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NONEXISTENCE OF COEXISTING
STEADY-STATE SOLUTIONS FOR A
REACTION-DIFFUSION COMPETING
SYSTEM WITH FRACTIONAL TYPE

CROSS-DIFFUSION∗

Ningning Zhu1 and Fanwei Meng1,†

Abstract We discuss a system of two competing species with fractional type
cross-diffusion. The basic idea is to make a link among the extreme values
of steady-state solutions according to the maximum principle. Then by intro-
ducing a proper discriminant function, which is monotonically decreasing, we
establish sufficient conditions such that the system has no coexisting steady-
state solutions.
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1. Introduction

In this work, we consider the nonexistence of coexisting steady-state solutions of
the following system:

∂u

∂t
= ∆

[(
d1 + αv + δu+

β

γ + v

)
u

]
+ u(1− u− a1v), x ∈ Ω× (0, T ),

∂v

∂t
= d2∆v + v(1− a2u− v), x ∈ Ω× (0, T ),

∂u

∂ν
=

∂v

∂ν
= 0, x ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.1)

where Ω ⊂ Rn (n ≥ 1) is a bounded domain with a smooth boundary ∂Ω; T ∈
(0,+∞]; u and v are the densities of the two competing species, respectively. α, β, γ
and δ are nonnegative numbers; α stands for the cross-diffusion pressures; δ repre-

sents the self-diffusion pressures; and the nonlinear term of fractional form ∆
(

βu
γ+v

)
means that the population pressure of the species u weakens in high-density areas
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of the species v. The parameters ai and di(i = 1, 2) are all positive constants; a1, a2
describe the inter-specific competitions; and d1, d2 are their diffusion rates.

When β = 0, system (1.1) becomes the simplified SKT model, which was first
proposed by Shigesada, Kawasaki and Teramoto [16] in 1979 when considering a
nonlinear dispersive force and an environmental potential function. Since the system
was proposed, a large number of experts have studied it from different aspects
(see [1–4, 11–14, 17, 19]). For example, the references [1, 3, 4, 11, 17] obtained the
global existence of smooth solutions of the SKT model under different hypotheses.
By using the maximum principle, Harnack inequality and a prior estimates, Lou
and Ni [12, 13] obtained sufficient conditions on the existence and nonexistence of
non-constant steady-state solutions of the SKT model. By constructing auxiliary
functions, Lou et al. [14] established specific parameter ranges such that there are
no nonconstant steady-state solutions with and without self-diffusion in the first
equation of the SKT model, respectively. Moreover, many researchers have done a
lot of work on the SKT model with Dirichlet boundary conditions (see, for example,
[7–10,15,18,20,21]). By using the fixed point index method, sufficient conditions for
the existence of positive steady-state solutions under Dirichlet boundary conditions
were given in [15] for fixed or sufficiently large cross diffusion coefficients. Wu [18]
studied the existence of steady-state solutions for a one-dimensional system under
Dirichlet boundary conditions based on the singular perturbation method.

We notice that there are several papers on the SKT model with fractional type
diffusion. Jia et al. [5] proved the boundedness of positive steady-state solutions
for a class of competitive systems with fractional cross diffusion terms. They also
used monotone iterative methods to prove the existence and nonexistence of positive
steady-state solutions. Using bifurcation theory, Kadota and Kuto [6] discussed the
existence problem of positive steady-state solutions for a predator-prey system with
fractional cross diffusion terms under Dirichlet boundary conditions. But on the
whole, there is not much study in this area. The purpose of this work is to establish
sufficient conditions such that the following system has no coexisting solutions:

∆

[(
d1 + αv + δu+

β

γ + v

)
u

]
+ u(1− u− a1v) = 0, x ∈ Ω,

d2∆v + v(1− a2u− v) = 0, x ∈ Ω,

∂u

∂ν
=

∂v

∂ν
= 0, x ∈ ∂Ω.

(1.2)

In the following, we always assume that:

α, β, γ, δ ≥ 0, and ai, di > 0 for i = 1, 2.

Considering that u and v represent species densities, we focus on the nonnegative
classical solution (u, v) of (1.2), which means that (u, v) ∈ (C1(Ω)∩C2(Ω))2, u, v ≥
0 in Ω, and (u, v) satisfies (1.2) in the pointwise sense.

The remainder of this work is organized as follows. In section 2, we show that
the nonnegative classical solutions are strictly positive if they are not identically
equal to zero. By rewriting system (1.2), we obtain properties of the exterme values
of u and v. Section 3 constructs a new function that is monotonically decreasing in
the domain of definition. Then Theorem 3.1 the main result, gives the parameter
ranges for nonexistence of coexisting solutions.
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2. Preliminaries

First of all, we obtain the positivity of u and v in Ω, which ensures that the fractional
type cross-diffusion in system (1.2) does make sense.

