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Abstract Optical fiber connection is essential to modern communication. A
high-order nonlinear Schrödinger equation (NLSE) with additional dispersion
of high-order and nonlinear components is studied in an inhomogeneous optical
fiber. We provide numerous new analytic solutions via the improved modified
extended tanh-function algorithm, including rational solution, singular peri-
odic solution, Jacobi elliptic solutions (JESs), (bright, singular, dark) soliton,
Weierstrass elliptic doubly periodic type solutions, and exponential solution.
By employing the previously outlined method, they demonstrate their unique-
ness for the given challenge. The results are presented in a clear and concise
manner for various values of the necessary free parameters. Wolfram Math-
ematica’s contour plot and 2D and 3D visualisations are used to show this
process. The outcomes show how accurate, knowledgeable, and effective the
computational procedures were. They may be used for increasingly compli-
cated phenomena by integrating them with representational calculations. This
finding constitutes a major advancement in our comprehension of the intricate
and capricious behavior of this mathematical model.
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1. Introduction

A vital component of many scientific investigations and studies, non-linear partial
differential equations (NLPDEs) are found in the fields of engineering physics, chem-
istry, biology, climate, and earth sciences, among others [2,26,38,43]. Intricate and
nonlinear behaviors can also be mathematically explained using NLPDEs. In quan-
tum physics, the NLSE is one type of equation that describes the behavior of a quan-
tum state over time. NLSEs have gained importance in many fields of applied math-
ematics and physics throughout the past several decades, including fluid dynamics,
quantum mechanics, molecular biology, hydrodynamics, elastic media, physics of
plasmas, and non-linear optics [3, 6]. Compared to the linear PDEs, NPDEs often
have some simpler analytical solutions. While the analytical solutions may exist
for some basic NPDEs, closed-form solutions are often absent from the real-world
settings involving certain complex nonlinearities [15–19]. Precise solutions for non-
negative NLPDEs are crucial for obtaining correct qualitative comprehension and
scientific interpretation of various physical processes [1, 29, 40]. Analytic results
from NLPDEs give pictorial and mathematical support for the mechanical concept
behind various complicated nonlinear phenomena, incorporating spatial localization
transfer techniques, peaking regimes, and the presence or absence of stable states
under certain circumstances [4,28,50]. Modern communication has benefited greatly
from optical fiber connections [9, 42]. Because of their inherent value and possible
uses, NLPDEs have garnered a lot of attention [37, 46, 47]. Applications for the
high-order nonlinear Schrödinger equation, which includes nonlinear components
and high-order dispersion, may be found in the Heisenberg spin chain [12], ocean
waves [8], and fiber optics [49]. Pulse shaping, a remarkable technique based on non-
linear processes in optical fibers, may be used to modify the temporal and spectral
content of light signals [24]. A variety of optical waveforms may be produced us-
ing this method, such as parabolic, triangular, rectangular profiles, and ultra-short
compressed pulses [14, 23, 36]. In particular, since the non-linear dynamical behav-
ior of pulses propagating in fibres with normal group-velocity dispersion (GVD) are
usually sensitive to the initial conditions of the pulse, By adjusting the starting
pulse’s temporal intensity and/or phase profile, standard laser pulses may be non-
linearly shaped into a variety of specialised waveforms [27]. Changes in the sign of
the GVD cause discrete changes in the phase profile, spectrum, and temporal struc-
ture of the pulse, exposing a variety of aspects of its nonlinear growth. The recent
studies on nonlinear wave dynamics and soliton theory have provided significant
insights into complex physical systems. Gao investigated the (3+1)-dimensional
generalized Yu-Toda-Sasa-Fukuyama system, considering two-layer liquid interac-
tions and lattice effects, which are crucial in fluid mechanics and condensed matter
physics [20]. Wu et al. examined dark-soliton asymptotics in a repulsive nonlinear
system under baroclinic flow conditions, highlighting the role of solitons in atmo-
spheric and oceanic dynamics [45]. Gao and Tian explored similarity reductions in
a (2+1)-dimensional modified Kadomtsev-Petviashvili system, contributing to the
understanding of electromagnetic wave propagation in thin films [21]. Feng et al.
analyzed the bilinear form and soliton solutions of a (3+1)-dimensional Korteweg-
de Vries equation with time-dependent coefficients, furthering the mathematical
framework for wave modeling in fluids [13]. Additionally, Shan et al. extended
these investigations by deriving N−soliton solutions for a generalized Korteweg–de
Vries–Calogero–Bogoyavlenskii–Schiff equation, which governs shallow water wave
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behavior under varying temporal conditions [41]. These studies collectively ad-
vance the theoretical and applied aspects of nonlinear wave phenomena across di-
verse physical contexts. Recent studies have advanced soliton theory across var-
ious nonlinear systems. Lan explored multi-soliton and breather-like solutions in
optical fibers [31], N−soliton solutions in cylindrical Kadomtsev–Petviashvili equa-
tions [32], and soliton asymptotics in Bose–Einstein condensates [33]. Zhao ana-
lyzed the integrability of a (2+1)-dimensional Date–Jimbo–Kashiwara–Miwa equa-
tion [48]. Lan also investigated semirational rogue waves in higher-order Schrödinger
equations [34] and bound-state solitons in three-wave resonant interactions [35].
These works contribute significantly to nonlinear wave modeling in optics, quan-
tum fluids, and plasma physics.

