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Abstract We prove a Nekhoroshev type theorem for the fractional nonlinear
Schrödinger equation under Dirichlet boundary conditions. More precisely,
our findings show that the solutions with ε-small initial data in the Gevrey
space remain in their small magnitude over time intervals of order ε−|ln ε|γ

with 0 < γ < 1/10. The result can be proved by using Birkhoff normal form
method and the so-called tame property of the nonlinearity in Gevrey space.
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1. Introduction and main result

We focus on the fractional nonlinear Schrödinger (FNLS) equation

iut = (−∆)
s
u+ |u|2u (1.1)

on the finite x-interval [0, π] with Dirichlet boundary conditions

u(t, 0) = 0 = u(t, π), −∞ < t < +∞,

where (−∆)
s
denotes the Riesz fractional differentiation defined in [29] with 1/2 <

s < 1.
The fractional Schrödinger equation introduced by Laskin [30,31] derives a frac-

tional version of classical quantum mechanics. By introducing fractional derivatives,
it provides a better description of the non-local and non-Markovian behavior of
particles in some special systems. Furthermore, the fractional Schrödinger equation
provides a new mathematical tool for us to understand the behavior of particles in
the microscopic world and some of the exotic phenomena and properties in quan-
tum mechanics. Up to now, there has been a lot of excellent work on the FNLS
equation, such as [22,24,28,29,34].
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In this paper, we consider the equation (1.1) with Hamiltonian tools. It is well
known that equation (1.1) can be written as a Hamiltonian system

u̇ = i∇H(u)

with the Hamiltonian function

H = ⟨(−∆)
s
u, u⟩+ 1

2

∫ π

0

|u|4dx,

where ⟨·, ·⟩ is the inner product

⟨u, v⟩ = Re

∫ π

0

uv̄dx.

The operator (−∆)
s
under Dirichlet boundary condition has a family of orthonormal

eigenfunctions

ϕj(x) =

√
2

π
sin jx (1.2)

and the corresponding eigenvalues are

ωj = j2s, j ≥ 1.

Consider the Gevrey space

Hρ,θ :=

u =
∑
j≥1

qjϕj : ∥u∥ρ,θ = 2∥q∥ρ,θ := 2
∑
j≥1

eρ|j|
θ

|qj | < ∞

 , (1.3)

where ρ > 0, 0 < θ < 1. The following is our main result:

Theorem 1.1. For any given ρ > 0, 0 < θ < 1 and 0 < γ < 1/10, there exists
an almost full measure set F ⊂ (1/2, 1) and a sufficiently small positive number ε∗,
such that for any s ∈ F and 0 < ε < ε∗, if the initial value to equation (1.1) fulfills

∥u(0)∥ρ,θ < ε/6,

then the solution with the initial value u(0) satisfies

∥u(t)∥ρ,θ < ε/2, ∀ |t| ≤ ε−|ln ε|γ .

Remark 1.1. The length of the stability time hinges on the regularity of the initial
value, which means that the different topological spaces would yield distinguishing
dynamical behavior. Bambusi-Sire [4] showed a polynomial-type stability time for
equation (1.1) on the Sobolev space. Explicitly, it was proved in [4] that the solution
was stable for arbitrary polynomial times ε−r (r ≫ 1) w.r.t. ε-small initial data in
the Sobolev norm. In this paper, we engage in the Gevrey space (1.3) and enhance
the stability time to a subexponential result for equation (1.1).

Remark 1.2. The proof of Theorem 1.1 can be achieved by using the Birkhoff
normal form method and the so-called tame property of the nonlinearity in Gevrey
space (1.3). We mention that the tame property in Gevrey space, initially intro-
duced by Cong-Liu-Wang [17], is applied to the nonlinear wave (NLW) equation, in
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which the indicator θ of space takes a special value 1/2. Motivated by [17], in this
paper, we are concerned about the FNLS equation (1.1) and extend the range of
indicator θ to 0 < θ < 1. It is worth noting that the discrepancies in the choice of
parameters and the rate of frequency growth arising from different equations will
contribute to some essential distinctions in the construction of non-resonant con-
ditions. Moreover, the space changes also make some of the conclusions related to
tame property slightly different from those of [17] (see Section 2 for more details).

Remark 1.3. We can likewise present the stability estimation for FNLS equation
(1.1) by establishing similar tame properties in the following two Hilbert spaces.

(1) In the Gevrey space

Hσ :=

u =
∑
j≥1

qjϕj : ∥u∥σ = 2∥q∥σ := 2
∑
j≥1

eσ ln2⌊j⌋|qj | < ∞


with σ > 0, ⌊j⌋ := max{e5, |j|}, we can prove that for almost s ∈ (1/2, 1),
the solutions to (1.1) starting with ε-small initial data maintain stable over
time-intervals of length ε−|ln ε|γ with 0 < γ < 1/10.

(2) In the modified Sobolev space

Hp :=

u =
∑
j≥1

qjϕj : ∥u∥p = 2∥q∥p := 2
∑
j≥1

⌊j⌋p|qj | < ∞

 (1.4)

with p > 1/2, ⌊j⌋ := max{2, |j|}, it can be shown that for almost s ∈ (1/2, 1),
if the initial data of equation (1.1) is ε-small, then their evolution remains in a

ball of radius 2ε for time intervals of order eC·e
1
ε with C > 0.

Remark 1.4. The result of Theorem 1.1 also holds for the following FNLS equation
with a more general nonlinearity

iut = (−∆)
s
u+ F (|u|2)u,

where F (z) is a real-valued polynomial function in z satisfying F (0) = 0. For the
sake of simplicity in this paper we take F (|u|2)u = |u|2u.

The use of the Birkhoff normal form method to study the long time stability
of solutions of Hamiltonian PDEs is a fundamental problem and has been exten-
sively investigated by many authors over the years. The first result was shown
by Bourgain in [12], who researched the long time stability for the nonlinear wave
(NLW) equation and nonlinear Schrödinger (NLS) equation. Another significant
work in this area was given by Bambusi-Grébert in [1], they proved an abstract
Birkhoff normal form theorem suited to a large class of PDEs with tame property
including d-dimensional NLS equations (d ≥ 1) and 1-dimensional NLW equations
and discussed dynamical consequences on the polynomial long time behavior of the
solutions with small initial data in the standard Sobolev space Hs ≡ Hs(Td;C)

Hs :=

q = (qj)j∈Zd ∈ CZd

: ∥q∥2s :=
∑
j∈Zd

|qj |2|j|2s < ∞

 ,
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where j = (j1, . . . , jd) and |j| =
√∑d

i=1 j
2
i . More precisely, it was shown that for

any r ≥ 1 and s large enough (depending on r), there exist εs and some positive
constant Cs such that if the initial datum q(0) fulfills ε = ∥q(0)∥s ≤ εs, it holds
that

∥q(t)∥s ≤ 2ε, for all |t| ≤ Csε
−r.

Based on the method introduced by Bambusi-Grébert [1], Bambusi-Sire [4] per-
formed the existence of almost global solutions to the FNLS equation (1.1). Ex-
plicitly, for almost s > 1/2, if the Sobolev norm of the initial value is smaller than
ε (0 < ε ≪ 1), then the corresponding solution is bounded by 2ε over time-intervals
of length ε−B (B arbitrary). A large number of similar results have been actual-
ized for water waves equations, Klein-Gordon equations and derivative nonlinear
Schrödinger (DNLS) equations, see [9, 10,18–21,42,43] and references therein.

