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MODELING THE EFFECTS OF EXTERNAL

PROTECTION MEASURES AND OPTIMAL

CONTROL ON SEASONAL LASSA FEVER
OUTBREAKS IN NIGERIA*

Teng-Fei Jin', Hai-Feng Huo?*', Shuanglin Jing?® and Hong Xiang!

Abstract Lassa fever, also referred to as Lassa hemorrhagic fever, is an en-
demic viral disease that frequently triggers epidemics in West Africa. This
study presents a disease transmission dynamics model of Lassa fever that inte-
grates external protective measures, the dynamics of rodent reproductive cy-
cles, and the periodic nature of transmission from rodents to humans, aiming
to provide a comprehensive understanding of the disease. The basic repro-
duction number Ro can be deduced and as a threshold parameter for global
dynamics. The disease-free periodic solution is globally asymptotically stable
when R < 1, and the disease persists when Ro > 1. Based on the data pro-
vided by the Nigerian Center for Disease Control and Prevention, the Markov
Chain Monte Carlo algorithm is used to simulate the model to find the baseline
values of the unknown parameters and the exact value of Ry is calculated as
1.6237. Next, the optimal control problem associated with the model is solved
through the application of the Pontryagin maximum principle, implementing
optimal control strategies for mitigating the transmission of Lassa fever virus.
Finally, sensitivity analyses is conducted to determine the key parameters af-
fecting the number of the infectious individuals. The findings suggest that
enhancing the rate of external protection and optimizing protective efficiency
have a substantial impact on the incidence of Lassa fever infections, serving as
effective measures for disease control. However, these measures alone cannot
completely eliminate disease transmission. If both measures to reduce rodent
transmission and increase mortality rates are implemented, it will be possible
to control the epidemic.
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1. Introduction

Lassa fever is an acute viral hemorrhagic disease caused by the Lassa virus [2]. The
disease has its origins in the 1950s but was officially identified and named after the
town Lassa of Nigeria’s Benue State in 1969 [13]. The transmission of Lassa fever
to humans primarily occurs through direct contact with infected multimammate
rodents or through food and household items that are contaminated by the urine
or feces of infected rodents [32,35,40]. The virus is transmitted to humans through
cuts and scratches, or via inhalation of airborne dust particles. Human-to-human
transmission can occur through direct contact with the blood or body fluids of an
infected individual [3]. According to the World Health Organization, transmission
from infected rodents to humans occurs mainly during the dry season (December-
April), with annual peaks in human cases usually observed after the mouse breeding
cycle during the rainy season (May-November) [4,42]. Lassa fever is endemic in
Benin, Guinea, Ghana, Liberia, Mali, Sierra Leone and Nigeria, with an annual
incidence of infection ranging from 100,000 to 300,000 cases and approximately
5,000 fatalities reported [29]. These countries collectively bear a significant burden
of Lassa fever. The Lassa virus primarily poses a significant threat to individuals
living in regions with inadequate sanitation and densely populated conditions.

Approximately 80% of individuals infected with the Lassa virus remain asymp-
tomatic [2,21]. One out of every five infections progresses to severe disease, charac-
terized by multi-organ infection, including the liver, spleen, and kidneys [25]. The
primary clinical manifestations encompass pyrexia, rigors, pharyngitis, productive
cough, emesis, diarrheal episodes, myalgia and thoracoabdominal discomfort [2].
Especially in late pregnancy, the symptoms are severe, with an alarming rate of
over 80% maternal mortality or miscarriage in affected cases [39]. Early supportive
care, including fluid replacement and symptomatic treatment, is crucial for improv-
ing survival rates. The antiviral ribavirin has been utilized in the treatment of Lassa
fever [3,18]; however, its efficacy remains unproven.

Lassa fever is included in the World Health Organization Blueprint for Epidemi-
ological Research and Development, which means that Lassa fever is recognized as
an important disease area [20]. However, the number of studies on mathematical
modeling of Lassa fever remains relatively small compared to other infectious dis-
eases. Onah et al. [36] extended the SIR-SI compartment model by incorporating
various control interventions and employed optimal control theory to identify cost-
effective strategies for reducing disease transmission. Mariéen et al. [28] combined
empirical field data and mathematical models to evaluate the impact of rodent con-
trol measures on the prevalence of Lassa fever. Musa et al. [33] established a model
to describe the interaction between humans and rodents, incorporating quarantine,
isolation, and hospitalization measures, and conducted a comprehensive study on
the Lassa fever outbreak in Nigeria from 2016 to 2019. Akhmetzhanov et al. [7]
investigated the seasonal drivers of Lassa fever epidemics in Nigeria by employing
a mathematical model to analyze datasets on human infections, rodent population
dynamics, and climate change. The study revealed that rainfall exerted an indi-
rect influence on Lassa fever transmission, while the periodicity of Lassa fever was
significantly influenced by seasonal rodent migration. Davies et al. [14] employed
mathematical models that captured seasonal transmission of rodents to humans in
order to evaluate the potential outcomes of implementing vaccination programs in
affected regions. Ibrahim et al. [23] developed a model to differentiate individuals
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based on disease severity, incorporating the birth rate and environmental carrying
capacity of rodents as temporal parameters. The basic reproduction number was
also introduced and proved to be an important factor in determining whether Lassa
fever can be transmitted among people. McKendrick et al. [30] introduced an ap-
proximate Bayesian computational scheme to fit the model to the 2018-2020 case
data provided by the NCDC and analyzed the impact of changes in rodent birth
rates on the number of infected cases.

Previous studies have modeled the seasonality of cases in Nigeria, but have not
captured the seasonal variations in zoonotic host reproduction and their impact
on the number of new cases. In light of the aforementioned considerations, this
paper establishes and investigates the dynamics of a non-autonomous model of
Lassa transmission. The model incorporates external protective measures taken by
susceptible individuals and accounts for the impact of human-to-human, mouse-
to-mouse, mouse-to-human, and human-to-mouse transmissions [12]. We introduce
periodic birth rates of rodents and periodic transmission rates from rodents to
humans into the model. Then, optimal control analysis is carried out to obtain the
best strategy. The Markov chain Monte Carlo (MCMC) method is employed for
parameter estimation, while the analysis of sensitivity is conducted to assess the
influence of different parameters on the number of new infections

We refer to any external measures taken for personal protection against viral
exposure as external protective measures. The external protection can be effectively
ensured by utilizing personal protective equipment (PPE) and condoms, among
other measures [9, 36]. However, improper use of protective equipment does not
guarantee prevention of Lassa fever infection. Since Lassa fever incidence shows a
strong seasonal behavior: the number of human Lassa cases peaks during the dry
season through both direct and indirect contact between rodents and humans [7,34].
At this time of year, rats move closer to humans in search of food, increasing
rodents’ contact with humans. The rat population itself is also heavily affected by
the annual weather changes. Thus, we introduce periodic parameters to represent
the birth and transmission rates, where I1(t) is the time-dependent per capita birth
rate of Knott’s suckling mice, and S, (t) represents the periodic transmission rate
of rodents to humans.

The structure of this paper is as follows: In Section 2, we present a non-
autonomous mathematical model of Lassa virus transmission dynamics. In Section
3, we calculate basic reproduction number of the model. In Section 4, we analyze
the dynamic behavior of the model. In Section 5, we analyze and discuss the op-
timal control strategy. In Section 6, we use the MCMC algorithm to fit the real
Nigerian data to the model and perform sensitivity analysis for some parameters.
In Section 7, we summarize and discuss this paper.