Unlike previous studies, this work presents an innovative framework by integrat-
ing higher-order perturbative effects with advanced analytical techniques to obtain
new soliton solutions. This novel approach not only extends existing models but
also addresses unresolved complexities, offering fresh insights into nonlinear wave
dynamics in optical fibers.

2. Related works

The study of high-order Nonlinear Schrödinger Equations (NLSEs) is essential in op-
tical fiber research due to their ability to accurately model complex wave dynamics,
including soliton interactions, self-phase modulation, and higher-order dispersion
effects. In modern optical communication systems, where data transmission rates
are continually increasing, traditional NLSE models often fall short in capturing
critical nonlinear effects pertinent to ultra-short pulse propagation and high-power
regimes. These conventional models typically overlook higher-order dispersion, self-
steepening, and Raman scattering, leading to discrepancies between theoretical pre-
dictions and experimental observations.

Previous studies have primarily focused on the standard NLSE, which is limited
in its capacity to describe pulse evolution under extreme conditions. While some
extensions have incorporated third-order dispersion and self-steepening, they often
lack a unified framework to handle complex nonlinear interactions in highly dis-
persive and birefringent fibers. Recent research has addressed these limitations by
introducing higher-order nonlinear terms and perturbative effects, thereby refining
the mathematical framework to enhance predictive accuracy for real-world fiber-
optic systems. For instance, Murad et al. investigated optical soliton solutions of
the time-fractional higher-order NLSE with Kudryashov’s nonlinear refractive in-
dex, providing insights into ultra-short pulse propagation in optical fibers [39]. Sim-
ilarly, Chen et al. explored periodic soliton interactions using a high-order NLSE,
offering valuable understanding of soliton transmission characteristics in optical
fibers [11]. These advancements contribute to the development of next-generation
high-speed optical networks, facilitating more efficient and reliable data transmis-
sion.

In this work, we investigate the upcoming high-order NLSE in an inhomogeneous
optical fibre, which can be read as [22,44]:

iTx +
1

2
Ttt + T |T |2 − iη

(
6|T |2Tt + Tttt

)
+ γ

(
Ttttt + 6T ∗T 2

t + 4T |Tt|2 + 6T |T |4 + 2T 2T ∗
tt + 8Ttt|T |2

)
= 0, (2.1)
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where the envelope of the waves is represented by T (t, x), the propagation vari-
able is x, and time in the moving frame is t. The complex conjugate is indicated
by the superscript “∗”, and the partial derivatives are represented by the sub-
scripts. In addition, η, γ are two real-valued constants which are represent the
coefficients of third-order, fourth-order linear dispersion, respectively. T |T |4 and
T |T |2 respectively elucidate the quintic and cubic nonlinear effects of self-phase
modulation (SPM) on optical wave propagation. The additional nonlinear com-
ponents are taken into account, including self-frequency shift, self-steepening, and
Kerr effects [10]. Higher-order dispersion and nonlinear effects are crucial in the
transmission of ultrashort pulses, including femtosecond pulses, due to the incred-
ibly short pulse width. The shape and stability of the pulse are greatly influenced
by the nonlinear effects of the optical signal, such as SPM and cross-phase modu-
lation, especially in high-power or high-intensity fiber optic systems. We are aware
of various published solutions for both rogue periodic waves and Jacobian elliptic
functions for Eq. (2.1) in [44].

By analyzing the proposed model in (2.1) and applying the improved modi-
fied extended tanh-function algorithm (IMETFA), we hope to present novel optical
modulated envelope soliton solutions in this work. We shall acquire various wave
patterns that are modified, such as dark, bright, singular soliton, JESs, rational,
singular periodic, exponential, and Weierstrass elliptic double periodic type func-
tions. The effectiveness and potency of the used procedure are demonstrated by
these extracted solutions.