A natural step forward is to consider whether the solutions can be stable in a
longer time such as the exponential long time. In the context of finite dimensional
Hamiltonian systems of this field, a pioneering work was from Nekhoroshev [35],
who exhibited that the evolution of all orbits remained stable over exponentially
long time intervals. Since then, a great deal of analogous results have been presented
for finite dimensional Hamiltonian systems, see [5, 6, 36], just to mention a few.

Recently, regarding applications to Hamiltonian PDEs, a remarkable work given
by Faou-Grébert in [23] was to prove a subexponential long stability time result
for d-dimensional NLS equations with analytic initial data. Afterward, Biasco-
Massetti-Procesi [11] explored the dynamical behavior for NLS equations in different
phase spaces, such as Sobolev space and Gevrey space. Subsequently, Cong-Liu-
Wang [17] proved a subexponential result for the NLW equation

utt = uxx −mu− f(u)

under Dirichlet boundary conditions in the following Gevrey space

Hρ :=

u =
∑
j≥1

qjϕj : ∥u∥ρ = 2∥q∥ρ := 2
∑
j≥1

eρ
√

|j||qj | < ∞

 . (1.5)

Moreover, we mention that there have been many results in studying the long
time stability of solutions of Hamiltonian PDEs by constructing tame property in
different spaces, which can refer to [14,16,37,38] for more details.

Lastly, we noticed that there are many results about an accurate description
of the long time dynamics of the solutions for Hamiltonian PDEs without external
parameters. See [7, 8, 13, 33, 41] for more details. Conversely, an opposite point
of view is to establish special orbits for which the Sobolev norms grow as fast as
possible, we refer the reader to [2, 3, 15,25–27].

As far as we know, the periodic or quasi-periodic solutions of the FNLS equation
have been obtained by using KAM theory with the following results. Li [32] demon-
strated the existence of numerous quasi-periodic solutions for a class of space frac-
tional nonlinear Schrödinger equations using the Riesz fractional derivative. Xu [40]
established an infinite dimensional KAM theorem adapted to the FNLS equation
with dense normal frequency and obtained a class of small amplitude quasi-periodic
solutions with linear stability. Wu-Yuan [39] proved the existence of full dimensional
KAM torus for the FNLS equation in the Gevrey space.
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Inspired by Bambusi-Sire [4] and Cong-Liu-Wang [17], in the present paper, we
would like to study the subexponential long time behavior of the FNLS equation
(1.1) in Gevrey space (1.3) by using the Birkhoff normal form method and the
so-called tame property.

2. Preliminary

As a preparatory step, we give some basic definitions and introduce the tame prop-
erty of vector fields.

2.1. The phase space

Given ρ > 0, 0 < θ < 1, we define the Banach space ℓρ,θ(C) of all complex-valued
sequences q = (qj)j≥1 with

∥q∥ρ,θ :=
∑
j≥1

|qj |eρ|j|
θ

< ∞

and the scale of phase spaces

(q, q̄) ∈ Pρ,θ(C) := ℓρ,θ(C)⊕ ℓρ,θ(C).

We identify a couple (q, q̄) ∈ Pρ,θ(C) with z = (zj)j∈Z̄ (Z̄ := Z\{0}) via the formula

z−j = q̄j , zj = qj , j ≥ 1

and define

∥z∥ρ,θ :=
∑
j∈Z̄

|zj |eρ|j|
θ

< ∞.

Given a large N > 0, define z̄ = (z̄j)j∈Z̄ by z̄j = zj when |j| ≤ N and otherwise
z̄j = 0. Also let ẑ = z − z̄.

Moreover, we denote by BC,ρ,θ(R) the open ball centered at the origin and of
radius R in Pρ,θ(C). Often, we simply write

Pρ,θ ≡ Pρ,θ(C), Bρ,θ(R) ≡ BC,ρ,θ(R).

Definition 2.1. Let H : Pρ,θ → C be a homogeneous polynomial of degree r by

H(z) =
∑
|k|=r

Hkz
k, k = (kj)j∈Z̄ ∈ NZ̄, zk :=

∏
j∈Z̄

z
kj

j ,

where Hk is the coefficient of the monomial zk and |k| :=
∑

j∈Z̄ kj is the degree of
H(z). Then, we define its modulus ⌊H⌉ by

⌊H⌉(z) :=
∑
|k|=r

|Hk|zk.

For convenience, we keep fidelity with the notation and terminology from Bam-
busi - Grébert [1]. Let H : Pρ,θ → C be a homogeneous polynomial of degree r. We
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recall that H is continuous and also analytic if and only if it is bounded, namely if
there exists a positive constant C such that

|H(z)| ≤ C∥z∥rρ,θ, for any z ∈ Pρ,θ.

To the polynomial H it is naturally associated a symmetric r-linear form H̃ such
that

H̃(z, . . . , z) = H(z).

The r-linear form H̃ is bounded; that is,

|H̃(z(1), . . . , z(r))| ≤ C∥z(1)∥ρ,θ · · · ∥z(r)∥ρ,θ

(and analytic) if and only if H is bounded.
Given a polynomial vector field X : Pρ,θ → Pρ,θ homogeneous of degree r, we

write it as
X(z) =

∑
j∈Z̄

Xj(z)ej ,

where ej ∈ Pρ,θ is the vector with all components equal to zero but the j-th one,
which is equal to 1. Thus Xj(z) is a homogeneous polynomial of degree r. We
recall that X is analytic if and only if it is bounded, namely if there exists a positive
constant C such that

∥X(z)∥ρ,θ ≤ C∥z∥rρ,θ, for any z ∈ Pρ,θ.

Consider the r-linear symmetric form X̃ and define X̃ :=
∑

j∈Z̄ X̃jej with

X̃(z, . . . , z) = X(z).

Analogously, the r-linear form X̃ is bounded i.e.

∥X̃(z(1), . . . , z(r))∥ρ,θ ≤ C∥z(1)∥ρ,θ . . . ∥z(r)∥ρ,θ

(and analytic) if and only if X is bounded. Moreover, the modulus of a vector field
X is defined by

⌊X⌉(z) =
∑
j∈Z̄

⌊Xj⌉(z)ej .

2.2. The tame norm of Hamiltonian vector field

Motivated by Cong-Liu-Wang [17], we will define the tame norm of vector fields
and exhibit that the tame property is stable under the Poisson brackets. It is worth
noting that in this paper we extend the spatial indicator θ from 1/2 in [17] to
0 < θ < 1, which will give rise to some slight differences about the tame property.

Definition 2.2. Let H be a homogeneous polynomial of degree r+1, assume that
H satisfies the following two conditions:

1. Tame property , i.e.1

A := sup
∥⌊X̃H⌉(w)∥ρ,θ

∥w∥Tρ,θ
< ∞,

1The Hamiltonin vector field XH is defined in (3.7) and X̃H is the r-linear symmetric form of
XH .
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where

∥w∥Tρ,θ =
1

r

r∑
l=1

(
∥z(1)∥(2θ−1)ρ,θ · · · ∥z(l−1)∥(2θ−1)ρ,θ

×∥z(l)∥ρ,θ∥z(l+1)∥(2θ−1)ρ,θ · · · ∥z(r)∥(2θ−1)ρ,θ

)
and the sup is taken over all the multivectors w = (z(1), . . . , z(r)) ̸= 0;

2. Bounded property , i.e.

B := sup
∥⌊X̃H⌉(w)∥(2θ−1)ρ,θ

∥w∥(2θ−1)ρ,θ

< ∞,

where
∥w∥(2θ−1)ρ,θ = ∥z(1)∥(2θ−1)ρ,θ · · · ∥z(r)∥(2θ−1)ρ,θ

and the sup is taken over all the multivectors w = (z(1), . . . , z(r)) ̸= 0;
Then the tame norm of the vector field XH can be defined by

|H|Tρ,θ := max{A,B}.

