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A FRACTIONAL PREDATOR-PREY MODEL
WITH ALLEE EFFECT AND CONSTRUCTIVE
IMPACT ON PREY CARRYING CAPACITY

Ercan Balci1,†

Abstract This paper explores a prey-predator model that incorporates sev-
eral biological phenomena, with a focus on the positive feedback that certain
prey species have on their own carrying capacity. Traditional models treat car-
rying capacity as a constant; however, this study assumes a variable carrying
capacity influenced by the prey population. To account for the memory ef-
fect and hereditary properties within biological systems, we employ fractional
differential equations using the Caputo fractional derivative. Additionally, we
incorporate the Allee effect, which plays a critical role in population dynam-
ics, especially at low population densities. Through numerical analysis, the
model’s stability and dynamic behavior are examined, providing insights into
species coexistence, population cycles, and extinction risks. This framework
aims to enrich existing models and offer a more comprehensive understand-
ing of prey-predator interactions with prey species impacting their carrying
capacity.
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derivative, Hopf bifurcation.

MSC(2010) 37N25, 92B05.

1. Introduction

Ecological modeling has become an indispensable tool in understanding the intricate
web of interactions within ecosystems, enabling researchers to simulate and analyze
how various biological processes and environmental factors affect species dynamics.
One of the most urgent challenges these models seek to address is the rapid loss
of biodiversity, which has accelerated due to factors such as habitat destruction,
climate change, and overexploitation of natural resources [33]. Among the key
contributors to ecosystem resilience are ecosystem engineers -organisms like beavers,
termites, and earthworms- that play an active role in shaping their environment.
These species modify their habitats in ways that benefit not only themselves but
also other species, creating rich, complex ecosystems [21,22].

The survival of most species in ecosystems and the richness of biodiversity are
fundamentally rooted in prey-predator dynamics. In mathematical biology, prey-
predator models have long served as essential tools for exploring species interactions.
Over time, these models have been refined to include increasingly complex biolog-
ical phenomena, such as adaptive behaviors and fluctuating environmental factors.
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The ultimate aim is to uncover the conditions that lead to stability or instability,
population cycles, and long-term survival strategies. These models advanced signif-
icantly after the original Lotka-Volterra framework, with key refinements based on
observed ecological dynamics. A well-established concept is that prey populations
grow logistic when predators are absent where resource limitations regulate their
expansion. Logistic growth highlights two key factors: The intrinsic growth rate and
the carrying capacity; the latter is a term used to denote limiting population sup-
ported by the environment [31]. Traditionally, carrying capacity has been treated
as a fixed parameter. However, this paper shifts the focus to models with variable
carrying capacity, as some studies have suggested that fluctuating environmental
conditions may alter resource availability over time [23,24,29,31,38]. Additionally,
in [23,24,38], researchers have conducted studies based on the assumption that prey
populations influence their carrying capacity. Our work seeks to expand on these
approaches by introducing several refinements.

The first enhancement involves the use of fractional differential equations
(FDEs). In previous studies [23, 24, 38], researchers suggested that the effect of
prey populations on their carrying capacity takes time to manifest, incorporating
delayed terms to reflect this. In contrast, we introduce the Caputo fractional deriva-
tive (CFD) to capture a more generalized memory for the system. FDEs, with their
non-local properties, are widely used to account for the hereditary and memory
characteristics of systems, and they have proven effective in capturing the complete
dynamics of the system [5, 15, 32]. FDEs have been applied across various fields,
including epidemics modeling [16,34], biochemical processes [36,37], ecological mod-
eling [15,35], environmental modeling [8] etc. Their application in biological systems
is particularly relevant, where memory refers to the ability to retain information
from past events and use it to influence future behaviors [10,30].

In this article, we assume that the prey’s impact on their carrying capacity
is positive, referring to it as a constructive impact. To illustrate this, let us con-
sider a biological scenario involving an important ecosystem engineer beaver (Castor
canadensis). Beavers serve as both ecosystem engineers and keystone species, sig-
nificantly influencing the landscape and biodiversity through their actions [22]. By
building dams, they alter the flow of water, creating large wetlands [3,26]. As her-
bivores, they enhance their food sources, such as aquatic plants, as often they form
a substantial part of their diet, depending on the habitat [20]. Moreover, beavers
are prey for species like wolves, and in habitats where their ranges coincide, wolves
can be the main predators, with beavers playing a crucial role in the wolves’ diet.
The beaver’s environmental engineering and interactions with predators, such as
wolves, have a noteworthy influence on the broader ecological processes [2, 9].