2. Seasonal models of Lassa fever transmission

We divide the human population into six compartments: susceptible individuals
Sh(t), susceptible individuals using external protection G(t), exposed individuals
E(t), mildly infected individuals I,,(t), severely infected individuals I,,(t), and re-
covered individuals R(t). We divide the rodent population into two compartments:
susceptible S,(¢) and infectious I,(¢). Thus, the total human and rodent popula-
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tions at any moment ¢ are denoted respectively as

Np(t) = Sp(t) + G(t) + E(t) + 1.(t) + I, (t) + R(¢),
Sp(t) + Ip(1).
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Figure 1. Flow chart of Lassa fever transmission between rodents and humans, where dashed arrows

indicate the direction of transmission between humans and rodents.

The flow between the compartments is shown in Figure 1, and the model is
established based on the flow chart of the compartments.
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An individual may transmit from susceptible (S3) to exposed (E) upon contract-
ing the disease. It is also possible for an individual to go from susceptible (G) with
external protection to exposed (E). Exposed individuals have not yet developed
symptoms. After the incubation period, exposed individuals are transferred to the
severe infection category (I,,) or mild infection category (I,,), depending on whether
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or not the person is showing symptoms. After the infection period, individuals who
recover move to the recovered category R. The detailed meaning of the parameters
is shown in Table 1.

Table 1. Parameter description in the model.

Parameters  Description

o Measuring the efficiency of condoms and personal protective equipment
) Probability of failure to use external protection

K Rodent maximum environmental capacity

A Human recruitment rate

Kh Human natural mortality rate

p Rodent natural mortality rate

Bp Rodent-to-rodent transmission rate

Ba, Bm Human-to-human transmission rate

Bhp Human-to-rodent transmission rates

0 Proportion of severe infections

c The probability of external protection in susceptible individuals
P Human incubation rate

Vo Vi Infection recovery rate

d Disease-induced death rates for humans

In our model, while the use of external protection may reduce infections by
protecting susceptible individuals, it may not be fully effective. Using o to measure
the efficiency of condoms and PPE as a multiplier for infection rates, where o = 0
means that condoms and PPE are fully effective, while 0 = 1 means that condoms
and PPE have no effect at all [27,46]. In our model, we assume that II(¢) and Sy, (t)
are continuous, positive T-periodic functions [10,11]. We denote the human birth
rate and death rate by A and pyj,, respectively. There is also an additional mortality
due to the disease, which is denoted by d in the compartment I,,,.

3. Basic properties of the model
To determine the disease-free periodic solution of system (2.1), consider

ds S,
ditp = I1(2)S) (1 - I?) — 1ipSp, (3.1)

equation (3.1) has a unique positive T-periodic solution

20 eJo (T(s)—pp)ds 0 (3.2)
t) = ' -7 '
P t II(r) [T s)— s fT (1) g (M) =pp)ds g

fO %ejo (TI(s)—pp)d dr + = e}(OT(H(S)fup)ds_l

Thus, system (2.1) has a unique disease-free periodic solution Py = (S)(t),0, S,
0 0 _ _Alpnt9d) 0 _ cA
G 70,0,0,0)7Where Sh_ m and G —m
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3.1. Positively invariant set

Lemma 3.1. (Lemma 3.1, [24]) Define
o A
Q= A1XA2‘Np§Np7Nh§7 )
Hn

where Ay = {(Sy,1,) € RZ,N, < NOY, Ay = {(Sh, E,G, Lo, I, R) € RS, N, <

A 0 _ 1 K(IL(t)— i) . , i
;Th}’ Ny = hiriigp — i > 0. Then the solution of system (2.1) is uniformly

bounded and non-negative, and the set ) is a positively invariant set.

Proof. At any time, the total populations of humans and rodents are given by

N, =5, + 1, (3.3)
Ny=S,+G+E+I,+1I,+R. '
By summing the last six equations of system (2.1), since d > 0 and I,,, > 0 for all
t > 0, we obtain

dN,
dith =A—ppNp —dlyp < A — ppNp. (3.4)

Based on the integral performed on the (3.4), we can get the following inequality:

A A A
mws+<mw—>“”§+M@em,
Hh Hh Hn

where Ny, (0) represents the initial value of the total number of people, which indi-
cates 0 < limsup N (t) < A
t—o00 s
From system (2.1), we have

AN, () = TI(t)Np(1) (1 K ) = ppNp(t)

dt
< (110 -y - M0 M0
<0, if Ny(t) > N,

which implies that A is positively invariant. Assume that the rodent birth rate is
greater than the death rate, therefore, we get tlim (Np(t) = N})) = 0. Thus, from
— 00

the above proof, we can conclude
Ay = {(Sp. I,) €RY, N, <N},

A
Ay = {(SmE,G,Ia,Im,R) €RE, Ny < uh}’

0= {Al x AN, < N, Nj, < lj\h}

and the set §2 is a positively invariant set. O
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3.2. The basic reproduction number for the periodic system

To gain further insight into the disease transmission dynamics, we analyze the basic
reproduction number R, which is an important threshold to determine whether an
infectious disease will spread. Moreover, based on the work of Wang and Zhao [44],
we introduce the theory of periodic systems and define « = (I, E, I, I, R, Sp,
Sh,G), thus the system (2.1) can be represented in the following form:

O _ 5,2) - v (1.2,
where
(51)117 + 5hp[m)sp
Np
(Bala + Bidm + Bpn(t)1,)(0G + Sh)

Ny,

0
F(t,x) = 0 ’
0
0
0
0
and
pplp
pE + unE
7(1 - Q)pE + Yala + pnla
V(t,x) = —Yala = Ymdm + un R
N, (B I +Bh IHL)S
—TON,(1 = 55) + ==+ Np” L+ 1pSp
aIa mIm t I S
p Pl t 5 N+ﬁph( ISt |5y + 8y — 56
h
a[a 77LI77L I
—c8), + LPela B i o) | 64 sa
h

We now consider whether the model satisfies conditions (A1)-(A7) of the theory
proposed by Wang and Zhao [44] for finding the fundamental reproduction number
of periodic systems. It is clear that conditions (A1)-(A5) are satisfied. Next, let

f(tvx(t)) = y(tam) - 4//(757'75)7
and define

(t. 20
M(t) = (8”2% (t))) L (5<i,j <8).
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For matrix chunking, 2°(¢) = (0,0,0,0, 0, Sg(t), 59 GY) is obtained by transforming
the disease-free equilibrium Py. Let ®ps(¢) represent the solution matrix for the

linear T-periodic system % = M (t)z. Therefore, we can obtain

p(®y(T)) = max {e*”ht,e*”f’t,e*(“hﬁw)t,e*”ht} < 1.

This suggests that p(®s(t)) the spectral radius of @ (t) less than 1, Clearly, con-
dition (A6) in the theory of Wang and Zhao [44] is satisfied.

To verify that condition (A7) in the theoretical framework proposed by Wang
and Zhao [44] is satisfied, the system (2.1) is linearized at the disease-free equilib-
rium Py, yielding the following linear periodic subsystem of infectious diseases.