Remark 2.1. Let f(x) =
∑

j≥1 ajx
j with x ∈ R and aj ≥ 0, then we have

sup
|x|≤R

f(x) = sup
0≤x≤R

f(x).

In view of Remark 2.1, without loss of generality, we can always assume z =
(zj)j∈Z̄ with zj ≥ 0 below.

Definition 2.3. Let H be a non-homogeneous polynomial. Consider its Taylor
expansion

H =
∑
r≥1

Hr,

where Hr is homogeneous polynomial of degree r. For R > 0, we denote

|H|Tρ,θ,R :=
∑
r≥1

|Hr|Tρ,θ ·Rr−1. (2.1)

Such a definition can be naturally extended to the set of analytic functions, i.e.,
(2.1) is finite. The set of the functions with a finite |H|Tρ,θ,R-norm is denoted by
Tρ,θ,R.

Next, we aim to show that the tame property can be maintained under Poisson
brackets. Given two functions f(z) and g(z), we define the Poisson bracket by

{f, g} = i
∑
j≥1

(
∂f

∂zj

∂g

∂z−j
− ∂f

∂z−j

∂g

∂zj

)
.

Lemma 2.1. Let f and g be homogeneous polynomials of degree n+ 1 and m+ 1,
respectively, then one has

|{f, g}|Tρ,θ ≤ (n+m)|f |Tρ,θ|g|Tρ,θ.
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The proof of this lemma is similar to Lemma 2.6 in [17]. So we omit its proof
here. By repeatedly exploiting the lemma 2.1, we obtain the following conclusion.

Corollary 2.1. Let f(z) and g(z) be homogeneous polynomials of degree r̃ and r,
respectively, satisfying |f |Tρ,θ, |g|Tρ,θ < ∞. Then for any ν ≥ 1, ν ∈ N, it follows
that

|f(ν,g)|Tρ,θ ≤ 1

ν!
·

ν∏
i=1

(r̃ + i(r − 2)) · |f |Tρ,θ
(
|g|Tρ,θ

)ν
,

where

f(0,g) := f, f(ν,g) :=
1

ν
{f(ν−1,g), g}.

Lastly, we are devoted to discussing the relationship between vector fields and
their tame norms. Let us denote

∥XH∥Rρ,θ := sup
∥z∥ρ,θ≤R

∥XH(z)∥ρ,θ.

Lemma 2.2. For a given Hamiltonian function H, the following holds:

∥XH∥Rρ,θ ≤ |H|Tρ,θ,R.

The proof of this lemma is similar to Lemma 4.2 in [17]. So we omit its proof
here.

Lemma 2.3. Assume that H has a zero of order three in the variables ẑ, then one
has

∥XH∥Rρ,θ ≤
4|H|Tρ,θ,2R
e(2−2θ)ρNθ .

Proof. Introduce the projector
∏

on the modes with an index smaller than N

and the projector
∏̂

on the modes with a large index. Expand H in the Taylor
series (in all the variables); namely, write

H =
∑
j≥1

Hj ,

with Hj homogeneous polynomial of degree j. Consider the vector field of Hj ,
decompose it into the component on z̄ and the component on ẑ. One has∏

XHj
= Jz̄∇z̄Hj , (2.2)∏̂

XHj
= Jẑ∇ẑHj , (2.3)

where we denote by Jz̄ and Jẑ the two components of the Poisson tensor. From
(2.2) and (2.3) one immediately realizes that

∏
XHj has a zero of order three as a

function of ẑ and
∏̂
XHj

has a zero of order two as a function of ẑ. Consider
∏̂
XHj

and write z = z̄ + ẑ; one has∏̂
XHj

(z̄ + ẑ) (2.4)

=
∏̂

X̃Hj
(z̄ + ẑ, . . . , z̄ + ẑ︸ ︷︷ ︸

(j−1)−times

)
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=

j−1∑
l=2

j − 1

l

∏̂
X̃Hj (ẑ, . . . , ẑ︸ ︷︷ ︸

l−times

, z̄, . . . , z̄︸ ︷︷ ︸
(j−l−1)−times

),

where the sum starts from 2 since
∏̂
XHj has a zero of order two as a function of ẑ.

We estimate now a single term of the sum. By the tame property, we have∥∥∥∥∥∥∥
∏̂

X̃Hj
(ẑ, . . . , ẑ︸ ︷︷ ︸
l−times

, z̄, . . . , z̄︸ ︷︷ ︸
(j−l−1)−times

)

∥∥∥∥∥∥∥
ρ,θ

(2.5)

≤ |Hj |Tρ,θ ·
1

j − 1

(
l · ∥ẑ∥ρ,θ∥ẑ∥l−1

(2θ−1)ρ,θ
∥z̄∥j−l−1

(2θ−1)ρ,θ

+(j − l − 1)∥ẑ∥l(2θ−1)ρ,θ∥z̄∥ρ,θ∥z̄∥
j−l−2
(2θ−1)ρ,θ

)
.

By applying the inequality

∥ẑ∥(2θ−1)ρ,θ ≤ ∥z∥ρ,θ
e(2−2θ)ρNθ ,

(2.5) can be bounded by

|Hj |Tρ,θ
∥z∥j−1

ρ,θ

e(2−2θ)(l−1)ρNθ .

By inserting into (2.4), one gets, for z ∈ Bρ,θ(R),∥∥∥∥∏̂XHj
(z)

∥∥∥∥
ρ,θ

≤ 2j |Hj |Tρ,θ
Rj−1

e(2−2θ)ρNθ ≤
2|Hj |Tρ,θ,2R
e(2−2θ)ρNθ . (2.6)

Similarly, it holds that ∥∥∥∥∏XHj (z)

∥∥∥∥
ρ,θ

≤
2|Hj |Tρ,θ,2R
e(2−2θ)ρNθ . (2.7)

In view of (2.6) and (2.7), one has

∥XHj
∥Rρ,θ ≤

4|Hj |Tρ,θ,2R
e(2−2θ)ρNθ .

Summing over j, one gets the thesis.

3. The results for infinite dimensional Hamiltonian
systems

In this section, our task is to perform a Birkhoff normal form theorem for a class of
infinite dimensional Hamiltonian systems. The starting point is to introduce some
notions and notations. Given l ≥ 2 and j = (j1, j2, · · · , jl) ∈ Z̄l, we define

• the monomial associated with j

zj = zj1zj2 · · · zjl ,
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• the third largest positive integer associated with j

µ(j),

i.e. µ(j) is the third largest integer in {|j1|, · · · , |jl|}.

• the degree associated with j

d(j) = l,

• the divisor associated with j

Ω(j) = sgn(j1) · ω|j1| + · · ·+ sgn(jl) · ω|jl|, (3.1)

where ω|ji| = |ji|2s.

We denote the set of indices with zero momentum by

Il :=
{
j = (j1, j2, · · · , jl) ∈ Z̄l : j1 ± j2 ± · · · ± jl = 0

}
.

Moreover, for any l ≥ 3 and N ≥ 1, we set

Jl(N) := {j ∈ Il : µ(j) > N}.

We say that j = (j1, j2, · · · , jl) ∈ Z̄l is resonant and write j ∈ Nl, if l is even
and j = i ∪ (-i) for some choice of i ∈ Z̄l/2. Furthermore, when j is resonant, the
monomial zj associated with j only depends on the actions (Ij)j∈Z̄ with Ij = zjz−j .