Despite significant advancements in the study of high-order NLSEs within op-
tical fibers, existing research has predominantly concentrated on specific cases or
limited formulations of these equations. For instance, Kuang and Tian utilized
an improved Riemann–Hilbert method to derive higher-order soliton solutions for
the derivative NLSE [30]. While these studies have contributed valuable insights,
they often address simplified versions of the governing equations or employ solution
techniques that do not fully encapsulate the range of nonlinear effects pertinent
to ultra-short pulse propagation and high-power regimes. In contrast, our work
introduces a novel approach by incorporating higher-order perturbative terms and
advanced analytical methods to derive new soliton solutions, thereby filling a crucial
gap and making a unique contribution to the field [39].

3. Materials and methods

3.1. Motivation and advantages of the method

The IMETFA proves highly effective in obtaining precise exact solutions and en-
hancing the understanding of soliton dynamics compared to other recent methods.
Its key advantages include efficiently generating accurate solutions, accommodating
a broad range of nonlinear equations, and providing hyperbolic function-based solu-
tions, which are crucial in physical applications. Additionally, it extends the tradi-
tional tanh method, offering improved flexibility and precision in solution derivation.
However, its limitations involve dependence on selecting appropriate solution forms,
potential complexity in handling higher-order nonlinear terms, and challenges in
solving PDEs with non-hyperbolic structures. Moreover, achieving reliable results
requires careful coefficient selection.
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3.2. Mathematical preliminaries

A useful tool for PDE solutions is the IMETFA. In addition to handling complicated
boundary conditions, it provides precise and effective solutions for both linear and
nonlinear equations. The answers it offers are also simple to comprehend and apply.
Understanding the underlying phenomena is aided by the fact that it offers a clear
physical explanation of the solutions. In this portion, we highlight the important
components of the IMETFA that this study will employ. Consider the succeeding
NLPDE [5,7, 25]:

R (℧,℧t,℧x,℧xx,℧tt,℧xt,℧xxx, . . .) = 0, (3.1)

where R denotes a polynomial function with its argument ℧(x, t) accompanied by
its respective partial derivatives with respect to the two independent variables.

Step 1. Here, our goal is to change Eq. (3.1), an NLPDE, into a non-linear ordinary
differential equation (NODE). To do this, we use the following transformation:

℧(x, t) = G(ζ)ei(κx−ct), ζ = ax− ωt, (3.2)

where G(ζ) denotes the amplitude component of the solution, and κ, c, a, and ω
are defined as real-valued constants that will be calculated later in the progress of
the work.
Next, we combine Eq. (3.2) with Eq. (3.1), allowing us to build the necessary
NODE as follows:

S(G, G′, G′′, G′′′, . . .) = 0. (3.3)

Step 2. According to the used algorithm, the general form of the solution for Eq.
(3.3) is as follows:

G(ζ) =
M∑

j=0

AjHj(ζ) +

M∑
j=1

BjH−j(ζ), (3.4)

here the parameters Aj and Bj (j = 1, 2, ...,M) stand for constants in the solution
equation that will be computed. This provides the necessary condition that neither
AM nor BM can be zero at the same time.

Step 3. In order to assess the positive integer M, the balancing principle (BP) is
employed to Eq. (3.3). And the function H(ζ) also satisfies the following constrain:

(H′(ζ))2 =

(
dH
dζ

)2

= τ0 + τ1H(ζ) + τ2H2(ζ) + τ3H3(ζ) + τ4H4(ζ), (3.5)

while τl (0 ≤ l ≤ 4) represent constant values that shall assist in identifying poten-
tial solution scenarios.
Eq. (3.5) has the following general solutions with different possible values of
τ0, τ1, τ2, τ3 and τ4:

Family 1. When τ0 = τ1 = τ3 = 0, the following solutions are raised:

H(ζ) =

√
−τ2
τ4

sech [ζ
√
τ2] , τ2 > 0, τ4 < 0,

H(ζ) =

√
−τ2
τ4

sec
[
ζ
√
−τ2

]
, τ2 < 0, τ4 > 0.
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These solutions are localized and describe soliton-like structures. The sech function
corresponds to bright solitons, while the sec function represents singular periodic
structures.