Proposition 2.1. et (u, v) be a nonnegative classical solution of (1.2) with u ̸≡ 0
and v ̸≡ 0. Then u > 0 and v > 0 in Ω.

Proof. (i) We first prove v > 0 in Ω by contradiction.
Suppose that there is x′ ∈ Ω such that v(x′) = 0. Then v(x′) = min

x∈Ω
v(x).

Let
L1v = −d2∆v + cv with c = a2u+ v.

Then
c ≥ 0 and L1v = v ≥ 0 in Ω.

If x′ ∈ Ω, by using the strong maximum principle, we can see that v is constant
in Ω, and therefore v = 0, which contradicts v ̸≡ 0.

If x′ ∈ ∂Ω, then v(x) > v(x′) for x ∈ Ω. Applying Hopf’s boundary lemma, we
get ∂v

∂ν (x
′) < 0, which is impossible.

(ii) Now, we aim to investigate the positivity of u. Let w = (d1 + αv + δu+
β

γ+v

)
u. Due to d1 > 0, α ≥ 0, β ≥ 0, γ ≥ 0, δ ≥ 0, v > 0 and u ≥ 0 in Ω, we can see

w ≥ 0 in Ω. So we only need to prove w > 0 in Ω. Otherwise, there is x′′ ∈ Ω such
that w(x′′) = min

x∈Ω
w(x) = 0.

It follows from (1.2) that

∆w + u(1− u− a1v) = ∆w +
1− u− a1v

d1 + αv + δu+ β
γ+v

w = 0.

Let

L2w = −∆w + cw with c =
u+ a1v

d1 + αv + δu+ β
γ+v

.

Then
c > 0 and L2w =

w

d1 + αv + δu+ β
γ+v

≥ 0 in Ω.

If x′′ ∈ Ω, the strong maximum principle shows that w is constant in Ω, and
thus w = 0. By d1 > 0, we have u = 0, a contradiction to u ̸≡ 0.

If x′′ ∈ ∂Ω, we have w(x) > w(x′′) for x ∈ Ω. Thus, it comes from Hopf’s
boundary lemma that

∂w

∂ν
(x′′) =

(
d1 + αv(x′′) + δu(x′′) +

β

γ + v(x′′)

)
∂u

∂ν
(x′′)

+ u(x′′)

[(
α− β

(γ + v(x′′))2

)
∂v

∂ν
(x′′) + δ

∂u

∂ν
(x′′)

]
<0,

a contradiction to the Neumann boundary conditions. This completes the proof.

Next, we cite Lemma 3.1 in [14] which will be useful to describe the relationships
among the extreme values of solutions of (1.2). One can find its proof in Proposition
2.2 of [12].
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Lemma 2.1. Let A(x) ∈ C0(Ω) be positive in Ω, B(x) ∈ C0(Ω,Rn), C(x) ∈ C0(Ω),
and ũ ∈ C1(Ω) ∩ C2(Ω) satisfy

A(x)∆ũ(x) +B(x) · ∇ũ(x) + C(x) = 0, x ∈ Ω,

∂ũ

∂ν
= 0, x ∈ ∂Ω.

(2.1)

Then there exist x, x ∈ Ω such that

ũ(x) = max
x∈Ω

ũ(x), C(x) ≥ 0

and
ũ(x) = min

x∈Ω
ũ(x), C(x) ≤ 0.

Now, we rewrite system (1.2) as the form of (2.1):

(
d1 + αv + 2δu+

β

γ + v

)
∆u+∇u ·

(
2δ∇u+ 2α∇v − 2β∇v

(γ + v)2

)
+ u

[(
α− β

(γ + v)2

)
v(−1 + a2u+ v)

d2

+
2β|∇v|2

(γ + v)3
+ 1− u− a1v

]
= 0, x ∈ Ω,

d2∆v + v(1− a2u− v) = 0, x ∈ Ω,

∂u

∂ν
=

∂v

∂ν
= 0, x ∈ ∂Ω.

(2.2)

Applying Lemma 2.1 to the first equation of system (2.2), we can directly derive
the following two lemmas without proofs.