Next, our aim is to state Birkhoff normal form theorem for infinite dimensional
Hamiltonian systems. Let us consider the Hamiltonian systems

żj = i
∂H

∂z−j
,

ż−j = −i
∂H

∂zj
,

j ≥ 1 (3.2)

with respect to symplectic structure i
∑

j≥1 dzj ∧ dz−j . The corresponding Hamil-
tonian function is

H(z) = H0(z) + P (z), (3.3)

where

H0 :=
∑
j≥1

ωjzjz−j , (3.4)

the real numbers ωj are frequencies and P (z) has a zero of order at least three at
the origin. Here we make some assumptions as follows.

(a) Given two positive numbers r, N , the frequencies ωj are (r,N)-nonresonant, if
ωj satisfies the following condition

|Ω(j)| ≥ 1

N16(d(j))6
(3.5)

with j /∈ Nd(j), µ(j) ≤ N and d(j) ≤ r.
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(b) The nonlinearity P (z) is of the following form

P (z) =
∑
n≥3

Pn(z), Pn(z) =
∑
j∈In

ajzj.

Moreover, there exists a constant C > 1 such that for any n ≥ 3,

|Pn|Tρ,θ ≤ Cn−2. (3.6)

Let us denote by

XH =

(
i
∂H

∂z−j
, −i

∂H

∂zj

)
j≥1

(3.7)

the Hamiltonian vector field of H(z).

Theorem 3.1. (Birkhoff normal form theorem) Consider the Hamiltonian
system (3.2) and suppose that the Hamiltonian (3.3) satisfies (a) and (b). For any
ρ > 0, 0 < θ < 1 and 0 < γ < 1/10, there exists a sufficiently small positive
number ε∗, such that for any 0 < ε < ε∗, there exists a canonical transformation
T : Bρ,θ(ε/2) → Bρ,θ(ε) changing the Hamiltonian H in (3.3) into

H̃ := H ◦ T = H0 + Z(z) +W (z) +R(z),

where

(1) The canonical transformation T fulfills

sup
z∈Bρ,θ(ε/2)

∥T − id∥ρ,θ ≤ ε
3
2 . (3.8)

Exactly the same estimate is also true to the inverse of canonical transformation
T .

(2) Z(z) is a polynomial only depending on actions (Ij)j≥1. W (z) and R(z) fulfill
the following estimations:

sup
z∈Bρ,θ(ε/2)

∥XW (z)∥ρ,θ , sup
z∈Bρ,θ(ε/2)

∥XR(z)∥ρ,θ ≤ ε|ln ε|γ+ 3
2 . (3.9)

The proof of Theorem 3.1 is postponed in Section 4. Subsequently, we get an
important corollary from Theorem 3.1.

Corollary 3.1. Consider the Hamiltonian system (3.2) and suppose that the Hamil-
tonian (3.3) satisfies (a) and (b). For any ρ > 0, 0 < θ < 1 and 0 < γ < 1/10,
there exists a sufficiently small positive number ε∗, such that for any 0 < ε < ε∗, if
the initial value to equation (3.2) fulfills

∥z(0)∥ρ,θ ≤ ε/6,

then the solution with the initial value z(0) satisfies

∥z(t)∥ρ,θ ≤ ε, ∀ |t| ≤ ε−|ln ε|γ .
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Proof. By applying Theorem 3.1, there exists a canonical transformation T with
T (z̃) = z, which changes the Hamiltonian system (3.2) into

˙̃zj = i
∂H̃

∂z̃−j
,

˙̃z−j = −i
∂H̃

∂z̃j
,

j ≥ 1 (3.10)

with
H̃(z̃) := H ◦ T (z̃) = H0 + Z(z̃) +W (z̃) +R(z̃).

In view of (3.8), one has that the solution z(t) to (3.2) with initial value
∥z(0)∥ρ,θ ≤ ε/6 is transformed into z̃(t) to (3.10) with initial value ∥z̃(0)∥ρ,θ ≤ ε/3.
Moreover, for any z̃(0) ∈ Bρ,θ(ε/3), there exists a time T such that

∥z̃(T )∥ρ,θ = ε/2

and
z̃(t) ∈ Bρ,θ (ε/2) , ∀ |t|< T.

By taking advantage of (3.9), we get

∣∣∣ ∥z̃(T )∥2ρ,θ − ∥z̃(0)∥2ρ,θ
∣∣∣ = ∣∣∣∣∣

∫ T

0

d ∥z̃(t)∥2ρ,θ
dt

∣∣∣∣∣ =
∣∣∣∣∣
∫ T

0

{
H̃, ∥z̃(t)∥2ρ,θ

}
dt

∣∣∣∣∣
≤ T sup

z̃∈Bρ,θ(ε/2)

∣∣∣{H̃(z̃), ∥z̃∥2ρ,θ
}∣∣∣

≤ T · 2 · ε|ln ε|γ+ 5
2 .

Accordingly, for any |t| ≤ T
(
T ≥ ε−|ln ε|γ), one has∣∣∣ ∥z̃(t)∥2ρ,θ − ∥z̃(0)∥2ρ,θ

∣∣∣ ≤ 5

36
ε2

and
z̃(t) ∈ Bρ,θ (ε/2) .

Consequently, the solution z(t) to (3.2) with z̃(0) ∈ Bρ,θ (ε/6) will satisfy

z(t) ∈ Bρ,θ(ε), ∀ |t| ≤ ε−|ln ε|γ .

We complete the proof of Corollary 3.1.

4. The proof of Birkhoff normal form theorem

To perform the proof of Birkhoff normal form theorem, we would like to intro-
duce some related tools. Let us consider an auxiliary Hamiltonian function X (z)
associated with the Hamiltonian equations

ż = XX (z). (4.1)

Denote ϕt
X as the flow of equation (4.1) and ϕt

X |t=0 is an identity mapping.
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Definition 4.1. The transformation ϕ1
X = ϕt

X |t=1 is called a Lie-transformation
generated by Hamiltonian X (z).

Given an analytic function f(z). For any n ∈ N, it follows that

dn

dtn
(
f ◦ ϕt

X
)
= {{f,X}, . . .X}︸ ︷︷ ︸

n times

◦ ϕt
X .

According to the Taylor expansion, we deduce that

f ◦ ϕ1
X =

∞∑
ν=0

f(ν,X ),

where

f(0,X ) := f, f(ν,X ) :=
1

ν

{
f(ν−1,X ), X

}
, ν ≥ 1.

Lemma 4.1. (Homological equation) Let Q(z) =
∑

j∈In
Qjzj be a homogeneous

polynomial of degree n and suppose that the (r,N)-nonresonance condition (3.5) is
satisfied. Then there exists a unique solution X (z) such that

{H0,X}+Q = Z +R,

where H0 is defined in (3.4) and

Z(z) =
∑
j∈Nn

µ(j)≤N

Qjzj, R(z) =
∑

j∈Jn(N)

Qjzj.

Moreover, one has

|X |Tρ,θ ≤ N16n6

|Q|Tρ,θ and |Z|Tρ,θ, |R|Tρ,θ ≤ |Q|Tρ,θ. (4.2)

Proof. Observing the fact that

{H0, zj} = −iΩ(j)zj,

where Ω(j) is defined in (3.1), we get X (z), Z(z) and R(z) are all homogeneous
polynomials of degree n with the following forms

X =
∑
j∈In

Xjzj, Z =
∑
j∈In

Zjzj, R =
∑
j∈In

Rjzj

and
−iΩ(j)Xj +Qj = Zj +Rj, j ∈ In.