In this study, we introduce a novel prey-predator model incorporating dynamic
carrying capacity influenced by prey populations and a memory-dependent ecolog-
ical interaction via fractional derivatives. The key highlights of our work are as
follows:

• We extend classical prey-predator models by considering a variable carrying
capacity that depends on prey density, incorporating ecological memory ef-
fects.

• We employ FDEs using the Caputo fractional derivative to better capture the
hereditary and memory properties of ecological interactions.

• We introduce the Allee effect to explore how cooperative behaviors impact
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prey survival and carrying capacity dynamics.

• We analyze the stability properties of the system under different parameter
conditions, providing insights into the long-term population dynamics.

The following section is dedicated to constructing the studied model from scratch.
We will also add the Allee effect into our system after stating its importance for
population ecology and explaining how it increases the original aspect of this study.
The inclusion of the fractional derivative will also be explained in the next sec-
tion, along with some basic properties of the CFD and FDEs. We conclude the
paper with numerical simulations to illustrate the model’s dynamics, followed by a
discussion in the Conclusions section.

2. Model construction and fractional version

First, we present a basic predator-prey model, after which we will introduce some
enhancements. Let u and v represent the density of prey and predator populations.

du

dt
= ru

(
1− u

K

)
− f(u)v,

dv

dt
= cf(u)v − dv.

(2.1)

Here, r is the prey growth rate, and K is the carrying capacity, the two main
defining terms of logistic growth. The function f(u) is called functional response,
which basically characterizes the change in the density of the prey attacked per unit
time per predator as the prey density varies [14]. Predator growth solely depends
on prey’s presence, where c is the conversion rate reflecting the ability of predators
to turn prey into an additional per capita growth rate for the predator population.
Predators also experience a natural mortality with a rate of d.

Carrying capacity is a crucial ecological factor determining the maximum pop-
ulation size a species can sustain based on available resources such as food, water,
and habitat. It plays a significant role in shaping predator-prey interactions, in-
cluding the well-known paradox of enrichment [1]. Traditionally, predator-prey
models assume a constant carrying capacity, but ecological systems are inherently
dynamic, influenced by environmental fluctuations and species interactions. As a
result, variable carrying capacities have been introduced in mathematical models to
capture more realistic ecosystem dynamics. Several approaches have been proposed
to model varying carrying capacities, including time-dependent functions linked to a
biotic resources [29], predator-dependent carrying capacities [13], and logistic forms
incorporating environmental variability [23,24,31,38]. These formulations acknowl-
edge that carrying capacity is not a fixed parameter but a function of ecological
interactions, species behavior, and habitat conditions. Following this perspective,
instead of using a constant carrying capacity K, we introduce a prey-dependent
carrying capacity formulated as

κ(t) = K + βu(t). (2.2)

We define β as the environmental impact parameter, representing how prey’s ac-
tivities influence their carrying capacity. Since we focus on species like ecosystem
engineers or those that positively affect their environment, we assume β > 0 and
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call this parameter the constructive impact parameter for the rest of the article.
As mentioned earlier, certain species enhance biodiversity through actions like seed
dispersal and nutrient cycling, which in turn can increase resource availability and
raise their carrying capacity. Following the explanation in [23], we also assume
β < 1, as values greater than one would result in unbounded prey growth. Addi-
tionally, we adopt a Holling type I functional response for f(u), i.e. f(u) = αu.
Under these assumptions, we obtain the following modified predator-prey model:

du

dt
= ru

(
1− u

K + βu

)
− αuv,

dv

dt
= cαuv − dv.

