6518e-04 0.977051 32.484579

Table 2. The numerical error, rate and CPU time using regular nodes with ε = 1.0e-3.

Nuni τ error order CPU time

10000 1.0000e-04 1.8751e-02 —- 0.812140

20000 5.0000e-05 9.6845e-03 0.953215 2.568955

40000 2.5000e-05 4.9507e-03 0.968036 11.093007

80000 1.2500e-05 2.5189e-03 0.974856 37.120419

Due to the values changing suddenly in the boundary inner layer, we think
about increasing the proportion of the number of the boundary inner layer. Then
the numerical scheme with Shishkin mesh nodes is applied to solve the example
instead. The better performances about approximation accuracy are listed in Tables
5-9 which show the good result even when the small parameter ε is taken as 1.0e-9.
At the same time, the CPU time, i.e., the computation is large in these above
tables. This motivates us take into further consideration reducing the computation
and maintaining the approximation accuracy.

Then the results for the Shishkin scheme (3.5), keeping the number of mesh nodes
in boundary inner layer while reducing the one in boundary external layer, are shown
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Table 3. The numerical error, rate and CPU time using regular nodes with ε = 1.0e-4.

Nuni τ error order CPU time

10000 1.0000e-04 1.3514e-00 —- 0.708407

20000 5.0000e-05 7.8415e-02 0.785237 2.135138

40000 2.5000e-05 4.3460e-02 0.851438 9.267519

80000 1.2500e-05 2.3107e-02 0.911372 33.376636

Table 4. The numerical error, rate and CPU time using regular nodes with ε = 1.0e-5.

Nuni τ error order CPU time

10000 1.0000e-04 9.5725e-02 —- 0.477043

20000 5.0000e-05 1.5671e-00 -0.711150 1.995241

40000 2.5000e-05 1.9257e-00 -0.297277 8.390547

80000 1.2500e-05 1.5661e-00 0.298187 36.994000

Table 5. The numerical error, rate and CPU time using non-regular nodes with ε = 1.0e-5.

Nnonuni τinner τouter error order CPU time

10000 1.6379e-06 1.1093e-04 2.9608e-02 —- 0.702791

20000 8.8056e-07 5.5458e-05 1.6628e-02 0.929656 2.569509

40000 4.7109e-07 2.7725e-05 9.1447e-03 0.955945 10.890227

80000 2.5095e-07 1.3861e-05 4.9692e-03 0.968430 43.383574

Table 6. The numerical error, rate and CPU time using non-regular nodes with ε = 1.0e-6.

Nnonuni τinner τouter error order CPU time

10000 1.8377e-07 1.1109e-04 3.2965e-02 —- 0.553446

20000 9.8800e-08 5.5545e-05 1.8537e-02 0.927635 2.134871

40000 5.2858e-08 2.7772e-05 1.0212e-02 0.953168 8.717076

80000 2.8158e-08 1.3886e-05 5.5578e-03 0.965962 53.386006

in Table 10 - Table 14. It can be seen that the computation reduces enormously,
simultaneously it maintains the approximation accuracy almost unchanged, which
shows good efficiency with Shishkin mesh nodes compared to Table 5 - Table 9 with
regular nodes.
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Table 7. The numerical error, rate and CPU time using non-regular nodes with ε = 1.0e-7.

Nnonuni τinner τouter error order CPU time

10000 2.0619e-08 1.1111e-04 3.6562e-02 —- 0.782936

20000 1.1086e-08 5.5554e-05 2.0623e-02 0.922662 2.825858

40000 5.9307e-09 2.7777e-05 1.1408e-02 0.946591 10.752474

80000 3.1593e-09 1.3889e-05 6.2146e-03 0.964492 53.722414

Table 8. The numerical error, rate and CPU time using non-regular nodes with ε = 1.0e-8.

Nnonuni τinner τouter error order CPU time

10000 2.3135e-09 1.1111e-04 4.0386e-02 —- 0.649463

20000 1.2438e-09 5.5555e-05 2.3002e-02 0.907006 2.871796

40000 6.6544e-10 2.7778e-05 1.2738e-02 0.944857 11.593306

80000 3.5448e-10 1.3889e-05 6.9482e-03 0.962411 39.322190

Table 9. The numerical error, rate and CPU time using non-regular nodes with ε = 1.0e-9.

Nnonuni τinner τouter error order CPU time

10000 2.5958e-10 1.1111e-04 4.4981e-02 —- 0.554434

20000 1.3956e-10 5.5556e-05 2.5583e-02 0.909300 2.066503

40000 7.4663e-11 2.7778e-05 1.4216e-02 0.939347 11.911500

80000 3.9774e-11 1.3889e-05 7.7668e-03 0.959886 44.398808

Table 10. The numerical error, rate and CPU time using less non-regular nodes with ε = 1.0e-5.

Nnonuni τinner τouter error order CPU time

800 2.2228e-06 1.3886e-03 3.8945e-02 —- 0.025761

1600 1.1114e-06 6.9432e-04 2.0675e-02 0.913533 0.025532

3200 5.5571e-07 3.4716e-04 1.0720e-02 0.947669 0.091094

6400 2.7786e-07 1.7358e-04 5.4863e-03 0.966338 0.281511

4.2. An example with variable coefficient

In this section we study the problem with variable coefficient: εαC
0D

α
xu(x) + (1/2 + x sinx+ ex)u(x) = f(x), x ∈ (0, 1],

u(0) = 1,
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Table 11. The numerical error, rate and CPU time using less non-regular nodes with ε = 1.0e-6.