Moreover, the coefficients satisfy

• if µ(j) > N ,
Xj = 0, Zj = 0, Rj = Qj, (4.3)

• if µ(j) ≤ N and j ∈ Nn,

Xj = 0, Zj = Qj, Rj = 0, (4.4)
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• if µ(j) ≤ N and j /∈ Nn,

Xj =
Qj

iΩ(j)
, Zj = 0, Rj = 0. (4.5)

In view of (r,N)-nonresonance condition (3.5) and (4.3)-(4.5), we obtain (4.2).

Subsequently, we are devoted to presenting the iterative lemma, which is the
most important component of proving Theorem 3.1. In the statement of the forth-
coming iterative lemma, we use the following notation. Given an integer r ≥ 1 and
a sufficiently small positive number ε, set

εn := ε
(
1− n

2r

)
, n ∈ N, 0 ≤ n ≤ r.

Lemma 4.2. (Iterative lemma) Consider the Hamiltonian systems (3.2) and
suppose that the Hamiltonian (3.3) satisfies (a) and (b). Given an integer r ≥ 1,
0 < ε ≪ 1 and ρ > 0, 0 < θ < 1. For any 0 ≤ m ≤ r and any integer N > 0, there
exists an analytic canonical transformation T (m) : Bρ,θ(εm) → Bρ,θ(ε) changing the
Hamiltonian H in (3.3) into

H(m) := H ◦ T (m) = H0 + Z(m)(z) +RN(m)(z) +RT (m)(z) (4.6)

and the following properties are satisfied:

(1) the transformation T (m) satisfies

sup
z∈Bρ,θ(εm)

∥∥∥T (m) − id
∥∥∥
ρ,θ

≤
m+2∑
n=3

N16n6
(
25n−15N16(n−1)6

)n−3

Cn−2 · εn−1.

(4.7)

(2) Z(m)(z) is a polynomial of degree m+ 2 with the following form

Z(m)(z) =

m+2∑
n=3

Z(m)
n (z), Z(m)

n (z) =
∑
j∈Nn

µ(j)≤N

(
Z(m)
n

)
j
zj.

Moreover, for any 3 ≤ n ≤ m+ 2, it holds that∣∣∣Z(m)
n

∣∣∣T
ρ,θ

≤
(
25n−15N16(n−1)6

)n−3

Cn−2. (4.8)

(3) RN(m)(z) is a polynomial of degree m+ 2 with the following form

RN(m)(z) =

m+2∑
n=3

RN(m)
n (z), RN(m)

n (z) =
∑

j∈Jn(N)

(
RN(m)

n

)
j
zj.

Moreover, for any 3 ≤ n ≤ m+ 2, it follows that∣∣∣RN(m)
n

∣∣∣T
ρ,θ

≤
(
25n−15N16(n−1)6

)n−3

Cn−2. (4.9)
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(4) The remainder term RT (m)(z) has a zero of order m+ 3 as follows

RT (m)(z) =
∑

n≥m+3

RT (m)
n (z).

Moreover, for any n ≥ m+ 3, one has∣∣∣RT (m)
n

∣∣∣T
ρ,θ

≤
(
25mN16(m+2)6

)n−3

Cn−2. (4.10)

The proof of Lemma 4.2 is postponed in Appendix A.
Lastly, our task is to show the proof of Theorem 3.1 by using the iterative lemma.

Proof. Given ρ > 0, 0 < θ < 1, 0 < γ < 1/10 and 0 < ε ≪ 1. Then we are going
to take

m = r

in Lemma 4.2. Let us set

r = |ln ε|γ , N =

(
|ln ε|γ+1

(2− 2θ)ρ

) 1
θ

. (4.11)

If ε is small enough, one has(
25rN16(r+2)6C

)r+3

ε
1
2 < 1. (4.12)

By applying (1) in Lemma 4.2 and (4.12), the canonical transformation T (r) :
Bρ,θ(ε/2) → Bρ,θ(ε) satisfies

sup
z∈Bρ,θ(ε/2)

∥∥∥T (r) − id
∥∥∥
ρ,θ

≤
r+2∑
n=3

N16n6
(
25n−15N16(n−1)6

)n−3

Cn−2 · εn−1

≤ r ·N16(r+2)6
(
25rN16(r+1)6

)r

Cr · ε2

≤
((

25rN16(r+2)6C
)r+1

ε
1
2

)
· ε 3

2

≤ ε
3
2 , (4.13)

which implies that we complete the proof of (3.8).
In view of (2) in Lemma 4.2, it can be seen that Z(r)(z) is a polynomial only

depending on the actions.
According to (3) in Lemma 4.2, Lemma 2.2, Lemma 2.3, (4.9), (4.11) and (4.12),

it follows that

sup
z∈Bρ,θ(ε/2)

∥XRN(r)(z)∥ρ,θ ≤
r+2∑
n=3

sup
z∈Bρ,θ(ε/2)

∥∥∥XRN(r)
n

(z)
∥∥∥
ρ,θ

≤
r+2∑
n=3

4 ·
(
25n−15N16(n−1)6

)n−3

Cn−2 · εn−1

e(2−2θ)ρNθ

≤
4r ·

(
25rN16(r+1)6

)r

Cr · ε2

e(2−2θ)ρNθ
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≤ 1

e(2−2θ)ρNθ ·
((

25rN16(r+2)6C
)r+1

ε
1
2

)
· ε 3

2

≤ 1

e(2−2θ)ρNθ · ε 3
2

= ε|ln ε|γ+ 3
2 . (4.14)

Moreover, by taking advantage of (4) in Lemma 4.2, Lemma 2.2, (4.10)-(4.12), we
deduce

sup
z∈Bρ,θ(ε/2)

∥XRT (r)(z)∥ρ,θ ≤
∑

n≥r+3

sup
z∈Bρ,θ(ε/2)

∥∥∥XRT (r)
n

(z)
∥∥∥
ρ,θ

≤
∑

n≥r+3

(
25rN16(r+2)6

)n−3

Cn−2 · εn−1

≤ 2
(
25rN16(r+2)6Cε

)r+2

≤
((

25rN16(r+2)6C
)r+3

ε
1
2

)
· εr+ 3

2

≤ ε|ln ε|γ+ 3
2 . (4.15)

In view of (4.14) and (4.15), we finish the proof of (3.9).
Consequently, we complete the proof of Theorem 3.1.

5. The proof of Theorem 1.1

Firstly, our task is to change the equation (1.1) under Dirichlet boundary conditions
into an infinite dimensional Hamiltonian system by using Fourier transformation.
Let us set

u(x, t) =
∑
j≥1

qj(t)ϕj(x),

where ϕj(x) is defined in (1.2). Equation (1.1) can be transformed as
q̇j = i

∂H

∂q̄j
,

˙̄qj = −i
∂H

∂qj
,

j ≥ 1

with respect to symplectic structure i
∑

j≥1 dqj ∧ dq̄j . The corresponding Hamilto-
nian function is

H = H0 + P (q, q̄), (5.1)

where
H0 :=

∑
j≥1

ωjqj q̄j , ωj := j2s (5.2)

and

P (q, q̄) =
1

2

∫ π

0

|u|4dx =
1

2

∑
j1±j2±j3±j4=0

Pj1j2j3j4qj1 q̄j2qj3 q̄j4 , (5.3)

with

Pj1j2j3j4 =

∫ π

0

ϕj1ϕj2ϕj3ϕj4dx.
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Now it suffices to show that the Hamiltonian (5.1) satisfies the assumptions (a)
and (b) in Theorem 3.1, then Theorem 1.1 follows from Corollary 3.1.