(2.3)

The Allee effect is a key ecological phenomenon characterized by a positive rela-
tionship between an individual’s fitness and the population size of their own species.
This effect plays a significant role in the extinction risk of low-density populations,
as factors like mate limitation, cooperative defense, and environmental conditioning
become more challenging at smaller population sizes. Unlike logistic growth models,
which typically focus on resource limitations, the Allee effect highlights how social
and biological factors can drive population decline. In particular, difficulties in
finding mates, social dysfunction, and predator avoidance contribute to its impact.
Due to its critical role in population dynamics, the Allee effect has gained increasing
attention in studies of predator-prey systems, with ecologists and mathematicians
investigating its implications for species survival. Several studies have explored the
connection between ecosystem engineers and the Allee effect. Some of these inves-
tigations have concluded that ecosystem engineers, through their beneficial impact
on the environment, can reduce the critical Allee threshold for other species. In this
study, we assume that species like ecosystem engineers, which positively influence
their own carrying capacity, also experience an Allee threshold. We incorporate this
idea by defining a multiplicative Allee effect as a factor in the prey growth term
within the system, as follows:

du

dt
= ru

(
1− u

K + βu

)
(u−m)− αuv,

dv

dt
= cαuv − dv.

(2.4)

Here, m represents the Allee parameter, where m < 0 corresponds to the weak Allee
effect, and m > 0 indicates the strong Allee effect. In the latter case, m can be
considered as a critical threshold, below which the population is likely to decline
toward extinction if the population size falls too low. We also assume −K < m < K
because it is biologically reasonable.

Now, we incorporate the CFD into (2.4) following the work [19]. The system’s
formulation using fractional order is presented below:

C
t0D

ζ
t u(t) = ru

(
1− u

K + βu

)
(u−m)− αuv,

C
t0D

ζ
t v(t) = cαuv − dv.

(2.5)

Here, C
t0D

ζ
t represents CFD with order ζ ∈ (0, 1), and it is defined as

C
t0D

ζ
t g(t) =

1

Γ(1− ζ)

∫ t

t0

g′(ν)

(t− ν)ζ
dν.
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The introduction of fractional-order derivatives in model (2.5) enhances the
modeling framework by incorporating memory effects and long-range dependence,
which are often present in ecological systems. Unlike the integer-order model (2.4),
which assumes that the rate of change in a population depends only on the current
state, the fractional-order model accounts for past states, leading to more realistic
dynamics. This is particularly relevant in ecosystems where the impact of past pop-
ulation sizes and environmental conditions persists over time. Moreover, fractional
models have been shown to exhibit richer dynamical behaviors, including long-term
stability shifts and more accurate predictions of transient dynamics.

Using fractional derivatives in ecological modeling introduces the challenge of
dimensional homogeneity. The Caputo fractional derivative, commonly used in
fractional-order models, has dimensions of time−α, which differs from the classical
derivative’s time−1. As highlighted in recent studies [12, 28], this discrepancy can
lead to inconsistencies if parameters are not appropriately adjusted. Some works
propose modifications to ensure dimensional consistency in fractional-order ecolog-
ical models [6, 28]. While our model follows the standard approach of replacing
ordinary derivatives with fractional derivatives without additional scaling, we ac-
knowledge this issue and emphasize that future studies could explore dimensionally
homogeneous formulations for a more rigorous representation of fractional ecological
interactions.

As ζ approaches 1, the influence of previous events on future outcomes decreases,
resulting in a short memory for the system. In contrast, as ζ moves closer to 0,
the impact of past events becomes substantial. Incorporating fractional order and
memory effects into the system enhances its stability, which is formalized in the
following theorem that will be applied in the next section.

Theorem 2.1. [25] Consider the system with CFD

C
t0D

ζ
t Y (t) = H(Y (t)), Y (0) = Y0 ∈ Rn, ζ ∈ (0, 1), (2.6)

where Y (t) = (y1(t), . . . , yn(t)) ∈ Rn and H : [h1, . . . , hn] : Rn → Rn. Let

JY ∗ =
∂H

∂Y
=

∂(h1, . . . , hn)

∂(y1, . . . , yn)

be the Jacobian matrix at the equilibrium point Y ∗ of (2.6). If the eigenvalues
λi, i ∈ {1, . . . , n} of JY ∗ satisfy following conditions

|arg(λi)| >
ζπ

2
, i ∈ {1, . . . , n}.

Y ∗ is locally asymptotically stable (LAS).

The following theorems will be used in the next section to prove the positivity
and existence-uniqueness of the solutions of the system (2.5).

