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Abstract The (2+1)-dimensional Harry Dym (HD) equation is solved via
the ∂̄-dressing method in this paper. By introducing long derivatives Ex, Ey

and Et and new expressions for the kernel functions K of ∂̄-problem, a type
of general solution of the HD equation is obtained. Under the reality of the
solution u of the HD equation, several classes of exact explicit solutions of the
HD equation, including the solutions with functional parameters, line solitons
and rational solutions, are constructed by the ∂̄-dressing method.
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1. Introduction

The inverse scattering transform method was proposed by Gardner, Greene, Kruskal,
and Miura in 1967 to study initial value problems related to the famous Korteweg-
de Vries (KdV) equation [22]. The modern history of integrable equations be-
gan with the famous work of Martin Kruskal and his colleagues on the Cauchy
problem of KdV, using what later became known as the inverse scattering trans-
form method [33]. The inverse spectral transform method has been generalized
and successfully applied to the computation of a wide class of exact solutions
of various (2+1)-dimensional nonlinear evolution equations. Many experts and
scholars have investigated different equations via the inverse spectral transform
method [4, 5, 23, 30]. For example, Beals and Coifman has been recently studied
n× n AKNS which extends the AKNS problem to systems of n equations [1]. Za-
kharov and Shabat has solved soliton solutions, as well as multi-soliton solutions
and high-order soliton solutions [29]. At the same time, the problems of solving the
modified KdV equation [31], Schrödinger equation [21], Degasperis-Procesi equa-
tion [14], Camassa-Holm equation [13] and other equations [2, 3, 20, 28, 36] were
studied through inverse scattering transform method. The basic tools for solving
(2+1)-dimensional integrable nonlinear equations via IST are now the non-local
Riemann-Hilbert problem [15], the ∂̄-problem [7] and the ∂̄-dressing method [8, 9].
Different kinds of exact solutions of some (2+1)-dimensional integrable nonlinear
evolution equations were studied by the ∂̄-dressing method [6, 10, 12, 17]. Such as
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the plane solitons of mKP equation [26], the line solitons and line rational lumps of
the Kaup-Kuperschmidt (KK) and Savada-Kotera (SK) equations [18], the mul-
tiple pole solutions of the Kadomtsev-Petviashvili (KP) equation, the modified
Kadomtsev-Petviashvili (mKP) equation and the Davey-Stewartson (DS) system
of equations [16]. The study of exact solutions of integrable nonlinear equations,
such as soliton solutions, multi-pole solutions, rational solutions, etc. is an impor-
tant topic in the field of mathematical physics.

In this paper, we introduce a ∂̄-dressing method for solving several classes of the
exact explicit solutions of the HD equation, including the solutions with functional
parameters, line solitons and rational solutions. Introducing the (2+1)-dimensional
integrable generalization of the Harry Dym equation(see [25])

ut − u3uxxx − 3u−1(u2∂−1
x uy/u

2)y = 0, (1.1)

which is the only known two-dimensional generalization of the so-called WKI (Wa-
dati, Konno and Ichikawa) equations, and it describes the propagation of certain
nonlinear waves, such as soliton solutions or singular waves. Solutions to such equa-
tions are often localized and stable, similar to soliton phenomena in fluids or optics.
Where u depends on time variable t and space variables x, y. At the same time, we
need know that ∂−1

x is an inverse operator of ∂x, ∂
−1
x ∂x = ∂x∂

−1
x = 1.

Equation (1.1) has the following Lax pair

LΦ =u2Φ2x +Φy,

TΦ =Φt − 4Φ3x + 6u2uxΦx − 6u2∂−1
x uy/u

2Φx,
(1.2)

where the commutativity condition L[T (Φ)] = T [L(Φ)] is equivalent to Equation
(1.1).

We assume that the asymptotic value of u at infinity is constant as follows

u(x, y, t) = ũ(x, y, t)− ε, ũ(x, y, t) −−−−−−−→
x2+y2→∞

−ε ̸= 0. (1.3)

The complete introduction of the spectral parameter λ into the linear problem
(1.2) is achieved through the function χ

Φ := χ(λ)exp[
i

λ
x+ (

ε

λ
)2y + 4i(

ε

λ
)3t], (1.4)

which χ → 1 as λ → ∞, the function Φ defined by (1.4) obeys system (1.2). Thus
the problem of characterizing the inverse problem data does not arise.