Lemma 2.2. Suppose that (u, v) is a nonnegative classical solution of (2.2) with
u ̸≡ 0 and v ̸≡ 0. Then(

α− β

(γ + v(x1))2

)
v(x1)(−1 + a2M1 + v(x1))

d2

+
2β|∇v(x1)|2

(γ + v(x1))3
+ 1−M1 − a1v(x1) ≥ 0,

where x1 ∈ Ω, and M1 = u(x1) = max
Ω

u(x).

Lemma 2.3. Suppose that (u, v) is a nonnegative classical solution of (2.2), u ̸≡ 0
and v ̸≡ 0. Then(

α− β

(γ + v(x2))2

)
v(x2)(−1 + a2m1 + v(x2))

d2
+ 1−m1 − a1v(x2) ≤ 0,

where x2 ∈ Ω, and m1 = u(x2) = min
Ω

u(x).

Similarly, an application of Lemma 2.1 to the second equation of system (2.2)
leads to the following result.
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Lemma 2.4. If (u, v) is a nonnegative classical solution of (2.2) with u ̸≡ 0 and
v ̸≡ 0, then

1− a2M1 ≤ m2 ≤ v(x) ≤ M2 ≤ 1− a2m1 < 1

for all x ∈ Ω, where M1 = max
Ω

u(x), m1 = min
Ω

u(x), M2 = max
Ω

v(x) and m2 =

min
Ω

v(x).

Proof. Set C(x) = v(1 − a2u − v). By Lemma 2.1 again, there exist x3, x4 ∈ Ω
such that

v(x3) = max
Ω

v(x) ≜ M2, C(x3) ≥ 0,

and
v(x4) = min

Ω
v(x) ≜ m2, C(x4) ≤ 0.

Therefore,
1− a2u(x3)−M2 ≥ 0 and 1− a2u(x4)−m2 ≤ 0.

Combining these two inequalities, we have

1− a2M1 ≤ 1− a2u(x4) ≤ m2 ≤ v(x) ≤ M2 ≤ 1− a2u(x3) ≤ 1− a2m1 < 1

for any x ∈ Ω.
Unless otherwise specified, we assume that

M1 = max
Ω

u(x) = u(x1), m1 = min
Ω

u(x) = u(x2),

M2 = max
Ω

v(x) = v(x3), and m2 = min
Ω

v(x) = v(x4),

where xi ∈ Ω (i = 1, 2, 3, 4).

3. Nonexistence of coexisting solutions

In this section, we concentrate on system (2.2) and aim to explore sufficient con-
ditions on the absence of coexisting solutions of system (2.2). First, we define the
following function on (0, 1), which will play an important role in our subsequent
analysis.

Lemma 3.1. Let

ϕ(s) = 1−
(
α− β

(γ + s)2

)
a2s

d2
, s ∈ (0, 1),

φ(s) =

(
α− β

(γ + s)2

)
s(−1 + s)

d2
+ 1− a1s, s ∈ (0, 1),

where α, β, γ, a1, a2 and d2 are the same as those in (2.2). Suppose that a2 > 1,
αa2(a2 − 1) < d2(a1a2 − 1), and

αa2 < d2 < 2αa2,

d2(a2 − 1) < βa2,

d22a2(1− a1)
2 + β(2αa2 − d2 − a2d2) < 0,

d22(1− a1a2)
2 + 2αβa22 + d22(1− a1a2)(a2 − 1)− βa2d2 > 0.

(3.1)
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Define f(s) = φ(s)
ϕ(s) , s ∈ (0, 1). Then f ′(s) ≤ 0 on (0, 1).

Proof. Firstly, due to αa2 < d2, it is easy to see that ϕ(s) > 0 for all s ∈ (0, 1).
Then direct calculations imply that

f(s) =

(
α− β

(γ+s)2

)
s(−1+s)

d2
+ 1− a1s

1−
(
α− β

(γ+s)2

)
a2s
d2

=
[α(γ + s)2 − β]s(s− 1) + d2(γ + s)2(1− a1s)

d2(γ + s)2 − a2s[α(γ + s)2 − β]

=
αs(s− 1)(γ + s)2 − βs(s− 1) + d2(1− a1s)(γ + s)2

d2(γ + s)2 − αa2s(γ + s)2 + βa2s

≜
p(s)

q(s)
,

which has its derivative f ′ given by

f ′(s) =
p′(s)q(s)− p(s)q′(s)

q2(s)
, s ∈ (0, 1).