Lemma 2.1. [4] Let g ∈ Cq([t0, T ],R). Suppose that for any t1 ∈ (t0, T ], one has

g(t1) = 0 and g(t) < 0 for t0 ≤ t < t1; then it follows that C
t0D

ζ
t g(t1) > 0.

Lemma 2.2. [17] For the system

C
0 D

ζ
t Y (t) = H(t, Y ), t ≥ 0
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with initial condition Y (0) = (Y1(0), . . . , Yn(0)), where 0 < ζ ≤ 1, H : [0,∞)×∆ →
Rn, ∆ ⊆ Rn. If H(t, Y ) fulfills the local Lipschitz condition with respect to Y ∈ Rn,
i.e.,

∥H(t, Y )−H(t, Ỹ )∥ ≤ L∥Y − Ỹ ∥,
then there exists a unique solution of the above system on [0,∞)×∆, where

∥Y (u1, u2, . . . , un)− Ỹ (ũ1, ũ2, . . . , ũn)∥=
n∑

i=1

|ui − ũi|, ui, ũi ∈ R.

3. Dynamical analysis of the system (2.5)

In this section, we first establish the existence and uniqueness of solutions, as well as
their non-negativeness, followed by an analysis of local stability and Hopf bifurcation
for the system (2.5). The existence and uniqueness of the solution ensure that the
model provides well-defined and predictable population dynamics for given initial
conditions. Non-negativeness guarantees biologically meaningful solutions, ensuring
that population sizes remain non-negative over time. Local stability analysis helps
understand how small perturbations affect species persistence, indicating whether
populations return to equilibrium after minor disturbances. The Hopf bifurcation
suggests that the system can transition from a stable state to sustained population
cycles, which aligns with observed predator-prey oscillations in ecological systems.

3.1. Existence-uniquness of solutions

Here, we study the existence-uniqueness of the solutions of the system (2.5) in the
region Ω× [t0, T ) where

Ω = {(u, v) ∈ R2
+ : max{|u|, |v|} < ξ},

T < ∞, ξ is large, and R2
+ = {(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0}.

Theorem 3.1. For any non-negative initial conditions, the Caputo fractional order
system (2.5) admits a unique solution.

Proof. Let Y0, Ỹ0 ∈ Ω and Y (t), Ỹ (t) be two solutions of the systemDζY = H(Y ),
starting from Y0, Ỹ0. Here, Y = (u, v)T and H(Y ) = (H1(Y ), H2(Y ))T with

H1(Y ) = ru

(
1− u

K + βu

)
(u−m)− αuv,

H2(Y ) = cαuv − dv.

(3.1)

Then, we have

∥H(Y )−H(Ỹ )∥
=|H1(Y )−H1(Ỹ )|+ |H2(Y )−H2(Ỹ )|

=|ru
(
1− u

K + βu

)
(u−m)− rũ

(
1− ũ

K + βũ

)
(ũ−m)− αuv + αũṽ|

+ |cαuv − cαũṽ − dv + dṽ|

=|r(u2 − ũ2) + rm(ũ− u) +
r

(K + βu)(K + βũ)
(ũ3 − u3)
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− r

(K + βu)(K + βũ)
m(u2 − ũ2) + α(ũṽ − uv)|+ |cα(uv − ũṽ) + d(ṽ − v)|

≤2rξ|u− ũ|+ rm|u− ũ|+ 3
r

K2
ξ2|u− ũ|+ 2

r

K2
mξ|u− ũ|+ αξ|u− ũ|

+ αξ|v − ṽ|+ cαξ|u− ũ|+ cαξ|v − ṽ|+ d|v − ṽ|

=[2rξ + rm+
rξ

K2
(3ξ + 2m) + αξ(1 + c)]|u− ũ|+ [αξ(1 + c) + d]|v − ṽ|

=L1|u− ũ|+L2|v − ṽ|
≤L∥Y − Ỹ ∥

where L1 = 2rξ + rm + rξ
K2 (3ξ + 2m) + αξ(1 + c), L2 = αξ(1 + c) + d, L =

max{L1, L2}. Thus, H(Y ) satisfies the local Lipschitz condition, and the conclusion
follows directly from Lemma 2.2.

Theorem 3.2. If the initial conditions u(t0) ≥ 0, v(t0) ≥ 0, then all solutions of
the system (2.5) are non-negative.