In this paper, we study the HD equation (1.1) by means of the inverse spectral
transform method. It is organized as follows: Section 2 explores the ∂̄-dressing
method for HD equation. Section 3 utilizes this method to introduce the solutions
with functional parameters. Sections 4 and 5 construct line solitons and rational
solutions in detail, respectively.

2. ∂̄-dressing method for the HD equation

For the HD equation, we consider this case of u(x, y, t) → −ε as x2+y2 → ∞ by the
∂̄-dressing method. Then based on the above approach we introduce a ∂̄-problem

∂χ(λ, λ̄)

∂λ̄
= (χ ∗ λ)(λ, λ̄) =

∫ ∫
C

χ(ξ, ξ̄)K(ξ, ξ̄;λ, λ̄)dξ ∧ dξ̄. (2.1)
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Where χ and K are the scalar complex-valued functions. We assume that χ → 1
as λ → ∞, and the problem (2.1) is uniquely solvable.

In the following, in order to give a relation between problem (2.1) and x, y, t,
we introduce the following relation for K

∂K

∂η
=


i

ξ

i

λ
0

0 −(
ε

ξ
)2 −(

ε

λ
)2

4i(
ε

ξ
)3 4i(

ε

λ
)3 0




K(ξ, ξ̄;λ, λ̄;x, y, t)

−K(ξ, ξ̄;λ, λ̄;x, y, t)

K(ξ, ξ̄;λ, λ̄;x, y, t)

 , (2.2)

with
∂

∂η
=

(
∂

∂x

∂

∂y

∂

∂t

)T

. (2.3)

Then we further get that

K(ξ, ξ̄;λ, λ̄;x, y, t) = K0(ξ, ξ̄;λ, λ̄)exp(△ν(x, y, t, ξ, λ)), (2.4)

where

△ν(x, y, t, ξ, λ) : = i(
1

ξ
− 1

λ
)x+ ε2(

1

ξ2
− 1

λ2
)y − 4iε3(

1

ξ3
− 1

λ3
)t = ν(ξ)− ν(λ).

(2.5)

Some long derivative operators Ex, Ey and Et are introduced

Ex =∂x +
i

λ
,

Ey =∂y + ε2
1

λ2
,

Et =∂t + 4iε3
1

λ3
.

(2.6)

For the equations

Γ1 =u2E2
x + Ey,

Γ2 =Et + 4u3E3
x + 6uuxEx − 6u2∂−1

x uy/u
2Ex,

(2.7)

we can find that
Γ1χ = 0, Γ2χ = 0. (2.8)

Then we consider (2.8) for the series expansion of χ in the neighborhood of the
points λ = 0 and λ = ∞: when λ = 0, χ = χ0 + λχ1 + λ2χ2 + . . . ; when λ = ∞,
χ = χ̃0 + χ−1/λ + χ−1/λ

2 + . . . . Due to canonical normalization χ̃0 = 1, in the
neighbourhood of λ = ∞, the system (2.8) imply

u = (
−χ−1y

i+ χ−1x
)

1
2 . (2.9)

In the case of the normalized χ̃0 = 1, the solution of the ∂̄-problem (2.1) is equivalent
to the solution of the integral equation

χ(λ, λ̄) = 1 +

∫ ∫
C

dλ′ ∧ dλ̄′

2πi(λ′ − λ)

∫ ∫
C

χ(ξ, ξ̄)K0(ξ, ξ̄;λ, λ̄)e
(ν(ξ)−ν(λ′))dξ ∧ dξ̄.

(2.10)
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Equation (2.10) implies that

χ0 = 1 +

∫ ∫
C

dλ ∧ dλ̄

2πiλ

∫ ∫
C

χ(ξ, ξ̄)K0(ξ, ξ̄;λ, λ̄)e
(ν(ξ)−ν(λ))dξ ∧ dξ̄, (2.11)

and

χ−1 = −
∫ ∫

C

dλ ∧ dλ̄

2πi

∫ ∫
C

χ(ξ, ξ̄)K0(ξ, ξ̄;λ, λ̄)e
(ν(ξ)−ν(λ))dξ ∧ dξ̄, (2.12)

where K0 is an arbitrary function.
We know that the solutions of the HD equations constructed using the ∂̄-dressing

method are all complex valued, and finding real-valued solutions to the equations of
this equation is the next major part of our study. From (2.9), (2.12) and the reality
condition u = u, we obtain the following constraints on the kernel K of ∂̄-problem
(in the weak limit)

K0(ξ, ξ;λ, λ) = K0(−ξ,−ξ;−λ,−λ), (2.13)

K0(ξ, ξ;λ, λ) = K0(λ, λ; ξ, ξ). (2.14)

Below we construct different exact solutions of the HD equation (1.1) based on two
different constraints (2.13) and (2.14).