Furthermore,

p′(s)q(s)− p(s)q′(s)

=
[
α(γ + s)2(s− 1) + 2αs(s− 1)(γ + s) + αs(γ + s)2 − β(s− 1)− βs

− a1d2(γ + s)2 + 2d2(1− a1s)(γ + s)
][
d2(γ + s)2 − αa2s(γ + s)2 + βa2s

]
−
[
αs(s− 1)(γ + s)2 − βs(s− 1) + d2(1− a1s)(γ + s)2

]
×
[
2d2(γ + s)− αa2(γ + s)2 − 2αa2s(γ + s) + βa2

]
≜f1(s)(γ + s)4 + f2(s)(γ + s)3 + f3(s)(γ + s)2 + f4(s)(γ + s) + f5(s),

where

f1(s) =[α(s− 1) + αs− a1d2](d2 − αa2s) + αa2[αs(s− 1) + d2(1− a1s)]

=− α2a2s
2 + 2αd2s+ (αa2d2 − αd2 − a1d

2
2),

f2(s) =[2αs(s− 1) + 2d2(1− a1s)](d2 − αa2s)

− 2(d2 − αa2s)[αs(s− 1) + d2(1− a1s)]

=0,

f3(s) =(d2 − αa2s)(−2βs+ β) + βa2s[α(s− 1) + αs− a1d2]

− βa2[αs(s− 1) + d2(1− a1s)]− αβa2s(s− 1)

=β[2αa2s
2 − 2d2s+ (d2 − a2d2)],

f4(s) =βa2s[2αs(s− 1) + 2d2(1− a1s)] + βs(s− 1)(2d2 − 2αa2s)

=2βd2s[s(1− a1a2) + (a2 − 1)],

f5(s) =βa2s(−2βs+ β) + β2a2s(s− 1)

=− β2a2s
2.

Next we shall divide our proof into three parts.
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(i) f1(s) < 0, s ∈ (0, 1).

In fact, it follows from the condition

αa2(a2 − 1) < d2(a1a2 − 1)

that

4α2d22 + 4α2a2(αa2d2 − αd2 − a1d
2
2) < 0.

Clearly, when s ∈ (0, 1), f1(s) < 0.

(ii) f3(s) < 0, s ∈ (0, 1).

Let f3(s) = 0. We can solve that

s1 =
2d2 −

√
4d22 − 8αa2(d2 − a2d2)

4αa2
, s2 =

d2 +
√
d22 − 2αa2(d2 − a2d2)

2αa2
.

As a2 > 1, we have s1 < 0. Moreover, a2d2 > 2αa2 − d2 > 0 entails that

d22 − 2αa2(d2 − a2d2) > (2αa2 − d2)
2,

which implies that s2 > 1, and thus f3(s) < 0, s ∈ (0, 1).

(iii) f3(s)(γ + s)2 + f4(s)(γ + s) + f5(s) < 0, s ∈ (0, 1).

Given that f3(s) < 0, s ∈ (0, 1), we next prove that f2
4 (s) − 4f3(s)f5(s) < 0,

s ∈ (0, 1). A simple calculation shows that

f2
4 (s)− 4f3(s)f5(s)

=4β2d22s
2[s(1− a1a2) + (a2 − 1)]2 + 4β3a2s

2[2αa2s
2 − 2d2s+ (d2 − a2d2)]

=4β2s2
{
d22[s(1− a1a2) + (a2 − 1)]2 + βa2[2αa2s

2 − 2d2s+ d2(1− a2)]
}

=4β2s2
{
d22(1− a1a2)

2s2 + 2d22(1− a1a2)(a2 − 1)s+ d22(a2 − 1)2

+ 2αβa22s
2 − 2βa2d2s+ βa2d2(1− a2)

}
=4β2s2

{[
d22(1− a1a2)

2 + 2αβa22
]
s2 +

[
2d22(1− a1a2)(a2 − 1)− 2βa2d2

]
s

+
[
d22(a2 − 1)2 + βa2d2(1− a2)

]}
≜4β2s2(As2 +Bs+ C),

where

A = d22(1− a1a2)
2 + 2αβa22 > 0,

B = 2d22(1− a1a2)(a2 − 1)− 2βa2d2 < 0,

C = d22(a2 − 1)2 + βa2d2(1− a2).

In order to have f2
4 (s)− 4f3(s)f5(s) < 0 for all s ∈ (0, 1), we hope that

B2 − 4AC > 0,
−B −

√
B2 − 4AC

2A
< 0, and

−B +
√
B2 − 4AC

2A
> 1.
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In fact, on the basis of d2(a2 − 1) < βa2, one can easily see that C < 0, and thus

B2 − 4AC > 0, which leads to −B−
√
B2−4AC
2A < 0. On the other hand, in view of

d22(1− a1a2 + a2 − 1)2 + βa2(2αa2 − d2 − a2d2) < 0, we have

A+B + C

=d22(1− a1a2)
2 + 2αβa22 + 2d22(1− a1a2)(a2 − 1)− 2βa2d2 + d22(a2 − 1)2

+ βa2d2(1− a2)

=d22(1− a1a2 + a2 − 1)2 + 2αβa22 − 2βa2d2 + βa2d2(1− a2)

=d22a
2
2(1− a1)

2 + 2αβa22 − βa2d2 − βa22d2

=d22a
2
2(1− a1)

2 + βa2(2αa2 − d2 − a2d2)

<0,

which establish that

B2 − 4AC > (2A+B)2.