Proof. Assume that

u(t)

v(t)

 be the solutions of the system (2.5) for t > t0 starting

from

u(t0)

v(t0)

. Suppose that the assumption is false, and there exists t1 > t0 such

that u(t) > 0 for t0 ≤ t < t1, u(t1) = 0, and u(t) < 0 for t > t1. From the system

(2.5), we obtain C
t0D

ζ
t u(t)|t=t1= 0. Lemma 2 implies that u(t) = 0 for t > t1,

which contradicts with u(t) < 0 for t > t1. Therefore, we conclude u(t) ≥ 0 for all
t ≥ t0. We can similarly prove v(t) ≥ 0, for ∀t ≥ t0. Hence, the solutions remains
non-negative.

3.2. Equilibrium points

We set both equations of (2.5) equal to zero to obtain equilibrium points:{
Dζu(t) = 0,

Dζv(t) = 0.

System (2.5) allows one extinction and two boundary equilibriums. Besides, we can
also have one coexistence equilibrium depending on conditions.

i. E0 = (0, 0).

ii. Em = (m, 0).

iii. EK =
(

K
1−β , 0

)
. Since we assume 0 ≤ β < 1, we have K

1−β > 0.

iv. The coexistence equilibrium E∗ = (u∗, v∗) with

u∗ =
d

cα
, v∗ =

r(d− cmα)(cKα+ d(−1 + β))

cα2(cKα+ dβ)
.

We have the coexistence equilibrium (i.e., v∗ > 0) if one of the followings is satisfied:
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1. m <
d

cα
< K (i.e., m < u∗ < K ),

2. m < K ≤ d

cα
<

K

1− β
( i.e., m < K ≤ u∗ <

K

1− β
).

For the both cases the Allee parameter m should be smaller than K, which is
biologically logical. The first condition is commonly encountered in predator-prey
models with Allee effects. The enviromental carrying capacity K must exceed the
prey component u∗ of the coexistence equilibrium E∗ and the Alle threshold must
remain below the prey component. The second case is more interesting in the
context of variable carrying capacity, original aspect of this study. The enviromental
carrying capacity K can be smaller than prey component u∗, but then the own-
improved carrying capacity of prey K

1−β should exceed u∗.

3.3. Stability analysis

Theorem 3.3. i. E0 = (0, 0) is always LAS.

ii. Em = (m, 0) is unstable for m < K, and it is a saddle if m <
d

cα
.

iii. EK =
(

K
1−β , 0

)
is LAS if K

1−β < d
cα , othwerwise it is a saddle. Note that

(comparing with existence conditions of Pc), if E
∗ exists, EK is a saddle.

Proof. (i.) Since the eigenvalues of JE0 are negative real numbers −d,−mr; E0

always LAS. (ii) The eigenvalues of JEm
are λ1 = −d+ cmα, λ2 = mr(1− m

K+mβ ).
For m < K, λ2 is a positive real number and it does not satisfy LAS condition
|arg(λ2)| > ζπ

2 , for any ζ ∈ (0, 1]. The eigenvalue λ1 is a negative real number for

m < d
cα . (iii.) The Jacobian matrix JEK

evaluated at EK are negative numbers

λ1 = −d + cKα
1−β , λ2 = −r(K + m(−1 + β)). Since m < K and β ∈ [0, 1), λ2 is

negative real number and satisfy LAS condition. Lastly, if K
1−β < d

cα , λ1 is also
negative real number and EK is LAS.

Here, we assume that the existence conditions of E∗ are satisfied. Then, system
(2.5) allows one positive equilibrium E∗ = (u∗, v∗). The Jacobian matrix JE∗

evaluated at E∗ can be written as

JE∗ =

 j11 j12

j21 j22


with

j11 =
dr(c2K(K +m)α2 + 2cdKα(β − 1) + d2(β − 1)β)

cα(cKα+ dβ)2
, j12 =

−d

c
,

j21 = −r(d− cmα)(cKα+ d(β − 1))

α(cKα+ dβ)
, j22 = 0.