3. Solutions with functional parameters

Consider the kernel function K of problem (2.1) as follows

K0(ξ, ξ̄;λ, λ̄) = π

N∑
m=1

wm(ξ, ξ̄)vm(λ, λ̄), (3.1)

where wm and vm are arbitrary functions. For such kernel K, the function χ can
be obtained that

χ(λ) = 1 + π

N∑
m=1

ℓm(x, y, t)

∫ ∫
C

dλ′ ∧ dλ̄′

2πi(λ′ − λ)
vm(λ′, λ̄′)e−ν(λ′), (3.2)

where ℓm(x, y, t) is defined by

ℓm(x, y, t) =

∫ ∫
C

wm(λ, λ̄)χ(λ, λ̄)eν(λ)dλ ∧ dλ̄. (3.3)

The quantities ℓm are computed from the following algebraic system

Hm1ℓ1 +Hm2ℓ2 + · · ·+HmN ℓN = ζm, m = 1, . . . , N, (3.4)

where

ζm(x, y, t) =

∫ ∫
C

wm(λ, λ̄)eν(λ)dλ ∧ dλ̄, (3.5)

and

Hmj = δmj + π

∫ ∫
C

dλ ∧ dλ̄

∫ ∫
C

dλ′ ∧ dλ̄′

2πi(λ′ − λ)
eν(λ)−ν(λ′)wm(λ, λ̄)vj(λ

′, λ̄′). (3.6)
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From equation (2.12), we find χ−1 satisfy

χ−1 = − 1

2i

N∑
m=1

ℓmϑmx = − 1

2i

N∑
m,j=1

ϑmH−1
mjζj = i∂x ln detH, (3.7)

where ϑm(x, y, t) is defined by

ϑm(x, y, t) =

∫ ∫
C

vm(λ, λ̄)e−ν(λ)dλ ∧ dλ̄. (3.8)

The solutions (2.9) of the HD equation are parametrized by the 2N arbitrary
complex-valued functions wm and vm (m = 1, . . . , N). Then the solutions (2.9)
with functional parameters can be represented in the equivalent form

u = (
−∂2

xy ln detH

1 + ∂2
x ln detH

)
1
2 , (3.9)

where the matrix H is defined by

Hmj = δmj +
1

2
∂−1
x (ζmϑj). (3.10)

The reality conditions (2.13) and (2.14) restrict the functions wm and vm. For
the reality conditions (2.13), we find that

wm(ξ, ξ̄) = wm(−ξ̄,−ξ), vm(ξ, ξ̄) = vm(−ξ̄,−ξ). (3.11)

For the reality conditions (2.14), we get that

wm(ξ, ξ̄) = γmvm(ξ̄, ξ), γm = γm. (3.12)

From conditions (3.11) we further obtain the relationship

ϑm = −ϑm, ζm = −ζm. (3.13)

We find that ζm and ϑm satisfy

ε2Zxx + Zy = 0,

Zt + 4ε3Zxxx = 0.
(3.14)

4. Two types of specific exact solutions

In this section, under two constraints (2.13) and (2.14) on the kernel function K,
we study two physically meaningful exact solutions of the two-dimensional HD
equation-line solitons and rational solutions. These solutions are constructed by
∂̄-dressing methods, and they have potential applications in integral system, fluid
dynamics, and condensed matter physics. The results reveal new phenomena of the
two-dimensional HD equation in high-dimensional nonlinear wave dynamics and
provide a theoretical basis for understanding wave propagation and interaction in
complex media.



3470 L. Gui, Y. Zhang & S. Han

4.1. Line solitons of the HD equation

Line solitons are localized wave solutions propagating in a specific direction in a
two-dimensional nonlinear fluctuation equation with properties such as stability and
absence of scattering (elastic collisions). For the HD equation (1.1), line solitons
may describe bending waves or surface tension dominated fluctuations whose ampli-
tudes propagate along a straight line without dispersion. In two-dimensional shallow
water waves or rotating fluids, the HD equation may be similar to the Kadomtsev-
Petviashvili equation, with line solitons corresponding to obliquely propagating shal-
low water soliton waves.