Nnonuni τinner τouter error order CPU time

800 2.4941e-07 1.3889e-03 4.3365e-02 —- 0.004216

1600 1.2470e-07 6.9443e-04 2.3057e-02 0.911334 0.002885

3200 6.2352e-08 3.4722e-04 1.1969e-02 0.945908 0.067662

6400 3.1176e-08 1.7361e-04 6.1352e-03 0.964119 0.261528

Table 12. The numerical error, rate and CPU time using less non-regular nodes with ε = 1.0e-7.

Nnonuni τinner τouter error order CPU time

800 2.7984e-08 1.3889e-03 4.8057e-02 —- 0.009035

1600 1.3992e-08 6.9444e-04 2.5647e-02 0.905997 0.002725

3200 6.9960e-09 3.4722e-04 1.3359e-02 0.940906 0.061072

6400 3.4980e-09 1.7361e-04 6.8594e-03 0.961711 0.203149

Table 13. The numerical error, rate and CPU time using less non-regular nodes with ε = 1.0e-8.

Nnonuni τinner τouter error order CPU time

800 3.1399e-09 1.3889e-03 5.2810e-02 —- 0.021829

1600 1.5699e-09 6.9444e-04 2.8527e-02 0.888495 0.021615

3200 7.8496e-10 3.4722e-04 1.4908e-02 0.936208 0.057694

6400 3.9248e-10 1.7361e-04 7.6669e-03 0.959385 0.200649

Table 14. The numerical error, rate and CPU time using less non-regular nodes with ε = 1.0e-9.

Nnonuni τinner τouter error order CPU time

800 3.5230e-10 1.3889e-03 5.8116e-02 —- 0.020971

1600 1.7615e-10 6.9444e-04 3.1671e-02 0.875765 0.004222

3200 8.8074e-11 3.4722e-04 1.6632e-02 0.929239 0.092106

6400 4.4037e-11 1.7361e-04 8.5684e-03 0.956843 0.200532

where α = 0.8, f(x) = Γ(α+1)εα+(1/2+x sinx+ex)Eα(− xα

2εα ) and exact solution

u(x) = xα + Eα(− xα

2εα ).
Figures 1 and 2 show the exact solutions’ behavior which reflects the existence

of the boundary layer when the small parameters ε are taken from 1.0e-1 to 1.0e-8.
Along with ε becoming smaller, the boundary layer of the solution becomes narrow
rapidly.
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Figure 1. Exact solutions for ε = 1.0e-1 ∼ 1.0e-4.
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Figure 2. Exact solutions for ε = 1.0e-5 ∼ 1.0e-8.

To reduce the computation, we take Shishkin nodes’ number as only taken twenty
percent of exact solution’ node number. The numerical solutions are shown in
Figures 3 - 6 as the small parameter ε is taken as = 1.0e-5 ∼ 1.0e-8. The smaller
figures in the Figures 3 - 6 show the good approximation along with ε becomes
smaller.

4.3. An example with spatial Riemann-Liouville fractional
derivative

In this section we consider the application of the Shishkin mesh scheme in the partial
differential equation:

εαC
0D

α
t u(x, t) + u(x, t) = R

0D
β
xu(x, t) + f(x, t), (x, t) ∈ [0, 1]× (0, 1],

u(x, 0) = x2 − x3, x ∈ [0, 1],

u(0, t) = u(1, t) = 0, t ∈ (0, 1],
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Figure 3. Numerical solution with Shishkin meshes and exact solution for ε = 1.0e-5.
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Figure 4. Numerical solution with Shishkin meshes and exact solution for ε = 1.0e-6.

where α = 0.9, β = 1.8, f(x) = −Eα(− tα

εα )(
Γ(3)

Γ(3−β)x
2−β − Γ(4)

Γ(4−β)x
3−β) and exact

solution u(x) = Eα(− tα

εα )(x
2 − x3). And the symbol R

0D
β
x means Riemann-Liouville

fractional derivative as defined by:

R
0D

β
xv(x) =

1

Γ(2− β)

d2

dx2

∫ x

0

v(ξ)

(x− ξ)β−1
dξ,

which can be discretized as [10]:

R
0D

β
xv(xi) ≈

1

hβ
xΓ(2− β)

i∑
j=0

gβ,jv(xi−j+1),
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Figure 5. Numerical solution with Shishkin meshes and exact solution for ε = 1.0e-7.
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Figure 6. Numerical solution with Shishkin meshes and exact solution for ε = 1.0e-8.

where the weight gβ,j is denoted as

gβ,j =
Γ(j − β)

Γ(−β)Γ(j + 1)
.

The numerical solutions, with Shishkin mesh nodes in temporal direction and
regular nodes in spatial direction, are shown in Figures 7-10 as the small parameters
ε are taken as = 1.0e-5 ∼ 1.0e-8. And the solution for x = 0.125 at t = 0.001 when
ε = 1.0e-5, 1.0e-8 are shown in Figures 11 and 12, which testifies good efficiency
applied in partial fractional differential equation with small parameter.
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Figure 7. Numerical solution with Shishkin mesh nodes for ε = 1.0e-5.

Figure 8. Exact solution for ε = 1.0e-5.

Figure 9. Numerical solution with Shishkin mesh nodes for ε = 1.0e-8.

5. Conclusion

In this paper, we considered the singular perturbation Cauchy problem with small
parameter as the coefficient of the fractional order derivative term. We dealt with
the property of the solution for the singular perturbation problem and deduced its
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Figure 10. Exact solution for ε = 1.0e-8.
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Figure 11. Numerical solution with Shishkin meshes for x = 0.125 at t = 0.001 for ε = 1.0e-5.
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Figure 12. Numerical solution with Shishkin meshes for x = 0.125 at t = 0.001 for ε = 1.0e-8.

stability by Maximum theorem. Furthermore, we proposed the numerical simulation
with regular meshes and Shishkin meshes. Finally, numerical examples in one-
dimension and two-dimension case were testified to exhibit the effects.
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