Family 2. When τ1 = τ3 = 0, the following solutions are raised:

H(ζ) =

√
− µ2τ2
(2µ2 − 1) τ4

cn

[
ζ

√
τ2

2µ2 − 1

]
, τ2 > 0, τ4 < 0, τ0 =

µ2
(
1− µ2

)
τ22

4 (2µ2 − 1)
2
τ4

,

H(ζ) =

√
− µ2

(2− µ2) τ4
dn

[
ζ

√
τ2

2− µ2

]
, τ2 > 0, τ4 < 0, τ0 =

(
1− µ2

)
τ22

(2− µ2)
2
τ4

,

H(ζ) =

√
− µ2τ2
(µ2 + 1) τ4

sn

[
ζ

√
−τ2

µ2 + 1

]
, τ2 < 0, τ4 > 0, τ0 =

µ2τ22

(µ2 + 1)
2
τ4

,

H(ζ) = ϵ

√
− τ2
2τ4

tanh

(√
−τ2

2
ζ

)
, τ2 < 0, τ4 > 0, τ0 =

τ22
4τ4

,

H(ζ) = ϵ

√
τ2
2τ4

tan

(√
τ2
2

ζ

)
, τ2 > 0, τ4 > 0, τ0 =

τ22
4τ4

,

where µ is the modulus of the Jacobi elliptic functions, 0 ≤ µ ≤ 1, and ϵ = ±1.
These solutions describe periodic and quasi-periodic wave structures, in addition to
the dark solitons.

Family 3. When τ2 = τ4 = 0, τ0 ̸= 0, τ1 ̸= 0, τ3 > 0,the following solution is
raised:

A Weierstrass elliptic doubly periodic type solution is obtained:

H(ζ) = ℘

[√
τ3
2

ζ, A2, A3

]
,

where A2 = −4τ1
τ3

and A3 = −4τ0
τ3

are called Weierstrass elliptic function in-

variants.

Family 4. When τ3 = τ4 = 0, the following solution is raised:

H(ζ) = − τ1
2τ2

+ exp (ϵ
√
τ2 ζ) , τ2 > 0, τ0 =

τ21
4τ2

,

H(ζ) = − τ1
2τ2

+
ϵτ1
2τ2

sin
(√

−τ2 ζ
)
, τ0 = 0, τ2 < 0,

H(ζ) = − τ1
2τ2

+
ϵτ1
2τ2

sinh (2
√
τ2 ζ) , τ0 = 0, τ2 > 0,

H(ζ) = ϵ

√
−τ0
τ2

sin
(√

−τ2 ζ
)
, τ1 = 0, τ0 > 0, τ2 < 0,

H(ζ) = ϵ

√
τ0
τ2

sinh (
√
τ2 ζ) , τ1 = 0, τ0 > 0, τ2 > 0.

Family 5. When τ0 = τ1 = 0, and τ4 > 0, the following solution is raised:

H(ζ) = −
τ2 sec

2
(√

−τ2
2 ζ

)
2ε
√
−τ2τ4 tan

(√
−τ2
2 ζ

)
+ τ3

, τ2 < 0,
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H(ζ) =
τ2sech

2
(√

τ2
2 ζ

)
2ε
√
τ2τ4 tanh

(√
τ2
2 ζ

)
− τ3

, τ2 > 0, τ3 ̸= 2ε
√
τ2τ4,

H(ζ) =
1

2
ε

√
τ2
τ4

(
1 + tanh

(√
τ2
2

ζ

))
, τ2 > 0, τ3 = 2ε

√
τ2τ4.

Step 4. Rendering Eq. (3.3) with the solution that seems to be provided in
Eqs. (3.4) and (3.5) will generate a polynomial in H(ζ). Mathematical software
like Mathematica program may be utilized to solve an algebraic system of non-
linear equations that arises when the coefficients of Hk(ζ), (k = 0,±1,±2, ...), are
equalised to zero. For the travelling wave in Eq. (3.1), there are thus several
analytic solutions that we can obtain. The following flow chart summarizes all the
aforementioned steps.

Figure 1. A flow chart of the IMETFA steps.

4. Results

In this part, the IMETFA is used to create all possible solutions for Eq. (2.1). To
achieve this, we use the wave transformation shown below:

T (t, x) = ϕ(ζ)eiβx, ζ = t− ϱx, (4.1)
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where ϕ(ζ) denotes the amplitude of the solution and β, ϱ are constant parameters.
When Eq. (4.1) is substituted into Eq. (2.1) and the real and imaginary sections
are separated, the results are

− βϕ+ γ
(
ϕ(4) + 10ϕ

(
ϕϕ′′ + (ϕ′)

2
)
+ 6ϕ5

)
+ ϕ3 +

ϕ′′

2
= 0, (4.2)

− ηϕ(3) − 6ηϕ2ϕ′ − ϱϕ′ = 0. (4.3)

After integrating the imaginary part in Eq. (4.3) with respect to (ζ) once, while
considering the integration’s constant to be zero, yields:

ϕ′′ =
−2ηϕ3 − ϱϕ

η
. (4.4)

Using what is obtained in (4.4), Eq. (4.2) can be reduced to be as follows:

−(2βη + ϱ)ϕ− 28γηϕ5 + 2γηϕ(4) + 20γηϕ (ϕ′)
2 − 20γϱϕ3 = 0. (4.5)

Therefore, using the BP described in Section 3.2 between ϕ(4) and ϕ5, we may
establish the analytic solution form for Eq. (4.5), as follows:

ϕ(ζ) = A0 + A1H(ζ) +
B1

H(ζ)
. (4.6)

If the solution form in Eq. (4.6) is replaced with the limitation in Eq. (3.5), then
there exists a polynomial inH(ζ) by Eq. (4.5). When all terms with the same powers
are added together and eventually equal to zero, an algebraic system of nonlinear
equations is produced. Solving these equations with the Wolfram Mathematica
program allows us to get the following results. The conditions are such that A1 and
B1 cannot both be zero simultaneously.

Theorem 4.1. Let τ0 = τ1 = τ3 = 0, then Eq. (2.1) has bright soliton, singular
periodic, and rational solutions.

Proof. Since τ0 = τ1 = τ3 = 0, then the solutions of the system of nonlinear
algebraic equations are:

(1.a) A0 = B1 = 0, A1 = ±
√
−τ4, γ =

η(2βη + ϱ)

2ϱ2
, τ2 = −ϱ

η
.

(1.b) A0 = B1 = 0, A1 =

√
3τ4
7

± 2, γ =
169η(2βη + ϱ)

72ϱ2
, τ2 =

6ϱ

13η
.

By considering set (1.a), the solutions of Eq. (2.1) will be:

(1.a,1) If τ2 > 0, τ4 < 0, so:

T1.a,1(t, x) = ±
√
τ2 sech [(t− ϱx)

√
τ2] e

iβx, (4.7)

that denotes a bright soliton solution. It is indicating its localized and non-
dispersive nature. The soliton maintains its shape due to the balance between
dispersion and nonlinearity, with its amplitude proportional to

√
τ2 and its

propagation influenced by the parameters ϱ and β. The conditions τ2 > 0 and
τ4 < 0 ensure the existence of this stable, localized wave structure.
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By considering set (1.b), Eq. (2.1) will have the following solutions:

(1.b,1) If τ2 < 0, τ4 > 0, so:

T1.b,1(t, x) = ±2

√
−3

7
τ2 sec

[
(t− ϱx)

√
−τ2

]
eiβx, (4.8)

that describes a singular periodic solution. It indicates its singularity at spe-
cific points where the function diverges. The solution oscillates with periodic
singularities due to the secant term, and its amplitude depends on τ2. The
conditions τ2 < 0 and τ4 < 0 ensure the existence of this solution, with its
propagation influenced by the parameters ϱ and β.

(1.b,2) If τ2 = 0, τ4 > 0, so:

T1.b,2(t, x) =
∓2

√
3
7

t− ϱx
eiβx, (4.9)

which denotes a rational solution. It is characterized by a fraction where
the denominator introduces singularities, indicating localized structures that
decay algebraically rather than exponentially, with propagation influenced by
parameters ϱ and β.

Theorem 4.2. Let τ1 = τ3 = 0, then Eq. (2.1) has Jacobi elliptic function, singular
soliton, and singular periodic solutions.

Proof. Since τ1 = τ3 = 0, then the solutions of the system of nonlinear algebraic
equations are:

(2.a) A0 = B1 = 0,A1 = ±
√
−τ4, γ =

η(2βη + ϱ)

2 (2η2τ0τ4 + ϱ2)
, τ2 = −ϱ

η
.

(2.b) A0 = B1 = 0,A1 = ±2

√
3τ4
7

, γ =
1183η(2βη + ϱ)

68952η2τ0τ4 + 504ϱ2
, τ2 =

6ϱ

13η
.

(2.c) A0 = A1 = 0, B1 = ±
√
−τ0, γ =

η(2βη + ϱ)

2 (2η2τ0τ4 + ϱ2)
, τ2 = −ϱ

η
.

(2.d) A0 = A1 = 0, B1 = ±2

√
3τ0
7

, γ =
1183η(2βη + ϱ)

68952η2τ0τ4 + 504ϱ2
, τ2 =

6ϱ

13η
.