In this section, the line solitons of the HD equation correspond to the special
choices of the functions wm and vm or ζm and ϑm in the solutions (3.9). Let us
consider the following two cases. For the real-valued line solitons of equation (1.1)
the appropriate choice is

wm(ξ, ξ̄) = δ(ξ − iβm),

vm(λ, λ̄) = γmδ(λ− iαm),
(4.1)

where αm, βm and γm are arbitrary real constants. Bringing equation (4.1) into
equations (3.5) and (3.8) yields

ζm(x, y, t) = −2ieν(iβm), (4.2)

and

ϑm(x, y, t) = −2iγme−ν(iαm), (4.3)

where

ν(λ) =
i

λ
x+ (

ε

λ
)2y + 4i(

ε

λ
)3t. (4.4)

The simplest solutions (3.9) of corresponding to this choice of kernel K (3.1) is

u =
[ ab∆

(1 +∆)2 − a2∆

] 1
2 , (4.5)

where the N ×N matrix H is

Hmj = δmj +
2γm

βm − αj
exp[ν(iβm)− ν(iαj)], (4.6)

with

∆ =
2γ1

β1 − α1
e△ν , a = i(

1

β2
1

− 1

α2
1

), b = 2iε3(
1

α3
1

− 1

β3
1

), (4.7)

△ ν = ν(iβ1)− ν(iα1) = (
1

β1
− 1

α1
)x− ε2(

1

β2
1

− 1

α2
1

)y − 4ε3(
1

β3
1

− 1

α3
1

)t. (4.8)

For the complex-valued line solitons of equation (1.1) the correspond to the
choice

wm(ξ, ξ̄) = δ(ξ − ρm),

vm(λ, λ̄) = γmδ(λ− ρm).
(4.9)
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where γm are arbitrary real constants, and ρm are the complex numbers ρm =
ρmR + iρmI . From equations (3.5), (3.8) and (4.9), we get that

ζm(x, y, t) = −2ieν(ρm), (4.10)

and
ϑm(x, y, t) = −2iγme−ν(ρ̄m). (4.11)

Then the simplest solution (3.9) of corresponding to the choice of kernel K (3.1)
has

u =
[ ãb̃∆̃

(1 + ∆̃)2 + ã2∆̃

] 1
2 , (4.12)

where the N ×N matrix H presents

Hmj = δmj +
2iγm

ρm − ρ̄j
e[ν(ρm)−ν(ρ̄j)], (4.13)

with

∆̃ =
2iρ1

ρ1 − ρ1
e△ν̃ , ã = −4ρ1Rρ1I

|ρ1|4
, b̃ =

4iε2(3ρ21Rρ1I − ρ31I)

|ρ1|6
, (4.14)

△ ν̃ = ν(ρ1)− ν(ρ1) = i(
1

ρ1
− 1

ρ1
)x+ ε2(

1

ρ21
− 1

ρ21
)y − 4iξ3(

1

ρ31
− 1

ρ31
)t. (4.15)

4.2. Rational solutions of the HD equation

Rational Solutions in the field of mathematical physics are a class of exact solutions
with a special structure and physical meaning. Such solutions are of great value in
areas such as nonlinear integrable systems, quantum field theory, fluid dynamics,
etc.

In this section, we construct the rational solutions of the HD equation via the
∂̄-dressing method. Depending on the various constraints on the kernel K, we have
different choices for the kernel K of ∂̄-problem (2.1). For the reality (2.13), we
choose the kernel K of the ∂̄-problem

K0(ξ, ξ̄;λ, λ̄) =
π

2

N∑
m=1

Xmδ(ξ − ipm)δ(λ− ipm), (4.16)

where δ(λ− ipm) is the complex Dirac delta function, pm (m = 1, . . . , N) is the set
of isolated points distinct from the origin. Xm(ξ, λ) are arbitrary functions with
the property Xm(ξ, λ) = Xm(−ξ̄,−λ̄).