The characteristic equation is given by

p(λ) = λ2 + p1λ+ p0 = 0 (3.2)

with p1 = −(j11+j22) = −j11, p0 = j11j22−j12j21 = −j12j21. j12 is always negative
for positive parameter values and j21 is always positive under positivity conditions
of E∗. This implies p0 is also positive. Then, we get the following theorem.
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Theorem 3.4. The coexistence equilibrium E∗ = (u∗, v∗) is LAS if one of the
following conditions satisfied:

(a) p1 ≥ 0,

(b) p1 < 0, p21 − 4p0 < 0,
∣∣∣ tan−1(

√
4p0−p2

1

p1
)
∣∣∣ > ζπ

2 .

Proof. The roots of the the characteristic equation (3.2) is given by following
formula:

λ1,2 =
−p1 ±

√
p21 − 4p0
2

.

(a) Firstly, p1 = 0 implies that λ1,2 = ±i
√
p0 and |arg(λ1,2)| = π

2 > ζπ
2 . For p1 > 0

and p21 − 4p0 ≥ 0, both λ1,2 ∈ R with λ1,2 < 0, and the condition |arg(λ1,2)| = π >
ζπ
2 is satisfied. Then, the conditions p1 > 0 and p21 − 4p0 < 0 implies that both
eigenvalues λ1,2 are complex numbers with Re(λ1,2) < 0, and we have |arg(λ1,2)| >
ζπ
2 .
(b) For p1 < 0 and p21 − 4p0 < 0, both eigenvalues are complex conjugates with

strictly positive real parts. Then, |tan−1(

√
4p0−p2

1

p1
)| > ζπ

2 ensures |arg(λ1,2)| > ζπ
2 .

Note that, two bistability situation present for the system (2.5). The first one
between equilibriums E0 and EK . The other one is between E0 and E∗. Bistabil-
ity can represent important biological scenario which can explain how populations
might settle into different stable states, such as extinction or survival, based on
initial conditions.

3.4. Hopf bifurcation

Theorem 3.5. [18] Consider the fractional order system

DζY (t) = H(Y ), Y (0) = Y0 ∈ R2 (3.3)

with ζ ∈ (0, 1). The system (3.3) undergoes a Hopf bifurcation around the equilib-
rium point Y ∗ of (3.3), if the followings are satisfied:

1) The Jacobian matrix evaluated at Y ∗ has a pair of complex conjugate eigen-
values λ1,2 = a± ib (where a > 0).

2) There exist a critical ζ = ζh value satisfying m(ζh) = 0 where m(ζ) = ζπ
2 −

min1≤j≤2|arg(λj)|.

3) dm(ζ)
dζ

∣∣∣
ζ=ζh

̸= 0.

Theorem 3.6. Assume that the existence conditions of E∗ hold. Defining p0 and
p1 as coefficients of the characteristic equation (3.2), suppose that the inequalities
p1 < 0, p2 < 4p0 are satisfied. A Hopf bifurcation exists around E∗ as ζ passes

through the value ζh = 2
π

∣∣∣tan−1
(√

4p0−p2
1

p1

)∣∣∣.
Proof. The eigenvalues λ1,2 of the Jacobian JPc are complex conjugates with
Re(λ1,2) > 0 under the conditions p1 < 0 and p21 < 4p0. So, the stability of E∗ is

depending on ζ ∈ (0, 1). We also have min1≤j≤2|arg(λi)| =
∣∣∣tan−1

(√
4p0−p2

1

p1

)∣∣∣ for
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Table 1. Parameter values for numerical analysis.

r K β m α c d

0.3 2 0.15 0.35 0.35 0.20 0.08

ζ = ζh = 2
π

∣∣∣tan−1
(√

4p0−p2
1

p1

)∣∣∣and m(ζh) = 0. Last condition for the existence of

the Hopf bifurcation also holds since

dm(ζ)

dζ

∣∣∣
ζ=ζh

=
π

2
̸= 0.

4. Numerical simulations

In this part, we provide numerical examples to support previously discussed theo-
retical findings. To perform simulations, we apply the predictor-corrector method.
This approach, firstly suggested by [7], utilizes a combination of product integration
techniques [11].