. Bplp + BrpIm)S,
Ip(t): ( p°p Np m) p_;up[;m
P
: Bala + Brmlm + Bpn(t)1,) (0G + S
E(t) = ( ]\f.’:( M) ( h) _ pE — i E, (3.5)
L(t) = (1 = 0)pE = vala — pnla,
I (t) = 0pE — vy — (i, + d) .
After performing a simple calculation, we obtain
Bp 0 0 6hp
ﬁph(t)sioz, + Uﬁph(t>GO 0 BaS}? + O'BaGO BmS?L + O'BmGO
F(t) = Sp+ GO S9+ GO S9+ GO ,
0 0 0 0
0 0 0 0
gy 0 0 0
0 + pn 0 0
V(t) = P T HKn ’
0 —(1=0)p Yo+ p 0
0 —0p 0 Ym+pntd

clearly, it follows that F'(t) is nonnegative, and that the off-diagonal elements of
—V(t) are nonnegative, meaning that the system is cooperative. Thus, F'(t) — V(t)
is irreducible.

Let Z(t, s) be the evolution operator of a T-periodic system

dy _

= —V(t)y. .
Y~ v (36)
That is, for any s € R, the 4 x 4 matrix Z(t, s) satisfies
dZC(l';’ ) VW2t 5), > 5, Z(s, ) = I, (3.7)

where I is the 4 x 4 identity matrix. Let ®_y (¢) and p(®_y (7)) denote the mon-
odromy matrix of the linear T-periodic system (3.6) and the spectral radius of
®_y (t), respectively. Hence, we obtain

p(®_y(T)) = max{e_/"pt’e_(P"F,U'h)t,e_(70,+lih)t,e_(7m+/th+d)t} <1
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Therefore, the theoretical condition (A7) is satisfied.

According to the theory proposed by Wang and Zhao [44], a linear operator
L : Cr — C7 can be defined as follows, assuming that ¢(s) represents the initial
distribution of infectious individuals and that ¢(s) is T-periodic. Thus, F(s)d(s)
represents the distribution of new infections produced by the infected individuals
introduced at time s. Given ¢ > s, then Z(t,s)F(s)¢(s) gives the distribution of
those infected individuals who were newly infected at time s and remain in the
infected compartments at time ¢, then define

P(t) = /_ Z(t,s)F(s)p(s)ds = /000 Z(t,t —a)F(t — a)é(t — a)da,

where 1(t) denotes the distribution of cumulative newly infected individuals result-
ing from all previously introduced infected individuals ¢(s) at time t¢.

Let Cr be the ordered Banach space of all T-period functions from R to R*,
where the maximum norm is || - ||, and the cones are

Cf ={¢ € COr:4(t) >0,Vt € R}.

According to the method proposed by Wang and Zhao [44], a linear operator L :
Ct — C7 can be defined as follows:

(Lo)(t) = /000 Z(t,t—a)F(t —a)p(t —a)da,Vt € R, ¢ € Cr.

L is called the next generation infection operator, and the spectral radius of L is
defined as the basic reproduction number Ry. Therefore, the basic reproduction
number Ry of system (2.1) can be expressed as follows:

Ro = p(L).

To estimate the basic reproduction number R of system (2.1) in the periodic
case, it is assumed that W (t, A) is the evolution operator of the T-periodic system,

given as follows:
dw F(t)

and the parameter A € (0, 00), it follows that ®p_y (t) = W (t, 1). Hence, we derive
®r_y(t) =W(t\),t>0,

where
F(t)
—V(H) +
Po _ Bnp
\ Hp 0 0 N\
Fon()S} + B ) BaSh+0uG fmSh+ 0BG
_ (ST + GO) PR TX(ST+ GO (ST + GO
0 (I=0p  —(va+pum) 0
0 Op 0 —(Ym + pn + d)

Next, we present the following Lemma 3.2.
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Lemma 3.2. (Theorem 2.1, [44]) The following statements are valid:

(1) If p(W(t,A)) = 1 has a positive solution Ay, then Ag is an eigenvalue of L, and
hence Ry > 0.

(2) If Ro > 0, then A = Ry is the unique solution of p(W(t,\)) = 1.

(3) Ro =0 if and only if p(W (t,\)) <1 for all X > 0.

Therefore, t is clear that the basic reproduction number R can be estimated by
the numerical solution of this equation. Regarding the stability of the disease-free
periodic solution, the following conclusions can be derived from Theorem 2.2 of
Wang and Zhao [44].

Lemma 3.3. (Theorem 2.2, [44]) The following statements are valid:
(1) Ro =1 if and only if p(®Pp_v (1)) = 1.
(2) Ro > 1 if and only if p(®Pp_v(t)) > 1.
(3) Ro < 1 if and only if p(@Pr_v(t)) < 1.

Therefore, the disease-free periodic solution Py of system (2.1) is locally asymp-
totically stable if Ry < 1, whereas it is unstable if Ry > 1, where ®p_y (t) is the
monodromy matrix of the linear periodic system (3.5).

Since the biological significance of Rg in a periodic system is not straightforward
to interpret, the following discussion aims to clarify its biological meaning. Using
the generalized approach introduced by van den Driessche and Watmough [17] and
Diekmann and Heesterbeek [15], we compute the basic reproduction number for the
autonomous model derived from system (2.1) by setting the time-varying parameters
II(t) = a1 and Bpn(t) = ag as constants. Here, a; represents the baseline average
birth rate of rodents, and a3 represents the baseline transmission rate from rodents
to humans. We then obtain the Jacobian matrix F, given by

517 0 0 6hp
a352 + oasGP 0 6a5’2 +0B,GO ﬁmSg + 05, GO
F= 5P+ GO Sp+ GO Sp+ GO ,
0 0 0 0
0 0 0 0

and the Jacobian matrix V', given by

fp 0 0 0
0 + 0 0
vV — P T Ph ’
0 —(1=0)p Yo+ i 0
0 —0p 0 Ym + pn +d

thus the characteristic polynomial of FV 1 is
N (A2 = (Run + Rpp)A + RunRypp — RipRopn) = 0,

where

Baloc+ pn +0)(1 —0)p Bm(oc+ pn +8)0p

R = 9
M G e+ 8)(p+ pn) (e + Hn) (i +c+0)(p+ i) (Y + pun + d)
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ﬂhpap
P+ pn) (Y + prn +d)’
ag(O'C + Hh + 5)

th:(

P e+ Oy
= _ B
= —.
Pp :up

The characteristic polynomial can therefore be written as the quadratic equation
N — (Run + Rpp) A + RunRpp — RipRpn = 0. (3.8)

According to Diekmann and Heesterbeek [15], the basic reproduction number is the
largest absolute eigenvalue of FV !, and therefore, it is given by the root of the
quadratic equation (3.8),

_ Rih + Rpp + \/(th - Rpp)2 +4R3

RO:p(Fvil) 9 )

(3.9)

where Rpp, Rpp and R, = 1/ RnpRph are the basic reproduction numbers of human-
to-human transmission, rodent-to-rodent transmission, and vectorial transmission,
respectively.

4. Dynamics analysis of the model

4.1. Extinction of disease

Assume that (R™,R"}) is a standard n-dimensional Euclidean space. For u,v € R",
if u—wv € RY, then u > v; if u —v € R}\{0}, then u > v; if u — v € Int(R" ), then
u > .

First, assume that A(t) is a continuous, cooperative, and irreducible n x n T-
periodic matrix function, and that ®4(¢) is the fundamental solution matrix of
system (4.1).

dx(t)
dt

= A()z(t). (4.1)

In the system, p(® 4(t)) is defined as the spectral radius of @ 4(t), therefore, each
element of the matrix ®4(t) is positive for T > 0 [8,22]. From the Perron-Frobenius
theorem [41], it follows that p(®4(¢)) is the principal eigenvalue of ® 4(t), which
means it is simple and has an eigenvector v* > 0. Hence, we conclude the following.