Considering the solutions’ set (2.a), the solutions of Eq. (2.1) will be:

(2.a,1) If τ2 > 0, τ4 < 0, τ0 =
ℵ2(1−ℵ2)τ2

2

(2ℵ2−1)2τ4
, and 0 < ℵ ≤ 1, we get a Jacobi elliptic

function (JEF) solution provided that ℵ ≠
1√
2
:

T2.a,1(t, x) = ℵ
√

τ2
2ℵ2 − 1

cn(t− ϱx)eiβx. (4.10)

This solution describes periodic wave structures that transition between soli-
tonic and sinusoidal behaviors, depending on the modulus parameter. By
setting ℵ = 1, we obtain a bright soliton solution:

T2.a,2(t, x) =
√
τ2 sech[t− ϱx]eiβx. (4.11)
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(2.a,2) If τ2 > 0, τ4 < 0, τ0 =
(1−ℵ2)τ2

2

(2−ℵ2)2τ4
, and 0 < ℵ ≤ 1, a JEF solution is

retrieved as:

T2.a,3(t, x) = ±ℵ
√

1

2− ℵ2
dn(t− ϱx)eiβx. (4.12)

The “dn” function is known for maintaining a bell-shaped profile, making it
useful for modeling soliton-like structures in nonlinear wave equations. By
setting ℵ = 1, we obtain a bright soliton solution in the form:

T2.a,4(t, x) = sech[t− ϱx]eiβx. (4.13)

Through (2.b), the solutions are obtained as follows:

(2.b,1) If τ2 < 0, τ4 > 0, and τ0 =
τ2
2

4τ4
, then:

T2.b,1(t, x) = ±2

√
−3τ2

14
tanh

[
(t− ϱx)

√
−τ2

2

]
eiβx, (4.14)

and it is considered a dark soliton solution. The “tanh” function ensures
a localized structure with a smooth transition between asymptotic states,
making it suitable for modeling solitary waves in nonlinear systems.

(2.b,2) If τ2 > 0, τ4 > 0, and τ0 =
τ2
2

4τ4
, then:

T2.b,2(t, x) = ±2

√
3τ2
14

tan

[
(t− ϱx)

√
τ2
2

]
eiβx, (4.15)

that is a singular periodic solution.

(2.b,3) If τ2 < 0, τ4 > 0, τ0 =
ℵ2τ2

2

(1+ℵ2)2τ4
, and 0 < ℵ ≤ 1, a JEF solution is raised

as:

T2.b,3(t, x) = ±2ℵ

√
− 3τ2
7 (ℵ2 + 1)

sn(t− ϱx)eiβx. (4.16)

The presence of “sn” suggests that the wave exhibits oscillatory behavior,
rather than a strictly localized soliton form. Especially, when setting ℵ = 1,
we find a dark soliton solution:

T2.b,4(t, x) = ±2

√
−3τ2

14
tanh[t− ϱx]eiβx. (4.17)

From (2.c), the solutions are obtained as follows:

(2.c,1) If τ2 > 0, τ4 < 0, τ0 =
ℵ2(1−ℵ2)τ2

2

(2ℵ2−1)2τ4
, and 0 < ℵ ≤ 1, a JEF solution is raised

provided that ℵ ≠
1√
2
:

T2.c,1(t, x) = ±
√

τ2
2ℵ2 − 1

cn(t− ϱx)eiβx. (4.18)

It describes a periodic and bounded wave structure. Unlike hyperbolic soli-
tons, this type of solution is periodic and oscillatory in nature, meaning it
does not decay to zero at infinity but instead repeats over a finite interval.
By setting ℵ = 1, we obtain a bright soliton solution:

T2.c,2(t, x) = ±
√
τ2 sech[t− ϱx]eiβx. (4.19)
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(2.c,2) If τ2 > 0, τ4 < 0, τ0 =
(1−ℵ2)τ2

2

(2−ℵ2)2τ4
, and 0 < ℵ < 1, a JEF solution is

constructed as:

T2.c,2(t, x) = ±τ2
ℵ

√
1− ℵ2

2− ℵ2
nd(t− ϱx)eiβx, (4.20)

It exhibits periodic behavior and transitions between rational and solitonic
waveforms depending on the modulus parameter.

Through (2.d), the solutions are obtained as follows:

(2.d,1) If τ2 < 0, τ4 > 0, and τ0 =
τ2
2

4τ4
, then:

T2.d,1(t, x) = ±2

√
−3τ2

14
coth

[
(t− ϱx)

√
−τ2

2

]
eiβx, (4.21)

and it is thought to be a singular soliton solution. This solution exhibits
abrupt changes in amplitude with singularities, making it relevant for wave-
breaking phenomena and discontinuous wave structures in nonlinear systems.