In what follows, using the dressing method, let us take the kernel K0 (4.16) as
an example and give the detailed computational steps for constructing the rational
solutions of equation (1.1). Putting equation (4.16) into equation (2.1), we can
obtain

∂χ

∂λ̄
= −1

2

N∑
m=1

χ(ipm)eν(ipm)−ν(λ)Xm(ipm, λ)δ(λ− ipm), (4.17)

where

ν(λ) =
i

λ
x+ (

ε

λ
)2y + 4i(

ε

λ
)3t. (4.18)
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Then we further get equation (2.10) has the following form

χ(λ, λ̄) = 1 + i

N∑
m=1

χ(ipm)Xm(ipm, ipm)

λ− ipm
, (4.19)

where λ ̸= iαm, (m = 1, . . . , N), when taking the limλ = ipm, utilizing (2.10) and
(4.17) one can get χ(ipm)(m = 1, . . . , N)

χ(ipm) = 1− 1

2

∫ ∫
C

dλ ∧ dλ̄

λ− ipm

N∑
j=1

χ(ipj)e
ν(ipj)−ν(λ)Xj(ipj , λ)δ(λ− ipj). (4.20)

The quantities χ(ipm) obey the system of equations

χ(ipm)[1 + iX ′(ipm, ipm)− iX(ipm, ipm)ν′(ipm)] +

N∑
j ̸=m

χ(ipj)Xj(ipj , ipj)

pm − pj

=0, m = 1, . . . , N. (4.21)

In order to verify equation (4.21), equation (4.20) is discussed below in two
cases. When j = m, the corresponding term in (4.20) is∫ ∫

C

dλ ∧ dλ̄

λ− ipm
χ(Λm)eν(ipm)−ν(λ)Xm(ipm, λ)δ(λ− ipm)

=2iχ(ipm)[X ′(ipm, ipm)−X(ipm, ipm)ν′(ipm)],

(4.22)

with the identity∫ ∫
C

dλ ∧ dλ̄

(λ− λ0)n−1
φ(λ)δ(λ− λ0) = 2i Res

λ=λ0

φ(λ)

(λ− λ0)n

= 2i lim
λ→λ0

1

(n− 1)!

dn−1

dλn−1
(φ(λ)), (4.23)

where

ν′(ipm) =
∂ν(λ)

∂λ
|λ=ipm

, X ′(ipm) =
∂X(ipm, λ)

∂λ
|λ=ipm

, Xm = X(ipm, ipm).

(4.24)
When j ̸= m, the terms in (4.20) are equal to

∫ ∫
C

dλ ∧ dλ̄

λ− ipm

N∑
j ̸=m

χ(ipm)eν(ipm)−ν(λ)Xm(ipm, λ)δ(λ− ipm)=2

N∑
j ̸=m

χ(ipj)Xj(ipj)

αm − ipj
.

(4.25)

Thus, equation (4.21) is derived from (4.22) and (4.25). Solving the system (4.21)
with respect to χ(ipm), one then finds

χ(ipm) =
N∑
j=1

A−1
mjX

−1
j , (4.26)
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where the N ×N matrix A is defined by

Amj = θmδmj −
1− δmj

pm − pj
, (4.27)

and

θm =
1

p2m
x+

2ε2

p3m
y − 12ε3

p4m
t+ τm, τm =

1 + iX ′(ipm)

Xm
= τm. (4.28)

Using equation (4.19), the coefficients χ0 and χ−1 are generated to have the follow-
ing expressions

χ0 = 1−
N∑

m=1

Xm

pm
χ(ipm), (4.29)

and

χ−1 = i

N∑
m=1

Xmχ(ipm). (4.30)

Then the solutions (2.9) can be represented in the equivalent form

u =
[ det(A−1BA−1)

1− det(A−1CA−1)

] 1
2 , (4.31)

where the N ×N matrixs B and C are

Bem = −2ε2

p3m
, Cem =

1

p2m
. (4.32)

Corresponding to the kernel K0 (4.16), the simplest solution of this type takes the
form

u =
[ 2ε2

p1(1− p21θ
2
1)

] 1
2 , (4.33)

with

θ1 =
1

p21
x+

2ε2

p31
y − 12ε3

p41
t+ τ1, τ1 =

1 + iX ′(ip1)

X1
. (4.34)

Then we choose the more complex kernel K of the ∂̄-problem as follows

K0(ξ, ξ̄;λ, λ̄) =
π

2

N∑
m=1

[Xm(ξ, λ)δ(ξ− ρm)δ(λ− ρm) +Xm(ξ, λ)δ(ξ+ ρm)δ(λ+ ρm)],

(4.35)
which can be seen as a generalized form of kernel K0 (4.16). For convenience, we
introduce some symbols: Υ and Θ are the sets of complex constants Υm and Θm,
respectively. Ω is the set of quantities Ωm, (m = 1, . . . , N)