Lemma 4.1. (Lemma 2.1, [45]) Let p = Flnp(®4(T)), then there is a positive

T-periodic function v(T), such that e*tv(t) is the solution of dz(tt) = A(t)x(t).

Theorem 4.1. When Rg < 1, the disease-free periodic solution Py of system (2.1)
is globally asymptotically stable, and when Ry > 1, it is unstable.

Proof. From the previous process, we can see that for any € > 0, there exists
tp > 0 such that

Su(t) <SP +¢, G(t) < G° + ¢ Np(t) > MA—GZS,?—I—GO—G, for t > to.
h
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Therefore, we have

S, (t) Su(t) SO+ e G(t) GO+ e
< < < .
NG = TN S —e M Nm S e —.

This introduces the comparison system

Tp(t) = (Bpjp + thjm)(l +€) — szpv
SY+e+0(GY+e)

E(t) = (BT T ol — pE — B
() (ﬁa a+ Bm m+ﬁph()p) 52+G0_6 P Hnts, (4’2)
ja(t) = (1 - Q)pF - 'Yaja - MhTm
[m(t) =0pE — Yl — (ﬂh + d)Im
Let B(t) be the following 4 x 4 matrix function
Bp(l+€) = pp 0 0 Brp(1 +€)
Si+e+0(G0+e) _ Sk +e+0(G+¢) Si+e+0(GO+e)
B(t) = Bon(?) SIFGO—e (ptsin) Pa SIF GO B SIFGO—e
0 (1-0)p —(Ya + 1) 0
0 9[’ 0 7(7771, + Hh + d)
Set u = (I, E,14,1,)T, from this, it can be seen that system (4.2) is equivalent to

du(t)
dt
According to Lemma 4.1, there is always a T-period function v(t) = (v1, v, v3, v4)
such that u(t) = e*v(t) is the solution of system (4.3), where u = %Inp(®p, (1)),
therefore, t > t° and there exists a sufficiently small number x satisfying the
following inequality:

= B.(t)u. (4.3)

I,(t) < kv1(0), B(t) < kva(0), To(t) < kv3(0), Trn(t) < ru4(0).
According to the principle of comparison, the following inequality can be obtained.
L(t) < T,(t) < ket tu(t — 1), B(t) <B(t) < ket uy(t — 1),
La(8) < Tu(t) < s Dug(t — 1), Lu(t) < Ta(t) < wet (e — 1),

Lemma 3.3 shows that p(®p_v(t)) < 1 if and only if Ry < 1. Then, by choosing
a sufficiently small number e > 0 such that p(®p,(t)) < 1, we can obtain p < 0.
Thus, u(t) — 0 as t — co. Using the standard comparison principle, we deduce
that

lim (Ip(t)a E(t)v Ia(t)a Im(t)) = (07 Oa 07 0)

t—o0

Based on the asymptotic periodic half-flow theory [43], we can deduce that
t]im (Sp(t) - Sg(t)’ Sh(t) - S}Ow G(t) - G07 R(t)) = (07 07 Oa 0)

Therefore, when Ry < 1, the disease-free periodic solution P is globally asymptot-
ically stable. O
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4.2 Uniform persistence of disease

Lemma 4.2. Let u = (u;(t,z0)) (i = 1,2---,8) be the solution of system (2.1),
where g = (5,(0),1,(0), SK(0), E(0), G(0), I,(0),I,,(0), R(0)) € Q is the initial
condition of system (2.1). If there exists some tg > 0 such that u;(tg) > 0 for a
certain i € {2,5,6,7}, then u;(t) > 0 for all i =2,5,6,7 with t > to.

Proof. If E(ty) > 0 for some to > 0, then E(t) satisfies

dFE
&S E.
T (p+ 1n)
Hence, for Vt > tg, E(t) > 0, according to the expressions of I, I, in system (2.1),
when V¢ > tg, Io(t) > 0 and I,,,(¢) > 0, based on the expression of I, in system
(2.1) and the positivity of S,, it is easy to see that when Vt > tg, I,,(t) > 0.

If I,(to) > 0 for some ¢y > 0, then I,(t) satisfies

dr,
a5 (4, I,.
T (Ya + f1n)
Therefore, according to the expression of E in system (2.1) and the positivity of
Sh, G, when Vt > ty, E(t) > 0, and from the expressions of I,,, I, in system (2.1),
we can see that when Vt > ¢o, I,,,(t) > 0 and I,(¢) > 0.

If I,,(to) > O for some to > 0, then I,(t) satisfies

dr

o = el

Therefore, according to the expressions of E in system (2.1) and the positivity of
Sh, G, when Vt > ty, E(t) > 0, and by the expressions of I,,,, I, in system (2.1), we
can conclude that when Vt > tg, I,(t) > 0 and I,,(t) > 0. O

Theorem 4.2. If Ry > 1, the disease is consistently persistent, that is, there is a
positive constant 1 > 0 such that any solution (Sp(t), Ip(t), Sn(t), E(t), G(t), I.(t),
I, (), R(t)) in system (2.1) with I,(0) > 0,E(0) > 0,1,(0) > 0 or I,,(0) > 0
satisfies

lim inf (1, B, Ia, Im) = (0,7,7, 7).

Moreover, there is at least one positive periodic solution of system (2.1) when Ro >
1.

Proof. Define

X :=Q,
Xo :={(Sp, Iy, Sn, E, G, I, I, R) € X : I, >0, E > 0,1, >0, I, > 0},
8X0 = X\XO

Let f: X — X be the Poincaré map associated with system (2.1), and we get
flxo) = w(T,xp), Vo € X,

where zy € X is the initial condition of system (2.1). According to the existence
and uniqueness theorem for solutions [37], u(t, zo) is the unique solution of system
(2.1) in (0, x0).
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In order to prove that system (2.1) is consistently persistent, the set X, X, are
all positively invariant. Let Vzy € Xy be any initial condition; then, the solution
for system (2.1) can be obtained. Set

_ ﬁplp ﬁhIm
[ Np + Nh 5
o = Bala + ﬁmlm + ﬁph(s)lp
2 Nh )
0 (ﬂafa + 6m[m + Bph(S)Ip)
az = )
Np

thus, for all t > 0 the following inequality can be obtained.
Sy(t) =e~ Jo (ar(s)+pp)ds { L(0)+ / TI(s)N,(s) (1_NZI’§S)> ef(f(al(f)wp)dfds} >0,

ﬁpsp< s) _ﬁpsp< D\ gr
1t = e Jo (- (0 / Brplin($)Sp(5) fi (e ) ds] >0,

Sp(t) = e~ Jo(az(a)+unteyds [Sh A +6G(s ))efcf (“2(7)+”h+“’)d7ds} >0,

G(t) —e J3 (as(s)+pn+d)ds |:G(O) _|_/ cSh(3)ef(f(as(7)+#h+5)d"'d8] >0,
0

t
BE(t) = e~ (pFmn)t {E(O) —I—/ (a2(s)Sh(s) + as(s)G(s)) e(”ﬂ‘”)sds} >0, (4.4)
0
t
I (t) = e~ athn)t {Ia(O) —|—/ (1- 9)pE(s)e('V“+“")sds} >0,
0
t
In(t) = o~ (Ym+un+d)t [Im(O) +/ ng(s)e(Verthrd)sds] >0,
0

R(t) = e it [R(O) + /Ot (Yala(s) + YmIm(s)) e“hsds] > 0.

Hence, both X and X are positive invariant sets, and 90X is relatively closed in
X.