(2.d,2) If τ2 > 0, τ4 > 0, and τ0 =
τ2
2

4τ4
, then:

T2.d,2(t, x) = ±2

√
3τ2
14

cot

[
(t− ϱx)

√
τ2
2

]
eiβx, (4.22)

that represents a singular periodic solution.

(2.d,3) If τ2 < 0, τ4 > 0, τ0 =
ℵ2τ2

2

(1+ℵ2)2τ4
, and 0 ≤ ℵ ≤ 1, a JEF solution is

established as:

T2.d,3(t, x) = ±2

√
− 3τ2
7 (ℵ2 + 1)

ns(t− ϱx)eiβx. (4.23)

It characterizes periodic wave structures with singularities, influenced by the
parameter ϱ. Special cases, when ℵ = 1, we find a singular soliton solution:

T2.d,4(t, x) = ±2

√
−3τ2

14
coth[t− ϱx]eiβx. (4.24)

In addition, setting ℵ = 0 will produce a singular periodic solution as:

T2.d,5(t, x) = ±2

√
−3τ2

7
csc[t− ϱx]eiβx. (4.25)

Theorem 4.3. Let τ2 = τ4 = 0, τ0 ̸= 0, τ1 ̸= 0 and τ3 > 0, then Eq. (2.1) has
Weierstrass elliptic doubly periodic solutions.

Proof. Since τ2 = τ4 = 0, τ0 ̸= 0, τ1 ̸= 0 and τ3 > 0, then, the solutions of the
system of nonlinear algebraic equations are:

(3.a) A0 = ± τ1
4
√
−τ0

, A1 = 0, B1 = ±
√
−τ0, β =

23γτ41 − 24τ0τ
2
1

128τ20
, ϱ =

3ητ21
8τ0

,

τ3 = − τ31
8τ20

.
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(3.b) A0 = ±τ1
2

√
3

7τ0
, A1 = 0, B1 = ±2

√
3τ0
7

, β =
159γτ41 + 91τ0τ

2
1

224τ20
, ϱ =

−13ητ21
16τ0

, τ3 = − τ31
8τ20

.

Using sets (3.a) and (3.b), one shall obtain Weierstrass elliptic doubly periodic type
solutions respectively as:

T3.a(t, x) = ±

 √
−τ0

℘
(

1
2 (t− ϱx)

√
τ3;− 4τ1

τ3
,− 4τ0

τ3

) +
τ1

4
√
−τ0

 eiβx, τ0 < 0, (4.26)

T3.b(t, x) = ±
√

3

7

 2
√
τ0

℘
(

1
2 (t− ϱx)

√
τ3;− 4τ1

τ3
,− 4τ0

τ3

) +
τ1
2

√
1

τ0

 eiβx, τ0 > 0.

(4.27)

These solutions characterize complex periodic structures. The presence of the
Weierstrass function indicates a solution that combines elliptic periodicity in both
space and time.

Theorem 4.4. Let τ3 = τ4 = 0, then Eq. (2.1) has singular soliton, singular
periodic, and exponential solutions.

Proof. Since τ3 = τ4 = 0, then the solutions of the system of nonlinear algebraic
equations are:

(4.a) A0 = A1 = τ1 = 0, B1 = ±2

√
3τ0
7

, γ =
β

τ22
+

13

12τ2
, η =

6ϱ

13τ2
.

(4.b) A0 = ±
√

3τ2
7

, A1 = 0, B1 = ±2

√
3τ0
7

, γ =
7 (24β − 13τ2)

348τ22
, η = − 12ϱ

13τ2
,

τ1 = ±2
√
τ0τ2.

From the set (4.a), we can construct the upcoming solutions:

(4.a,1) If τ0 > 0 and τ2 < 0, the following singular periodic solution shall be
retrieved:

T4.a,1(t, x) = ±2

√
−−3τ2

7
csc

[
(t− ϱx)

√
−τ2

]
eiβx. (4.28)

(4.a,2) If τ0 > 0 and τ2 > 0, the following singular soliton solution will be found:

T4.a,2(t, x) = ±2

√
3τ2
7

csch [(t− ϱx)
√
τ2] e

iβx. (4.29)

From the set (4.b), we may build the next exponential solution as follows:

T4.b(t, x) = ±
√

3

7

 2
√
τ0

e
√
τ2(t−ϱx) − τ1

2τ2

+
√
τ2

 eiβx, (4.30)

provided that τ2 > 0, τ0 > 0, and e
√
τ2(t−ϱx) − τ1

2τ2
̸= 0. This solution represents a

hyperbolic-type wave function incorporating an exponential term in the denomina-
tor, which suggests a localized or soliton-like behavior.
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Theorem 4.5. If τ0 = τ1 = 0 and τ4 > 0, then we obtain:

A0 = ±
√

3τ2
7

, A1 = ±τ3

√
3

7τ2
, B1 =0, γ =

7 (24β − 13τ2)

348τ22
, η = − 12ϱ

13τ2
, τ4 =

τ23
4τ2

,

which gives the dark soliton solution as follows:

T5(t, x) = ±
√

3τ2
7

(
tanh

[
1

2
(t− ϱx)

√
τ2

]
+ 2

)
eiβx, (4.31)

such that τ2 > 0.