Finally, the last inequality of (3.1) ensures that

2A+B = 2d22(1− a1a2)
2 + 4αβa22 + 2d22(1− a1a2)(a2 − 1)− 2βa2d2 > 0.

Consequently, √
B2 − 4AC > 2A+B,

that is,

−B +
√
B2 − 4AC

2A
> 1.

In conclusion, we obtain that f ′(s) < 0 for all s ∈ (0, 1).

Remark 3.1. It should be noted that no matter whether a1 > 1 or a1 < 1, the
conditions (3.1) are likely to remain valid. For example, conditions (3.1) are valid
with either

a1 = a2 = 1.5, α = β = 1, d2 = 2,

or

a1 = 0.9, a2 = 1.3, α = 1, β = 0.6, d2 = 2.4.

We leave the elementary validation to the interested readers.

In the following, we give a further favorable property of the function f , which
can be verified in a straightforward manner.

Lemma 3.2. Assume that a2 > 1, a1a2 > 1, and αa2 < d2. Then the function f
defined in Lemma 3.1 satisfies

f(s) >
1− s

a2
for all s ∈

(
0,min

{
1,

a2 − 1

a1a2 − 1

})
.

Proof. Obviously, we only need to verify that(
α− β

(γ+s)2

)
s(−1+s)

d2
+ 1− a1s

1−
(
α− β

(γ+s)2

)
a2s
d2

>
1− s

a2
,
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which is equivalent to

a2(1− a1s) > 1− s. (3.2)

When s ∈
(
0,min

{
1, a2−1

a1a2−1

})
, (3.2) is valid. This completes the proof.

Now, based on the above lemmas, we can establish the nonexistence result on
coexisting solutions as follows.

Theorem 3.1. Let a1 < 1 and a2 > 1. Suppose that (3.1) holds and (u, v) is a
nonnegative classical solution of (2.2). Then (u, v) is not a coexisting solution, that
is, at least one of the two species is extinct.

Proof. Let us assume on the contrary that u ̸≡ 0 and v ̸≡ 0. Due to Lemma 2.3,
we can see that(

α− β

(γ + v(x2))2

)
v(x2)(−1 + a2m1 + v(x2))

d2
+ 1−m1 − a1v(x2) ≤ 0,

which is equivalent to

m1

[
1−

(
α− β

(γ + v(x2))2

)
a2v(x2)

d2

]
≥
(
α− β

(γ + v(x2))2

)
v(x2)(−1 + v(x2))

d2
+ 1− a1v(x2),

where m1 = minΩ u(x) = u(x2). Now if αa2(a2 − 1) < d2(a1a2 − 1), which implies
a1a2 > 1, then Lemmas 2.4 and 3.1 indicate that

m1 ≥ f(v(x2)) ≥ f(1− a2m1),

that is,[
βa2(1− a2m1) + d2(γ + 1− a2m1)

2 − αa2(1− a2m1)(γ + 1− a2m1)
2
]
m1

≥βa2m1(1− a2m1)− αa2m1(1− a2m1)(γ + 1− a2m1)
2

+ d2(γ + 1− a2m1)
2(1− a1 + a1a2m1).

This in turn implies that

(1− a1a2)m1 ≥ 1− a1.

But it is impossible because of a1 < 1 and a1a2 > 1. Hence

αa2(a2 − 1) ≥ d2(a1a2 − 1).

If a1a2 > 1, then 1 < a2−1
a1a2−1 . According to Lemma 3.2, we know that f(s) > 1−s

a2

for all s ∈ (0, 1). If a1a2 ≤ 1, by using arguments similar to those in the proof
of Lemma 3.2, one can easily derive that f(s) > 1−s

a2
for all s > 0. Therefore no

matter what the sign of a1a2 − 1 is, we always have

m1 ≥ f(v(x2)) >
1− v(x2)

a2
,

which is absurd, for once more due to Lemma 2.4 we know that

m1 ≤ 1− v(x2)

a2
.

This completes the proof.
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