From the continuous dependence of the solution on the initial value, we can see
that we have

lim ||u(t x9) — Po|| = 0.

zo— P

It’s uniform on (0, T'), with the norm || - || representing the Euclidean distance on
R8. Therefore, for any € > 0, there exists p > 0, such that when ||zg — Py|| < p, we
have

[lu(t, zo) — u(t, Po)|| <€, Vtel0,T].

Now, prove that lim ||f™(z¢) — Pol| > p with z¢ € X.
n—oo

If this assertion is false, then there exists Tg € Xy such that

limsup || f"(Zo) — Fol| < p-
n—oo
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Suppose there exists ng > 0 such that ||f"(ZTo) — Po|| < p for all n > ng, through
the continuous dependence of the solution on the initial value, for any ¢ € [0, T}, we
have

||u(ta fn(fO)) - u(t’PO)H <€, vt e [OaT]

Assume n > ng, for any t > noT, let m = %] be the largest integer less than or
equal to %, we have t = ¢+ mT, where € [0,T] and m > ng, therefore,

l[u(t,To) — u(t, Po)l| = [[u(t, " (o)) — u(t, Po)|| <e.
There exists t; > 0 such that for all ¢ > 1, we have the following results.

1Sp(t,To) — Sp(t)] < €, |Su(t,To) — Sp| <e,
|G(t,To) — G°) <€, 0 < I(t,To) <€, 0< E(t,Tp) < e, (4.5)
0 S Ia(t,fo) § €, 0 S Im(t,fo) S €, 0 S R(t,fo) § €.

Hence, for all t > t;, we have

Su(t) | Spt)—e 3¢
Ny(t) = SO(t) +2¢ =~ S9(t) + 2¢’

b(t) = Sp(t) + 2 9(t) + 2¢

Sn(t) o Sp—e Gty . G —c
Nip(t) = SY+ GO+ 6e” Ni(t) — SP+ GO+ 6e”

Next, it is similar to the proof of Theorem 4.1, which follows from the comparison
theorem

~ ~ ~ 36 ~
L,(t) = (8,1 ol 1— —— | — ],
p(t) = (Bplp + Bhp m)( Sg(t) T 26) Hplp,
£ ~ ~ ~ 8 —e+0(GY—¢) ~ ~
E@) = (BuIy + Bl t)1,) = — pE — i, E,
Ta(t) = (1 - 9),0E - ’Yafa - ,Ltha,
In(t) = 0pE — ymIm — (s + d) .
Let C.(t) be the following 4 x 4 matrix function
3e 3e
B(1- S0(6) + 2) 0 0 B (8) (1~ 5000 + %)

SY —e+a(G°—¢) Sy —e+a(G°—¢) SY —e+0(G°—¢)
t h _ 5 h - h
Ce(t) = | Pm® SO+ GO+ 6e (ot pan) 5 S +6e U St atee |

0 (1=0)p —(Ya + pn) 0
0 ‘gp 0 *('\/m + pn + d)

set u = (fp,E,fa,fm)T, from this, we can see that system (4.6) is equivalent to
system (4.7)

= C.(t)u. (4.7)



3448 T.-F. Jin, H.-F. Huo, S. Jing & H. Xiang

According to Lemma 4.1, there is always a T-period function w(t) = (w1, wa, ws, wy)
such that e'w(t) is the solution of the system (4.7), where u = Flnp(®c, (1)),
therefore, we choose t3 > t, and a sufficiently small number % satisfying the following
inequality:

I(t3) > Fwi(0), E(ts) > Fws(0), I,(ts) > Fws(0), Ln(ts) > Fwa(0).
Using the comparison principle, the following inequality can be derived.

I,(t) > Re" 8w (t — t3), E(t) > mett 1wy (t — t3),

I(t) > et g (t — t3), In(t) > Re" T wy(t — t3).
Therefore, the following equation holds

tlgrolol () = oo, tlggo E(t) = oo,

lim I,(t) = oo, tlggo L, (t) = 0.

t—o0

This contradicts inequality (4.5), thus, we can get lim ||f"(xq) — Po|| > p. Then,
n—roo

P, is an isolated invariant set of Poincaré mapping f in X, then W*(Py) N Xy = ()
is proved, where W*(P,) is a stable manifold of Pp.
Define

My := {CCO c (3'X0 : fn(:E()) S 8X0, Vn > O}

The following proves that Py is globally stable for the Poincaré map f in My.

Set My := {zo € X : I, = E = I, = I,,, = 0}, we first prove that My = My,
obviously, My C Mp. So next we only need to prove My C Mpy, that is, it is only nec-
essary to prove that for any xg € 90X under the condition of the initial value (0, x¢)
the solution wu(t,zo) = (Sp(t,x0), Ip(t, x0), Sn(t, z0), V (¢, x0), E(t, x0), Io(t, z0),
I (t,x0), R(t, x0)) satisfies Ip(t,x0) = E(t,z0) = I(t,x0) = Im(t,x0) = 0. If it is
not true, then there exists t* > 0 such that I,(t*, z¢) > 0, E(t*, x¢) > 0, I, (t*, z0) >
0, or L, (t*,z9) > 0, we only prove the case of I,(t*,z¢) > 0, the other cases are
similar. The inequality ddIta > —(vq + pn)l, means that for all ¢ > t*, there is
I,(t,z9) > 0. For all ¢t > t*, based on the inequality (4.4), we can derive

E(t,zo) >0, I,(t,x0) >0, L,(t,z0) > 0, for all t > t*.

This implies that for each ¢ > t*, u(t, z¢) ¢ 0Xo, this means that zo ¢ My. Thus,
we arrive at a contradiction, My C My is proved.

Next, we prove that for any xg € My, the omega limit set T'(xg) = Py, where
T (z) is the omega limit set of the forward orbit v (x¢) = {f"(x¢) : Vn > 0}. Since
My = My, we have I,(t,z0) = E(t,z0) = I,(t,z0) = L, (t,20) = 0, for all zg € My
and t > 0. According to system (2.1), it follows that S,, Sy, G and R satisfy the
following system:

Sp(t) = TN, (1 52) — 1Sy,
(

Sp(t) = A — upSk — Sy + 4G, (4.8)
G(t) cSp — unG — 0G,
R(t) _,Uh
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Therefore, tlirglo(Sp(t) — S0(t), Su(t) — SR, V(t) — G°, R(t)) = (0,0,0,0) is uniform.
For any xg € My, there is T'(x¢) = Py, which means that P, has a global attraction
to f in Mpy. Since system (4.8) is cooperative, it can be concluded from Zhao
(Lemma 2.2.1, [47]) that Py is globally asymptotically stable in set My.

Since f has a global attractor on X, from the previous Lemma 3.1 it follows that
the solution of system (2.1) is uniformly bounded, it also implies that f is point-
dissipative on X. It is also proved earlier that P, is isolated in X, each solution
in My tends to Py. It then follows from Zhao (Theorem 1.3.1 and Note 1.3.1, [47])
that f is consistently persistent for (Xo,9Xy). Thus, by Zhao (Theorem 3.1.1, [47]),
the solution of system (2.1) remains consistently persistent under I,,(0) > 0, E(0) >
0,1,(0) > 0, and I,,(0) > 0.

If I,(0) > 0 E(0) > 0 I(0) > 0, or I,,(0) > 0, it follows from Lemma 4.2
that there exists an integer ng > 0 such that f™0(xg) € Xy. Since f(t)zo =
ft —noT) f(zg) for all t > noT, consistent persistence also holds.