5. Discussion

For Eq. (2.1), numerous categories of solutions were extracted when changing the
parameter values in the model being examined. As so, some amazing results that
have never been recorded or achieved have been obtained using this algorithm.
Highlighting the physical characteristics of the retrieved solutions are drawings of
numerous specific solutions obtained by the two-dimensional, three-dimensional,
and contour plot simulations. In Figure 2, Eq. (4.7) is showed with its bright
soliton solution of parameters ϱ = −0.9, η = 0.5, β = −0.8, while −8 ≤ x ≤ 8.
It illustrates a bright soliton solution, representing a localized wave that main-
tains its shape while traveling, which is crucial in optical fibers and fluid dynamics.
The singular periodic solution of Eq. (4.8) is indicated in Figure 3 by setting
ϱ = −0.8, η = 0.5, β = 0.8, and −15 ≤ x ≤ 15. This figure displays a
singular periodic solution, indicating wave patterns with repeating singularities,
often linked to instability or resonance phenomena in nonlinear systems. A ra-
tional wave solution that was introduced in Eq. (4.9), is clarified in Figure 4
through parameters ϱ = 0.8, β = 0.7, with −15 ≤ x ≤ 15. It showcases a
rational wave solution, characterized by localized structures with algebraic decay,
which are relevant in fluid turbulence and plasma waves. A dark soliton solu-
tion that was introduced in Eq. (4.14), is clarified in Figure 5 through parame-
ters ϱ = 0.9, β = 0.7, η = −0.5, with −15 ≤ x ≤ 15. This plot presents a dark
soliton solution, depicting a dip in the wave profile commonly observed in Bose-
Einstein condensates and nonlinear optics. Additionally, the graphs of the singular
soliton solution represent Eq. (4.21) are sketched in Figure 6 as we choose the
parameters as ϱ = −0.9, η = 0.5, β = 0.6, and −15 ≤ x ≤ 15. It illustrates a
singular soliton solution, highlighting wave structures with singularities that arise
in certain physical settings, such as shallow water waves and nonlinear lattices.
These diverse waveforms emphasize the richness and applicability of the obtained
solutions in various physical contexts.

6. Conclusion

In today’s world of communication, optical fiber connections are crucial. Our work
aimed at identifying the precise traveling solutions and investigating their physical
properties through mathematical analysis. The high-order NLSE, or Eq. (2.1), in
an inhomogeneous optical fibre with additional higher-order dispersion and nonlin-
ear components, is the subject of this investigation. We have effectively transformed
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Figure 2. Bright soliton solution simulations of Eq. (4.7).
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Figure 3. Singular periodic solution simulations of Eq. (4.8).

this problem, which we have dubbed the IMETFA—into an NLODE by using our
study to illuminate its basic technique. The employed scheme leads to the discov-
ery of a broad range of unique solutions, including exponential, rational, singular
periodic, (bright, dark, singular) solitons, JEFs, and Weierstrass elliptic double pe-
riodic solutions. Mathematical physics can benefit from these solutions in multiple
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Figure 4. Rational solution simulations of Eq. (4.9).

-15 -10 -5 0 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0

x

t

-10 -5 5 10 x

0.2

0.4

0.6

0.8

2. b,1

Figure 5. Dark soliton solution simulations of Eq. (4.14).

ways, including data carrier performance optimization and prediction in nonlinear
optics. This finding represents a significant advancement in our comprehension of
the complex and frequently erratic behaviour of the NLSEs. The book invites read-
ers on an engrossing voyage into the world of non-linear waves, optical fibres, and
dynamic systems, promising further revelations and insights.
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Figure 6. Singular soliton solution simulations of Eq. (4.21).

7. Future work

Future research could focus on analyzing the stability and long-term behavior of
the obtained solitary wave solutions in stochastic systems. Examining the impact
of random fluctuations and parametric variations on wave dynamics may uncover
new phenomena. Integrating analytical and numerical stochastic methods could
provide deeper insights into the complex interplay between noise and nonlinear
wave structures.
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