For almost s ∈ (1/2, 1), the frequencies ω = (ωj)j≥1 in (5.2) fulfill the (r,N)-
nonresonance condition (3.5), which will be proved in Appendix B. Next, our aim is
to show that the nonlinearity P in (5.3) fulfills (3.6), namely, there exists a constant
C > 1 such that

|P |Tρ,θ ≤ C2. (5.4)

Firstly, we will give a technical lemma.

Lemma 5.1. Let 0 < θ < 1 and a1 ≥ a2 ≥ · · · ≥ aN > 0. Then one has

(a1 + a2 + · · ·+ aN )
θ ≤ aθ1 + (2θ − 1)

N∑
i=2

aθi . (5.5)

The proof of (5.5) is very similar with Lemma 5.1 in [17], we omit it here.
Lastly, we present that the nonlinearity P in (5.3) satisfies the tame property.

Namely, there exists a constant A > 0 such that∥∥∥⌊X̃P ⌉(z(1), z(2), z(3))
∥∥∥
ρ,θ

≤ A∥(z(1), z(2), z(3))∥Tρ,θ. (5.6)

In view of (5.3), there exists a constant C̃ > 0 such that∥∥∥⌊X̃P ⌉(z(1), z(2), z(3))
∥∥∥
ρ,θ

≤ C̃
∥∥∥X̃(z(1), z(2), z(3))

∥∥∥
ρ,θ

, (5.7)

where
X̃(z(1), z(2), z(3)) =

(
X̃j(z

(1), z(2), z(3))
)
j∈Z̄

with
X̃j(z

(1), z(2), z(3)) =
∑
τ

∑
j1±j2±j3=j

j1,j2,j3∈Z̄

z
τ(1)
j1

z
τ(2)
j2

z
τ(3)
j3

and τ are all the permutations of the first 3 integers. Moreover, by applying Lemma
5.1, it follows that∥∥∥X̃(z(1), z(2), z(3))

∥∥∥
ρ,θ

≤
∑
τ

∑
j∈Z̄

∑
j1±j2±j3=j

|zτ(1)j1
||zτ(2)j2

||zτ(3)j3
|eρ(|j1|+|j2|+|j3|)θ

≤
∑
τ

(
∥zτ(1)∥ρ,θ∥zτ(2)∥(2θ−1)ρ,θ∥zτ(3)∥(2θ−1)ρ,θ + ∥zτ(1)∥(2θ−1)ρ,θ∥zτ(2)∥ρ,θ

×∥zτ(3)∥(2θ−1)ρ,θ + ∥zτ(1)∥(2θ−1)ρ,θ∥zτ(2)∥(2θ−1)ρ,θ∥zτ(3)∥ρ,θ
)

≤ 18 · ∥(z(1), z(2), z(3))∥Tρ,θ. (5.8)

By using (5.7) and (5.8), we get (5.6).
Similarly, we obtain that there exists a constant B > 0 such that∥∥∥⌊X̃P ⌉(z(1), z(2), z(3))

∥∥∥
(2θ−1)ρ,θ

≤ B∥(z(1), z(2), z(3))∥(2θ−1)ρ,θ. (5.9)

In view of (5.6) and (5.9), we complete the proof of (5.4).
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Appendix

Appendix A: The proof of Lemma 4.2

Proof. We will prove the thesis inductively. Let us start by rewriting the Hamil-
tonian H in (3.3) defined on Bρ,θ(ε) as follows

H(0) := H = H0 + Z(0)(z) +RN(0)(z) +RT (0)(z), (A.1)

where H0 is defined in (3.4), Z(0)(z) = 0, RN(0)(z) = 0 and RT (0)(z) = P (z).
Next, our idea is to search for a Lie-transformation to eliminate the nonnormal-

ized terms of 3-degree polynomials of RT (0)(z). More precisely, we are devoted to
producing a homogeneous polynomial X0(z) of degree 3 and denote the time 1 flow
T0 := ϕt

X0
|t=1 : Bρ,θ(ε1) → Bρ,θ(ε), which changes the Hamiltonian H(0) in (A.1)

into the following form

H(1) : = H(0) ◦ T0

=
(
H0 +RT (0)

)
◦ T0

= H0

+ {H0,X0}+ P3 (A.2)

+
∑
ν≥2

(H0)(ν,X0)
+

∑
ν≥1

(P3)(ν,X0)
+

∑
ν≥0

∑
n≥4

Pn


(ν,X0)

. (A.3)

Recalling that (3.6) and Lemma 4.1, we get

(A.2) = Z0(z) +R0(z),

where
Z0(z) =

∑
j∈N3

µ(j)≤N

(P3)j zj, R0(z) =
∑

j∈J3(N)

(P3)j zj

and
sup

(q,q̄)∈Bρ,θ(ε)

∥XX0(z)∥ρ,θ ≤ |X0|Tρ,θ · ε2 ≤ N16·36 · C · ε2.

Furthermore, the transformation T0 satisfies

sup
z∈Bρ,θ(ε1)

∥T0 − id∥ρ,θ ≤ sup
z∈Bρ,θ(ε)

∥XX0
(z)∥ρ,θ ≤ N16·36 · C · ε2.

Let us set T (1) := T0 : Bρ,θ(ε1) → Bρ,θ(ε), then write

H(1) = H(0) ◦ T (1) = H0 + Z(1)(z) +RN(1)(z) +RT (1)(z)

defined in Bρ,θ(ε1), where

Z(1)(z) := Z(0) + Z0 = Z0

and
RN(1)(z) := RN(0) +R0 = R0.
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In view of Lemma 4.1 and (3.6), it follows that

|Z(1)|Tρ,θ ≤ C, |RN(1)|Tρ,θ ≤ C.

Moreover, one has RT (1)(z) = (A.3) with RT (1)(z) =
∑

n≥4 R
T (1)
n (z). More pre-

cisely, for any n ≥ 4, we get

RT (1)
n = (H0)(n−2,X0)

+ (P3)(n−3,X0)
+

n−4∑
k=0

(Pn−k)(k,X0)
.

By applying Corollary 2.1 and (3.6), it holds that

∣∣∣RT (1)
n

∣∣∣T
ρ,θ

≤
∣∣(H0)(n−2,X0)

∣∣T
ρ,θ

+
∣∣(P3)(n−3,X0)

∣∣T
ρ,θ

+

∣∣∣∣∣
n−4∑
k=0

(Pn−k)(k,X0)

∣∣∣∣∣
T

ρ,θ

≤ 1

(n− 2)!
·
n−3∏
i=1

(3 + i) · C ·
(
N16·36 · C

)n−3

+

n−3∑
k=0

1

k!
·

k∏
i=1

(n− k + i) · Cn−k−2 ·
(
N16·36 · C

)k

≤ 2n+1 ·
(
N16·36

)n−3

· Cn−2

≤
(
25 ·N16·36

)n−3

· Cn−2.

Now assume that these statements in Lemma 4.2 are trivially true for m < r,
then our task is to perform that these propositions which are also valid at rank
m+ 1.