According to Zhao (Theorem 1.3.10, [47]), the Poincaré map f has a fixed
point (S;(0), 1,(0),55(0), £*(0), G*(0), 1;(0), I;,(0), R*(0)). Then the correspond-
ing periodic solution is (S (t), I, (t), Sy (t), E*(t), G*(t), I;(t), I, (t), R*(t)), due to
I3(0) > 0, E*(0) > 0,1;(0) > 0, and I;,(0) > 0, apparently

I5(t) > 0, E*(t) >0, I:(t) > 0, I,(t) > 0, for all ¢ > 0,
Next, we prove that S;(0) > 0,5;(0) > 0,G*(0) > 0, and R*(0) > 0. Using

the counter-evidence method, assume that S;(0) = 0,5;(0) = 0, G*(0) = 0, and
R*(0) = 0, using the periodicity of the solution, we have

S3(0) = S5(nT) = 0, S;(0) = Sf(nT) =0,
G*(0) = G*(nT) = 0, R*(0) = R*(nT) = 0.

From the inequality (4.4), we have
Sy(t) >0, S;(t) >0, G*(t) >0, R*(t) >0, for all £ > 0.
It’s easy to derive
S,(nT) >0, S;(nT) >0, G*(nT) >0, R*(nT) >0, for all t >0,

which yields a contradiction. Thus, (S;(t), 1, (t), Sy (t), E*(t), G*(t), I;(t), I, (t),
R*(t)) is the positive T periodic solution of system (2.1). O

5. The optimal control problems

We have conducted mathematical research and exploration on the proposed model
in the previous section. We introduce four time-dependent control variables into
the model, corresponding to the four intervention strategies in system (2.1). Pon-
tryagin’s maximum principle [38] is used to derive the necessary conditions for the
existence of optimal control. We introduce four control strategies, uy (¢), u2(t), uz(t),
u4(t), to extand system (2.1) into system (5.1), where u;(¢) means controlling ro-
dents (e.g., extermination, expulsion, etc.), ua(f) means increasing resource invest-
ment to encourage more people to adopt external protection, uz(t) represents full
vaccination, and u4(t) represents increasing treatment rates.



3450 T.-F. Jin, H.-F. Huo, S. Jing & H. Xiang

Based on these assumptions, the optimal control model is as follows:

S0 =N, (1 - Sy - Bl H Owln)Sy g s,
p
jp(t) = ey +]€hp‘[m)sp — pplp —ui ()1,
P
$u(t) = A — Pala ® Bl T 00 DB)Sh 6 (1 4y (1)),

Ny,
+ 0G — U3(t)5h,

Bula + Bm?;b OG0 s
h

/Bala + 6mIm + ﬁph(t)lp)sh + U(ﬁala + Bmlm + /Bph(t)lp)G
Nh Nh
- pE - IU/hEa
Lo(t) = (1 = 0)pE — 7o (1 +ua(t)) Lo — pnLa,
Im(t) = 0pE — (1 4+ ug(t)) L — (p, + d) L,
R(t) = Ya(1 + ua(t)) Lo + Yo (1 + us(t)) Lo — pun R + u3(t) S,

G(t) = (1 + un(t)) S — 24

E(t) = (

(5.1)
with initial value conditions
Sp(0) >0, I,(0) >0, Sx(0) >0, G(0) >0,
E(0) >0, 1,(0) > 0, I,,(0) >0, R(0) > 0.

To solve the optimal control problem for the system (5.1), where T denotes the
given control period, the objective function is defined as

T
1
J = / [A1I, + Aol + Asly, + 5(7]11& + noul + ngug + n4uﬁ)]dt,
0

where A;, A; and Az are the accompanying variables associated with Ip, I, and
I, respectively, while 11, 72,73 and n4 represent the costs of implementing control
variables u1, ug, us and uy. Let u = (u,us, ug, uq) be the control vector associated
with the state vector Sy, I, Sh, E, G, I, I, R, and the control vector is bounded,
expressed as

0= {(ul,UQ,Ug,U4)|ui(t) (S L[O,M], 0< ul(t) < Ui, max, (Z = 1,2,3,4)}.

Considering practical factors such as the cost of vaccines, we set the upper
limit for effective vaccination in susceptible populations to 0.5, which is difficult to
implement due to challenges in rodent control. The upper limit for rodent control
is set to 0.2. Increasing the number of people protected externally and increasing
treatment rates are health measures that are an order of magnitude less costly than
vaccines, so we set the upper limits for sanitation facilities to 2. Thus, the upper
limits are: %1 max = 0.2,U2 max = 2,U3max = 0.5, Usmax = 2, According to the
findings of Fleming and Rishel [19], the corresponding state and control variables
are non-negative and linear functions of €2, and the integral of the objective function
J with respect to ui,us,us, and uys over €2 is convex. Therefore, the following
conclusions can be obtained.
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Theorem 5.1. Assume that there is an optimal control u* = {u],u3, ul,uj} €
of the control system such that the objective function J achieves its minimum in €.

J(uy, uy, ul,uy) = min {J(ug, ug, us, ug)|(u1, ug, ug, us) € Q}.

To verify the correctness of this optimal control, we assume the existence of a con-
tinuous function \;(t)(i = 1,2,3,4,5,6) satisfying

d/\1 B IP ﬁh Im
E:(/\l_)ﬁ) < ifp + Jffp ) + ur (A + A2) + A1 g,
dAg BpS, Byn () Sk o Bpn(t)G
E:—Al-i-()\l ) ]Iifp +()\3—)\5)pTh+()\4—)\5)p]\77h+)\2,up,
d\ A3 — A Ao mdm t)1,
dAs (A3 = As)(Bala + 3 +ﬁph()p)+()\3_)\4)(1+u2)c
T N,
+ (A3 — Ag)uz + A3(pn — A),
d)\ )\ _)\ aI mI
L= =)0+ 7 = do)(Bula 1 5 * BonO1y) + Agfin, (5.2)
de Np
d\
5 Xl ) — Xal1 ~ 0)p — Meflp,
d\ A3 — A5) 8.5 0B,G
d7756 = 7A2 + % + (/\4 — )\5) 6Nh + ()‘6 — )\8)(1 + U4)’7a + /\6Nh7
d)\7 _ ﬁhp <)\3 - )\5>6m5h UﬁmG
g = At (=R N, + N, + (A= As5) N,
+ (A7 = A8) (1 + wa)ym + A7(pn + d),
dAs
L
I 8Hbh,

The boundary conditions are
At)=0 (i=1,2,3,4,5,6,7,8).

Further, the optimal controls uj,us,us and uj are expressed as

uj (t) = min {max {u],0},0.05},
u3(t) = min {max {u3,0},2},
u3(t) = min {max {u3,0},0.5},
wy(t) = min {max {u},0},2},
where
A+ A2)S
uj = 7( 1+ A) L
M
i = (A3 — )\4)05';;7
2
. (A5 4+ Ag)Sp
U3 -
3
ut = ()‘6 - AS)'VCLI; + (>\7 - )\8)'le;vkm
B =

M4
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Proof. To prove the above theorem, the system is analyzed by constructing a
Hamiltonian function and applying Pontryagin’s maximum principle [38], where

the Hamiltonian function H is defined as follows:

1
H =AI, + Asl, + Azl + i(muf + ngug + n3u§ + 774ui)

+ A\

+ A2

+ A3

+ N\

+ A5

i N 8,50, BupInS
o, (1-32) - 2 - P s, — o),
L p p
[8,5,0,  BuplnS.