Given that variable carrying capacity is a central aspect of this study, the pa-
rameters associated with it, K and β, will be the primary focus of this section.
In particular, we will examine the environmental impact parameter, β, and its dy-
namic relationship with other system parameters in detail. The Allee parameter,
m, is also critical when considering the survival or extinction of both species. In
cases of the strong Allee effect (m > 0), the presence and magnitude of oscilla-
tory solutions significantly affect population dynamics. Additionally, the memory
effect introduced through the fractional order derivative has a profound influence
on the nature of these oscillations. As noted in the introduction, instead of using
delayed terms, we incorporate fractional dynamics, making the Caputo fractional
derivative parameter, ζ, another focus of our numerical investigation. Although the
topics are interconnected, we will examine this section under four main headings
for a more organized analysis. Unless otherwise specified, parameter values from
relevant studies, listed in Table 1, are applied.

(i) Bistability for the system (2.5)
Bistability refers to a situation where a system can converge to two distinct

equilibrium points within the same parametric region, depending on the initial
conditions. In our system (2.5), we observe two cases of bistability. The first occurs
between the extinction equilibrium E0 and the boundary equilibrium EK (Figure
1(a)). In scenarios with a higher environmental carrying capacity K and a lower
predator death rate d, the system may either converge to the extinction equilibrium
E0 or the coexistence equilibrium E∗, resulting in bistability between E0 and E∗

(Figure 1(b)). If the initial predator population is significantly larger than the prey
population, the system tends toward extinction. However, if the initial conditions
favor the prey, their population can persist, while the predator’s survival depends
on the availability of resources or a lower death rate.

(ii) Impact of the fractional order parameter ζ
In Figure 2 and Figure 3, we present time series solutions for different values of

the fractional order ζ. In Figure 2, we use the same parameters as in Figure 1(a),
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Figure 1. Phase diagrams for different inital conditions with ζ = 0.80; (a) K = 1, d = 0.12; (b)
K = 2, d = 0.08.
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Figure 2. Time series solution of the system (2.5) for different fractional order parameter.

where no coexistence equilibrium is present. In this case, increasing the memory ef-
fect allows the prey population to survive, while the predator population eventually
goes extinct, though it persists for a longer period. In Figure 3, parameter values
are selected to allow for a coexistence equilibrium. However, when the memory ef-
fect is weaker (i.e., ζ is closer to 1), both species go extinct. As the fractional order
ζ decreases, the populations survive in an oscillatory mode and eventually converge
to the locally asymptotically stable (LAS) coexistence equilibrium E∗. It should be
noted that the Allee parameter plays a crucial role in this behavior, as oscillations
with larger amplitudes, coupled with higher critical Allee values, can lead to the
extinction of both populations. In Figure 4, we present bifurcation diagrams with
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respect to ζ, which align with the earlier discussions. As ζ approaches 1, the mem-
ory effect weakens, causing the equilibrium point E∗ to lose stability through a Hopf
bifurcation. This destabilization leads to oscillations in both populations, with fluc-
tuations increasing until both species eventually go extinct. Biologically speaking,
it is evident that each species relies on previous interactions in the ecosystem to
achieve a more stable balance.
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Figure 3. Time series solution of the system (2.5) for different fractional order parameter.

Figure 4. Bifurcation diagrams for the system (2.5) with respect to ζ.

(iii) The investigation on the parameters of the variable carrying capacity
term

In Figure 7, the time-series solutions for the system (2.5) are displayed for vary-
ing values of K and β. As both parameters increase, we observe the “paradox of
enrichment”, a biological phenomenon where an abundance of food for the prey
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Figure 5. Bifurcation diagrams for the system (2.5) with respect to constructive impact parameter β.
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Figure 6. Phase diagrams for three different values of the constructive impact parameter β.

leads to destabilization of the predator population [27]. The increase in K and β
enhances environmental resources for the prey, resulting in oscillatory population
dynamics (Figure 5, Figure 6, Figure 7, (b),(c)). Further increases can eventually
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drive both prey and predator populations to extinction (Figure 6(c), Figure 7(d)).
Additionally, introducing a strong Allee effect (m = 0.35) creates a critical thresh-
old for prey extinction, accelerating the process of ending these oscillations with
extinction.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

0.5

1

1.5

2

(b)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

0.5

1

1.5

2

(c)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

0.5

1

1.5

2

(c)

Figure 7. Time series solution of the system (2.5) for different values of K and β with ζ = 0.85.