Proceeding as before, we are going to create a homogeneous polynomial Xm(z)
of degree m+3 and denote the time 1 flow Tm := ϕt

Xm
|t=1 : Bρ,θ(εm+1) → Bρ,θ(εm),

which changes the Hamiltonian H(m) in (4.6) into the following form

H(m+1) : = H(m) ◦ Tm

=
(
H0 + Z(m) +RN(m) +RT (m)

)
◦ Tm

= H0 + Z(m) + RN(m)

+ {H0,Xm} + RT (m)
m+3 (A.4)

+
∑
ν≥2

(H0)(ν,Xm) +
∑
ν≥1

(
Z(m)

)
(ν,Xm)

+
∑
ν≥1

(
RN(m)

)
(ν,Xm)

(A.5)

+
∑
ν≥1

(
RT (m)

m+3

)
(ν,Xm)

+
∑
ν≥0

 ∑
n≥m+4

RT (m)
n


(ν,Xm)

. (A.6)

From Lemma 4.1 and (4.10), we get

(A.4) = Zm(z) +Rm(z),

where

Zm(z) =
∑

j∈Nm+3
µ(j)≤N

(
RT (m)

m+3

)
j
zj, Rm(z) =

∑
j∈Jm+3(N)

(
RT (m)

m+3

)
j
zj (A.7)
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and

sup
z∈Bρ,θ(εm)

∥XXm
(z)∥ρ,θ ≤ N16·(m+3)6 ·

(
25mN16(m+2)6

)m

Cm+1 · εm+2.

Moreover, the transformation Tm satisfies

sup
z∈Bρ,θ(εm+1)

∥Tm − id∥ρ,θ

≤ sup
z∈Bρ,θ(εm)

∥XXm
(z)∥ρ,θ

≤ N16·(m+3)6 ·
(
25mN16(m+2)6

)m

Cm+1 · εm+2. (A.8)

Let us set T (m+1) := T (m) ◦ Tm : Bρ,θ(εm+1) → Bρ,θ(ε), which transforms the
Hamiltonian H in (3.3) into the following form

H(m+1) = H ◦ T (m+1)

= H(m) ◦ Tm
= H0 + Z(m+1)(z) +RN(m+1)(z) +RT (m+1)(z),

where
Z(m+1)(z) := Z(m)(z) + Zm(z) (A.9)

and
RN(m+1)(z) := RN(m)(z) +Rm(z). (A.10)

More explicitly, recalling that (2) in Lemma 4.2, (4.10), (A.7) and (A.9), one has

Z(m+1)(z) =

m+3∑
n=3

Z(m+1)
n (z), Z(m+1)

n (z) =
∑
j∈Nn

µ(j)≤N

(
Z(m+1)
n

)
j
zj.

For any 3 ≤ n ≤ m+ 3, one has∣∣∣Z(m+1)
n

∣∣∣T
ρ,θ

≤
(
25n−15N16(n−1)6

)n−3

Cn−2.

Similarly, in view of (3) in Lemma 4.2, (4.10), (A.7) and (A.10), it holds that

RN(m+1)(z) =

m+3∑
n=3

RN(m+1)
n (z), RN(m+1)

n (z) =
∑

j∈Jn(N)

(
RN(m+1)

n

)
j
zj.

For any 3 ≤ n ≤ m+ 3, it holds that

|RN(m+1)
n |Tρ,θ ≤

(
25n−15N16(n−1)6

)n−3

Cn−2.

Moreover, RT (m+1)(z) = (A.5) + (A.6) is of the following form

RT (m+1)(z) =
∑

n≥m+4

RT (m+1)
n (z).
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More precisely, for any n ≥ m+ 4, we get

RT (m+1)
n

=(H0)( n−2
m+1 ,Xm) +

n−3
m+1∑

k=max{n−m−2
m+1 ,1}

((
Z

(m)
n−(m+1)k

)
(k,Xm)

+
(
RN(m)

n−(m+1)k

)
(k,Xm)

)

+
(
RT (m)

m+3

)
(n−m−3

m+1 ,Xm)
+

n−m−4
m+1∑
k=0

(
RT (m)

n−(m+1)k

)
(k,Xm)

.

By taking advantage of (4.8)-(4.10) and Corollary 2.1, for any n ≥ m+ 4, we get∣∣∣RT (m+1)
n

∣∣∣T
ρ,θ

≤ 1(
n−2
m+1

)
!
·

n−2
m+1−1∏
i=1

(m+ 3 + i(m+ 1)) ·
(
25m ·N16(m+2)6

)m

· Cm+1

×
(
N16(m+3)6 ·

(
25m ·N16(m+2)6

)m

· Cm+1
) n−2

m+1−1

+ 2

n−3
m+1∑

k=max{n−m−2
m+1 ,1}

1

k!
·
(
25m ·N16(m+1)6

)n−(m+1)k−3

· Cn−(m+1)k−2

×
k∏

i=1

(n− (m+ 1)k + i(m+ 1))
(
N16(m+3)6 ·

(
25m ·N16(m+2)6

)m

· Cm+1
)k

+

n−m−3
m+1∑
k=0

1

k!
·
(
25m ·N16(m+2)6

)n−(m+1)k−3

· Cn−(m+1)k−2

×
k∏

i=1

(n− (m+ 1)k + i(m+ 1))
(
N16(m+3)6 ·

(
25m ·N16(m+2)6

)m

· Cm+1
)k

≤
(
25m+5 ·N16(m+3)6

)n−3

Cn−2.

Lastly, in view of (1) in Lemma 4.2 and (A.8), the transformation

T (m+1) : Bρ,θ(εm+1) → Bρ,θ(ε)

fulfills

sup
z∈Bρ,θ(εm+1)

∥∥∥T (m+1) − id
∥∥∥
ρ,θ

≤ sup
z∈Bρ,θ(εm+1)

∥∥∥T (m) ◦ Tm − Tm
∥∥∥
ρ,θ

+ sup
z∈Bρ,θ(εm+1)

∥Tm − id∥ρ,θ

≤
m+2∑
n=3

N16n6

·
(
25n−15N16(n−1)6

)n−3

Cn−2 · εn−1

+N16·(m+3)6 ·
(
25mN16(m+2)6

)m

Cm+1 · εm+2
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=

m+3∑
n=3

N16n6

·
(
25n−15N16(n−1)6

)n−3

Cn−2 · εn−1.

Consequently, we complete the proof of Lemma 4.2.

Appendix B: The proof of the nonresonance hypothesis

In this section, our task is to show the proof of non-resonant conditions with the
help of Bambusi-Grébert [1].

Lemma B.1. For any K ≤ r, consider K indexes j1 < · · · < jK ≤ N ; consider
the determinant

D :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

ωj1 ωj2 · · · ωjK

dωj1

ds

dωj2

ds
· · · dωjK

ds

: : · · · :

dK−1ωj1

dsK−1

dK−1ωj2

dsK−1
· · · dK−1ωjK

dsK−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

One has

|D| ≥ C

N2K2 , (B.1)

where 0 < C < 1 is a constant.

Proof. Let us denote
λj := j2,

then one has
dkωj

dsk
= (lnλj)

k
ωj .

Therefore

D = ωj1 · · ·ωjK

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

xj1 xj2 · · · xjK

: : · · · :

xK−1
j1

xK−1
j2

· · · xK−1
jK

∣∣∣∣∣∣∣∣∣∣∣∣
= ωj1 · · ·ωjK

∏
1≤l<k≤K

ln
λjk

λjl

,

where xj := lnλj . By applying the fact that

ln
λjk

λjl

≥ ln

(
1 +

1

λjl

)
≥ 1

2
· 1

j2l
≥ C

N2
,

it follows that

|D| = ωj1 · · ·ωjK

∏
1≤l<k≤K

ln
λjk

λjl

≥
∏

1≤l<k≤K

ln
C

N2
≥ C

N2K2 .