P SR — Ty — i (D)

p p
I T+ B HI,)S.
A— (6 + /8 N:_ ﬁph( ) p) h_ ,uhSh - C(l + UQ(t))Sh
4G — uz(t)Sh]
[ G.I(l TﬂIm t I
o1+ ua ()5, — LPala B N}f bonW1)G s
_(6aIa + ﬁmIm + ﬁph(t)lp)‘s’h + U(/Bala + BmIm + ﬁph(t)lp)G
Nh Nh

—pE
+ X6 |
+ A7
+ As

Then the adjoint equation with cross-sectional condition A\;(t) =0 (i = 1,2, 3,4,

— ]

(1= 0)pE — va(1 4 ua(t)) o — pnla]

OpE — Y (1 + wa(t)) I, — (pn + d) 1,

Ya (1 + wa(t)) Lo + Ym (1 + ua(t)) I — prn R + uz(t)Sh] .

5,6,7,8) satisfies

where y = (S,, I,

have
oH
Auy
OH
Auy
OH
Ous
OH
Ouy

u

<
2 % —%

N
W *

u

=¥

dA; OH

at 9y’

= nlu’{(t) — )\15; - )\2[; = 0,
= noub(t) — As3cSy + AcS; =0,
= nzuz(t) — A3S, + AsS;, =0,

= nauy(t) — AeValy — Myl + As(Valy + v dy,) =0,
M S5+ oI
m 7
()\3 — )\4)052
2 ’
(As + As) S},
3 ’
(A6 — As)vady + (A7 — As)ymdy,
N4

Thus, we get the above results, this completes the proof.

,Sh, E,G, I, I,,, R). Now, consider the optimality conditions, we
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6. A case study-Lassa fever in Nigeria from 2020-
2024

6.1. Data source

In this section, we use our model to study the spread of Lassa fever in Nigeria during
the outbreak period from March 2020 to February 2024, using data obtained from
the Centers for Disease Control and Prevention(CDC) in Nigeria [1]. This is shown
in the figure below.

350

300 - *

250 - b

Newly infection cases

50 3

0
2020 2021 2022 2023 2024
Time

Figure 2. Monthly number of cases of seasonal Lassa fever from March 2020 to February 2024 from
Nigeria CDC.

6.2. Parameter estimation of the model

Suppose the functions II(t) and B, (t) are time-periodic, with a period of twelve
months, according to Bakare and Are [10] and Bai and Zhou [11], they are of the
forms

I(t) = a1 <1 + assin (igt + ¢>) . Ben(t) =as <1 + a4sin <?2Tt + d))) ,

where 21—’5 indicates that the period is twelve months, a; indicates the baseline value
of rodents birth rate, az indicates the baseline values for average rodent-to-human
transmission rates, as and a4 indicate the amplitude or degree of seasonality, and
¢ indicates the initial phase. Next, we use the MCMC algorithm to fit the model
reasonably well to the real infection data and estimate all parameters and initial

values of system (2.1).

(i) Human recruitment rate (i.e., A): Based on data from the World Bank Nigeria
and the study by Ibrahim [5,23], the daily birth rate in Nigeria at the end
of 2019 was estimated to be 10,000 individuals. Through simple calculations,
the monthly birth rate in Nigeria is approximately 300,000 individuals.
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(i)

(iii)

(iv)

(vii)

Rodent maximum environmental capacity (i.e., K): Based on the study by
Barua [12], the maximum environmental carrying capacity of rodents is as-
sumed to be K =4 x 103,

Rodent natural mortality rate (i.e., p,): According to the study by Ibrahim
[23], the daily natural mortality rate of rodents is 0.003. Therefore, the
monthly natural mortality rate of rodents in Nigeria can be calculated as
pp = 0.09.

Human natural mortality rate (i.e., pp): Data from the World Bank Nigeria
indicates that the average life expectancy in Nigeria is 55 years [5]. Thus, the
monthly natural mortality rate of humans can be calculated as pp = 0.0015.

Proportion of severe infections (i.e., 8): According to reports from the World
Health Organization (WHO) [2], the ratio of mild to severe cases of Lassa
fever is 1:4. Therefore, the proportion of severe infections is 6 = 0.2.

Human incubation rate (i.e., p): Based on Barua’s article [12], different latent
rates of Lassa fever are proposed in the presence and absence of isolation
measures. Therefore, we take into comprehensive consideration the protective
measures, and we assume p = 1.2.

Progression rates from I, and I,,, to R (i.e., Ya, Vm ) and disease-induced death
rates for humans (i.e., d): Based on studies by Musa [33] and Abidemi [6], we
assume v, = 2, vy, = 0.369, and d = 6.3.

Newly infection cases

0 | | |
2020 2021 2022 2023 2024
Time (mouths)

Figure 3. Fitting results of Lassa fever infection cases in Nigeria.

The known data in Table 2 includes a representative sample set of all parameters,
which were generated from the literature and the range of parameters obtained from
the World Bank website [5,16]. Based on article [36], we can obtain the initial values
for each compartment: S,(0) = 3 x 10, 1,(0) = 1 x 10%,5,(0) = 2 x 108, 1,(0) =
210, 1,,(0) = 52, R(0) = 1.4 x 10%. Using the actual data in Table 2, the unknown
parameters in the model are estimated by fitting through the MCMC algorithm.
The fitting result is shown in Figure 3, where the red dots represent the actual
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Table 2. The value of the parameter of system (2.1).

Parameters  Units Std Mean Value Reference
K - = 4 x 108 ii

A Persons month~! - 300000 i

Hp month~? - 0.09 iii

s month ! = 0.0015 iv

0 - - 0.2 v

P month ! - 1.2 vi

o month™1 - 2 vii

Ym month ™! = 0.369 vii

d month 1 - 6.3 vii

ax - 0.14664 0.3078 MCMC
as - 0.39415 0.1721 MCMC
as - 8.737 x 1076 1.462 x 10~° MCMC
as - 0.081795 0.90097 MCMC
é - 0.15879 8.7792 MCMC
) month—! 0.095324 0.14815 MCMC
o = 0.24791 0.32681 MCMC
c - 0.052982 0.14236 MCMC
Bp - 0.065942 0.24076 MCMC
Bhyp = 0.14163 0.2211 MCMC
Ba = 0.053247 0.1494 MCMC
Brm - 0.10312 0.16968 MCMC
G(0) Number 5.3403 x 10>  1.0735 x 107 MCMC
E(0) Number 26 216 MCMC
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infection data, the black lines represent the fitted cases, and the gray areas, ranging
from the brightest to the darkest, represent the posterior distribution limits of
50%, 90%, 95%, and 99% of the system (2.1).

5 7
15 x10 4 x10

1 100 200 1 500 1000
Time(months) Time(months)

500 100

450 90
400 80
350 70
300 60

=, 250 =% 50
200 40
150 30
100 20

50 10

0 50 100 0 50 100
Time(months) Time(months)

Figure 5. Lassa fever will gradually disappear, when Rg < 1.

From the fitted curve in Figure 3, it is evident that the number of Lassa fever
infections in Nigeria has been increasing year by year, showing a clear periodic
pattern. Using the parameters in Table 2, we apply the theory proposed by Wang
and Zhao [44] to calculate the basic reproduction number for the periodic system
(2.1). The basic reproduction number Ry can be calculated by Lemma 3.2(2), and
the estimated value of R is 1.6237, as shown in Figure 4. From Figure 4(b), we can
see that the basic reproduction number R follows a normal distribution. Therefore,
we can easily obtain the confidence interval and mean value of Ry.