In Figure 8, the schematic bifurcation diagram for K ∈ [0.8, 2.8] and β ∈ [0, 1) is
shown to explore the dynamic relationship between the parameters of the variable
carrying capacity term, 1/κ(t) where κ(t) = K+βt. Firstly, The vertical light green
line representsK = u∗, indicating that if the constructive impact of prey is excluded
(i.e., β = 0), there is no positive equilibrium for K ≤ u∗. The light blue line marks
the transcritical bifurcation, above which the LAS coexistence equilibrium E∗ =
(u∗, v∗) emerges, and the boundary equilibrium EK becomes unstable. The solid
orange curve represents the Hopf bifurcation curve for ζ = 0.85, above which the
coexistence equilibrium E∗ becomes unstable. The dashed orange curve indicates
where the eigenvalues of the Jacobian matrix evaluated at E∗ become complex with
a positive real part, signaling the point where the fractional order begins to alter the
stability of E∗. In other words, the dashed orange curve would be Hopf bifurcation
curve if we use ordinary differential equations (i.e., ζ = 1). Essentially, the region
between those orange curves represents the enlargement of the region of stability of
the coexistence equilibrium E∗ of the system (2.5) for ζ = 0.85.

(iv) Influence of the Allee parameter m

In Figure 9(a) we present the bifurcation diagram with varying m ∈ [−0.5, 1].
In Figure 9(b), we present the bifurcation diagram with varying β while there is
no Allee effect (i.e., m = 0). For both figures, we incorporate a memory effect
with ζ = 0.80. The figure in (b) is just the counterpart of the bifurcation diagram
in Figure 5, where we plotted the bifurcation diagram for varying β values with
m = 0.35. With this comparison, we emphasize that with the inclusion of the Allee
effect, these oscillatory behaviors lead to the collapse of both populations. Without
a strong Allee effect, the populations exhibit oscillatory patterns with increasing
amplitudes depending on the increase of the constructive impact parameter β.
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Figure 8. The schematic bifurcation diagram of parameters K and β with ζ = 0.85.

Figure 9. (a) Bifurcation diagram with respect to Allee parameter m (b) Bifurcation diagram with
respect to constructive impact parameter β while m = 0.

In Figure 9(a), we observe that the increase in m causing a decrease in predator
component y∗ of E∗ while prey component x∗ of E∗ do not change. For m ≈ 0.4131,
the system undergoes a Hopf bifurcation, and we observe periodic behaviors (Figure
9(a), Figure 10). As the Allee parameter increases, prey growth becomes more
constrained, and the prey population density begins to influence the stability of the
predator population. A further rise in the m parameter intensifies the Allee effect,
leading to larger oscillations and raising the critical threshold the prey population
must surpass. Over time, as the Allee effect intensifies, both populations ultimately
face extinction due to the heightened pressure (Figure 9(a), Figure 10(c)).
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Figure 10. Phase diagrams for three different values of the constructive impact parameter β.

5. Conclusions

In this work, we work on a prey-predator model with prey species that are able to
positively impact their own carrying capacity and are subject to the Allee effect. We
also adapt fractional differentiation in the system (2.5) to incorporate the memory
effect depending on the fractional order ζ. We proved the existence-uniqueness of
the solutions. We discuss the structure of nonnegative equilibria and their local
stability. The system (2.5) can have positive equilibria depending on conditions.
We showed that two bistability situations can exist for the system depending on
the parameters. Afterward, the existence of Hopf bifurcation concerning fractional
order parameter ζ is also proved. Finally, we support theoretical findings through
detailed numerical examples with biological interpretations.

In conclusion, varying carrying capacity is a significant biological phenomenon
that exerts broad direct and indirect effects on ecological systems. In this study,
we focus on the constructive impact of prey species on their own carrying capac-
ity, drawing inspiration from ecosystem engineers. We also explore the relationship
between the constructive impact parameter, β, and the Allee parameter, m. Given
the importance of the Allee effect in biological systems, its presence notably influ-
ences our model, as prey density can directly affect the availability of resources in
their environment. Future research could further integrate varying carrying capac-
ity into predator-prey models, investigating its interactions with other biological
factors. This approach could uncover hidden patterns and emergent behaviors in
ecosystems, offering deeper insights into the dynamics of predator-prey relation-
ships.
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