We complete the proof of (B.1).
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Lemma B.2. ( [1]) Let u(1), · · · , u(K) be K independent vectors with ∥u(i)∥l1 ≤ 1.
Let w ∈ RK be an arbitrary vector, then there exists i ∈ {1, · · · ,K} such that∣∣∣u(i) · w

∣∣∣ ≥ ∥w∥l1 det(u(1), · · · , u(K))

K
3
2

.

Lemma B.3. ( [1]) Let w ∈ Z∞ be a vector with K component different from zero,
namely those with index j1, · · · , jK ; assume that K ≤ r and j1 < · · · < jK ≤ N .
Then for any s ∈ (1/2, 1), there exists an index j ∈ {0, · · · ,K − 1} such that∣∣∣∣w · d

jω

dsj
(s)

∣∣∣∣ ≥ C
∥w∥l1

N2K2+2
,

where ω is the frequency vector.

Lemma B.4. ( [1]) Suppose that g(s) is m times differentiable on an interval
J ⊂ R. Let Jh := {s ∈ J : |g(s)| < h}, h > 0. If |g(m)(s)| ≥ d > 0 on J , then

|Jh| ≤ Mh
1
m , where M := 2(2 + 3 + · · ·+m+ d−1). Here |·| denotes the Lebesgue

measure of set.

Next, our aim is to prove the following proposition by taking advantage of
Lemma B.3 and Lemma B.4. Let us denote ω(N) = (ω1, ω2, · · · , ωN ).

Proposition 5.1. For a given positive number N , there exists a set J satisfying
|(1/2, 1) \ J | → 0 as N → +∞, such that for any s ∈ J ,∣∣∣⟨k, ω(N)⟩+ ε1ωj1 + ε2ωj2

∣∣∣ ≥ 1

N16r6
,

where |k| ≤ r + 2, ε1, ε2 ∈ {−1, 0, 1} and |j1|, |j2| > N .

Proof. Let us define the resonant set R by

R =
⋃

k,j1,j2

R̃k,j1,j2 =

{
s ∈

(
1

2
, 1

)
:
∣∣∣⟨k, ω(N)⟩+ ε1ωj1 + ε2ωj2

∣∣∣ < 1

N16r6

}
,

where |k| ≤ r + 2, ε1, ε2 ∈ {−1, 0, 1} and |j1|, |j2| > N . Then our task is to prove

|R| ≤ 1

N
. (B.2)

Therefore, from (B.2), one has |R| → 0, as N → ∞. Next, we set

J =

(
1

2
, 1

)
\ R,

which implies that we complete the proof of Proposition 5.1.
We will discuss (B.2) in four cases.

Case 1. When ε1 = ε2 = 0. Let us denote

R̃1 =
⋃

|k|≤r+2

Rk,

where

Rk =

{
s ∈

(
1

2
, 1

)
:
∣∣∣⟨k, ω(N)⟩

∣∣∣ < 1

N4r3

}
.
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In view of Lemma B.3 and Lemma B.4, it holds that

|Rk| ≤ 2
(
2 + 3 + · · ·+ r + 1 + C−1N2(r+2)2+2

)
· 1

N
4r3

r+1

≤ 3N2r2+8r+11 · 1

N
4r3

r+1

≤ 3

N
4r3

r+1−2r2−8r−11
.

Therefore, one has

|R̃1| ≤
∑

|k|≤r+2

|Rk|

≤ 3

N
4r3

r+1−2r2−8r−11
·Nr+2

≤ 3

N
4r3

r+1−2r2−9r−13

≤ 1

4N
(r is large enough). (B.3)

Case 2. When ε1 = ±1, ε2 = 0 or ε1 = 0, ε2 = ±1. Without loss of generality, we
take ε1 = 1, ε2 = 0. Let us denote

R̃2 =
⋃

|k|≤r+2,j1

Rkj1 ,

where

Rkj1 =

{
s ∈

(
1

2
, 1

)
:
∣∣∣⟨k, ω(N)⟩+ ωj1

∣∣∣ < 1

N4r4

}
. (B.4)

We claim
|j1| ≤ 2(r + 2)N2.

Otherwise, one has ∣∣∣⟨k, ω(N)⟩+ ωj1

∣∣∣ ≥ |ωj1 | − (r + 2)N2 > 1,

which contradicts (B.4). Let us set ⟨k̃, ω(Ñ)⟩ = ⟨k, ω(N)⟩+ ωj1 in place of ⟨k, ω(N)⟩
and Ñ = 2(r + 2)N2 in place of N . Using the same strategy as Case 1, we get

|Rkj1 | ≤
3

N
4r4

r+2

·
(
2(r + 2)N2

)2(r+3)2+2

≤ 3

N
4r4

r+2−2r3−18r2−56r−60
.

Therefore, one has

|R̃2| ≤
∑

|k|≤r+2

∑
|j1|≤2(r+2)N2

|Rkj1 |

≤ 3

N
4r4

r+2−2r3−18r2−56r−60
·Nr+2 · 2(r + 2)N2
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≤ 3

N
4r4

r+2−2r3−18r2−58r−68

≤ 1

4N
(r is large enough). (B.5)

Case 3. When ε1ε2 = 1. Let us denote

R̃3 =
⋃

|k|≤r+2,j1,j2

Rkj1j2 ,

where

Rkj1j2 =

{
s ∈

(
1

2
, 1

)
:
∣∣∣⟨k, ω(N)⟩+ ωj1 + ωj2

∣∣∣ < 1

N4r4

}
.

By applying the same startegy as Case 2, it follows that

|R̃3| ≤
1

4N
. (B.6)

Case 4. When ε1ε2 = −1. Without loss of generality, we take ε1 = 1, ε2 = −1 and
j1 > j2 > 0. Let us denote

R̃4 =
⋃

|k|≤r+2,j1,j2

Rkj1j2 ,

where

Rkj1j2 =

{
s ∈

(
1

2
, 1

)
:
∣∣∣⟨k, ω(N)⟩+ ωj1 − ωj2

∣∣∣ < 1

N16r6

}
. (B.7)

In view of mean value theorem, we obtain

|ωj1 − ωj2 | ≥ 2s(j1 − j2) · |j2|2s−1,

thus
j1 − j2 ≤ 4(r + 2)N2, j2 ≤ 2N4r3 ,

otherwise, it holds that ∣∣∣⟨k, ω(N)⟩+ ωj1 − ωj2

∣∣∣ ≥ 1,

which contradicts with (B.7). Let us set ⟨k̃, ω(Ñ)⟩ = ⟨k, ω(N)⟩ + ωj1 − ωj2 in place

of ⟨k, ω(N)⟩ and Ñ = 2N4r3+1 in place of N . Using the same strategy as Case 1,
we get

|Rkj1j2 | ≤
3

N
16r6

r+3

· (2N4r3+1)2(r+4)2+3

≤ 3

N
16r6

r+3 −8r5−64r4−140r3−4r2−32r−70
.

Therefore, one has

|R̃4| ≤
∑

|k|≤r+2

∑
|j1|≤2N4r3+1

∑
|j2|≤2N4r3

|Rkj1j2 |
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≤ 3

N
16r6

r+3 −8r5−64r4−140r3−4r2−32r−70
·Nr+2 · 2N4r3+1 · 2N4r3

≤ 3

N
16r6

r+3 −8r5−64r4−148r3−4r2−33r−75

≤ 1

4N
(r is large enough). (B.8)

In view of (B.3), (B.5), (B.6) and (B.8), it holds that

|R| ≤ |R̃1|+ |R̃2|+ |R̃3|+ |R̃4| ≤
1

N
.

We finish the proof of (B.2).
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