We use the method of Wang and Zhao [44] to numerically calculate the basic
reproduction number Ry. According to Theorem 4.1, we know that when Ry < 1,
the disease will disappear, in which case the long-term dynamics of Lassa fever
infection between humans and rodents are shown in Figure 5. This indicates that
when Rg < 1, the only disease-free equilibrium point Py is globally asymptotically
stable.

According to Theorem 4.2, when Rg > 1, the system (2.1) has a positive T-
period solution, Figure 6 shows the persistence of the disease at Ry = 1.6237.
Obviously, the simulation results are in agreement with our theoretical results.

Figure 6 also illustrates the long-term behavior of Lassa fever infectivity
between humans and rodents. These results suggest that Lassa fever in Nigeria

will persist and fluctuate cyclically in the coming years unless additional measures
are taken.
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Figure 6. The uniform persistence of Lassa fever Ro = 1.6237 > 1, the parameters are shown in Table
2.

6.3. Simulation of optimal control

In this section, the influence of several control measures on the epidemic and the
change in the number of infected persons under optimal control are studied. For
the numerical simulation, assume that the initial values of the system (2.1) are:
S,(0) = 3 x 108, 1,(0) = 1 x 105,5,(0) = 2 x 108,G(0) = 1.0002 x 107, B(0) =
227,1,(0) = 210, 1,,(0) = 52, R(0) = 1.4 x 10*, and the values of other parameters
are shown in Table 2. To compare the effectiveness of the measures, the following
simulation analysis is conducted.

To study the effects of different control measures on Lassa fever infection, the
number of infected people under various control measures will be simulated over
time. Figure 7(a) and Figure 7(b) show how the number of infected people changes
over time when only control measure u; is applied, without other control measures.
From the figure, it can be observed that controlling rodents can effectively reduce
the number of infected people. As the control intensity (i.e., uy) increases, the
number of infected people decreases more significantly. Figure 7(c) and Figure 7(d)
show the implementation of the single control variable ug (i.e., vaccination). It can
be observed that as the vaccination rate increases, the number of infected people
decreases more significantly.

Further, we discuss the impact of control measures on reducing the number
of Lassa fever cases. Figure 8(a) shows that the number of infections decreases
significantly with two control measures (i.e., increased use of external protection and
vaccination), but it does not make the disease extinct in a short period. Figure 8(b)
shows that when three control measures are implemented (i.e., increasing the rate
of external protection, vaccination, and increasing treatment rates), the number of
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Figure 7. The number of individuals infected with Lassa fever over time when a control measure uj
or ug is implemented.

infections decreases rapidly and shows a more pronounced effect. Figure 8(c) shows
the implementation of the four control measures. Even weaker control measures
are sufficient to effectively control and eradicate the spread of the disease within
25 months. Figure 8(d) shows the change in the number of infected people over
time under optimal control. In this case, the disease does not break out and can
be controlled in a short time, demonstrating that optimal control is more effective
than the previous measures.

6.4. Effect of changes in model parameters on disease

In this section, in order to find more effective control measures, we compare the
impact of parameters on the number of new infections. Firstly, in the absence of
external protection (o = 1), external protection has no effect. Then, the impact
of external protection efficiency (o) and other parameters on the number of new
infections is analyzed [26]. Finally, we analyze the effect of the rate of external
protection and the efficiency of external protection of susceptible individuals on the
population of new infections.

Figure 9(a) shows the effect of changes in rodent-to-rodent transmission rates
(8p) on new infections, Figure 9(b) shows the effect of changes in rodent-to-human
transmission rates (Bpn(t)) on new infections, Figure 9(c) shows the effect of changes
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Figure 8. (a) The number of infected individuals over time with the implementation of two control
measures ug and uz. (b) The number of infected individuals over time with the implementation of
the three control measures us, usz and ug. (¢) The number of infected individuals over time with the
implementation of the four control measures. (d) The number of infected individuals over time with
optimal control.

in external protection efficiency (o) on new infections, Figure 9(d) shows the effect
of changes in rodent birth rate (II(¢)) on new infections, Figure 9(e) shows the effect
of changes in the transmission rate (8,) among mildly infected individuals on new
infections, and Figure 9(f) shows the effect of changes in the external protection
failure rate (0) on new infections. The figures show that the rate of rodent-to-rodent
transmission (3,), rodent-to-human transmission rate (8,4 (t)) and the efficiency of
external protection (o) have a significant impact on new infections. In particular,
changes in the transmission rate between rodents can lead to a large increase or
decrease in new infections, which show cyclical fluctuations annually. However,
the external protection failure rate (J), rodent birth rate (II(¢)) and transmission
rate (8,) among mildly infected individuals have little effect on new infections,
particularly the change in the external protection failure rate.

As can be observed from Figure 10(a) and Figure 10(b), as the external protec-
tion efficiency and the external protection rate of susceptible individuals increase,
the infection level decreases, the number of new infections declines, and the sea-
sonal fluctuations in infection levels at high coverage of external protection dimin-
ish. When the external protection efficiency increases from 20% to 80%, there is
a significant reduction in the number of new infections, especially during the peak
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Figure 9. Effect of parameter changes in the system (2.1) on new infections.

period, where the number drops from about 500 new infections per month to around

100. Therefore,

external protection efficiency has a significant impact on the num-

ber of new infections, and efficient external protection measures can effectively slow
down the development of the epidemic.

7. Discussion

In this paper, our main work is to study a mathematical model of the periodic

transmission of

Lassa fever between humans and rodents, and to analyze the effect
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Figure 10. Changes over time in the number of newly infected individuals at different levels of external
protection efficiency and external protection rate of susceptible individuals.

of external protection on the spread of the disease. We conclude that the use of ex-
ternal protection can help reduce the spread of Lassa fever and is an effective means
of controlling the outbreak. Moreover, we derive the basic reproduction number Ry,
and compute it numerically [31]. It is proved that the Lassa fever outbreak dynam-
ics are determined by the basic reproduction number Ry. As shown in Figure 5
and Figure 6, if Rg > 1, the disease is persistently endemic, with at least one pos-
itive periodic solution. If Ry < 1, the disease-free periodic solution P, is globally
asymptotically stable, and the disease becomes extinct.

The baseline values of the unknown parameters of system (2.1) and the ini-
tial values of the compartments were estimated using the MCMC algorithm, with
data obtained from the Lassa fever infection data for the period of March 2020
to February 2024 provided by the Nigerian Centers for Disease Control and Pre-
vention. Our study analyzes the changes in the extent of disease infection under
different interventions, showing that even weaker control measures are sufficient to
effectively control and eradicate the spread of the disease over a 25-month period
when multiple measures are implemented simultaneously. Subsequently, an optimal
solution is provided, where the disease does not break out and can be controlled
within a short period.

To identify more effective control measures, we analyzed the effects of different
parameters on the number of new infections and observed the impact of external
protection efficiency and transmission rates on the Lassa fever outbreak through
numerical simulations. The efficiency of external protection has a significant impact
on the number of new infections, and seasonal fluctuations are reduced under high
coverage of external protection, as shown in Figure 10. As observed in Figures 9(a)
and 7(b), the most important factors influencing the cyclical recurrence of Lassa
fever are the rodent transmission rate and mortality.

The simulation results suggest that, without additional interventions, Lassa
fever will persist and continue to fluctuate cyclically in Nigeria for the foresee-
able future. Therefore, we hypothesize that complete eradication of the disease will
require not only controlling human contact with zoonotic hosts but also addressing
rodent transmission-either by strengthening external protective measures, improv-
ing personal diet and hygiene, or implementing more effective rodent control and rat
extermination strategies. This control approach is equally applicable to the spread
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of Lassa fever in other countries and regions.
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