Υ := (τ1, τ1, . . . , τN , τN ), (4.36)

Θ := (ρ1,−ρ1, . . . , ρN ,−ρN ), (4.37)

Ω := (X1χ(ρ1), X1χ(−ρ1), . . . , XNχ(ρN ), XNχ(−ρN )). (4.38)
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Using equations (2.11), (2.12) and (4.35), the coefficients χ0 and χ−1 are yielded

χ0 = 1− i

2N∑
m=1

Ωm

Θm
, (4.39)

and

χ−1 = i

2N∑
m=1

Ωm. (4.40)

The system of equations for Ωm satisfies the form

2N∑
j=1

AmjΩj = 1, (4.41)

where the 2N × 2N matrix A is defined by

Amj = θmδmj −
i(1− δmj)

Θm −Θj
, (4.42)

and

θm = − 1

Θ2
m

x+
2iε2

Θ3
m

y − 12ε3

Θ4
m

t+Υm. (4.43)

The solutions (2.9) of the HD equation are representable as

u =
[ det(A−1BA−1)

1 + det(A−1CA−1)

] 1
2

, (4.44)

where the 2N × 2N matrixs B is defined by

Bem =
2iε2

Θ3
m

, (4.45)

and the matrixs C2N×2N has

Cem =
1

Θ2
m

. (4.46)

The simplest solution which correspond to one term in the kernel K0 (4.35) has

u =

[
2ε2(ρ31 − ρ1

3)

|ρ1|6Λ− |ρ1|2(ρ21 + ρ1
2)

] 1
2

, (4.47)

where

Λ = |θ1|2 −
1

4ρ1R
, ρ1 = ρ1R + iρ1I , (4.48)

and

θ1 = − 1

Θ2
1

x+
2iε2

Θ3
1

y − 12ε3

Θ4
1

t+Υ1. (4.49)
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The reality condition (2.14) of u corresponds to the kernel K of the ∂̄-problem
in the following form

K0(ξ, ξ̄;λ, λ̄) =
π

2

N∑
m=1

Xm(ξ, λ)δ(ξ − αm)δ(λ− αm), (4.50)

where Xm are arbitrary functions with Xm = Xm, and αm = αm. With the use of
equations (2.11), (2.12) and (4.50), the coefficients χ0 and χ−1 present

χ0 = 1− i

N∑
m=1

Xm

αm
χ(αm), (4.51)

and

χ−1 = i

N∑
m=1

Xmχ(αm). (4.52)

Then the quantities χ(αm) satisfy the system of equations

N∑
j=1

Amjχ(αj)Xj = 1, (4.53)

where the N ×N matrix A is defined by

Amj = θmδmj −
i(1− δmj)

αm − αj
, (4.54)

and

θm = − 1

α2
m

x+
2iε2

α3
m

y − 12ε3

α4
m

t+ τm. (4.55)

The solutions (2.9) can be constructed by equations (4.51)-(4.53)

u =
[ i det(A−1BA−1)

1 + det(A−1CA−1)

] 1
2

, (4.56)

where the matrixs BN×N and CN×N are

Bem =
2ε2

α3
m

, Cem =
1

α2
m

. (4.57)

The simplest solution of this type is of the form

u =
[ 2iε2

α1(1 + α2
1θ

2
1)

] 1
2 , (4.58)

with

θ1 = − 1

α2
1

x+
2iε2

α3
1

y − 12ε3

α4
1

t+ τ1. (4.59)

Then we choose the more complex kernel K of the ∂̄-problem

K0(ξ, ξ̄;λ, λ̄) =
π

2

N∑
m=1

[Xm(ξ, λ)δ(ξ − ρm)δ(λ− ρm) +Xm(ξ, λ)δ(ξ−ρm)δ(λ−ρm)],

(4.60)
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where K0 satisfy the reality condition (2.14) of u. For convenience, several symbols
are introduced

Υ̃ := (τ1, τ1, . . . , τN , τN ), (4.61)

Θ̃ := (ρ1, ρ1, . . . , ρN , ρN ), (4.62)

Ω̃ := (X1χ(ρ1), X1χ(ρ1), . . . , XNχ(ρN ), XNχ(ρN )), (4.63)

where Υ̃ and Θ̃ are the sets of complex constants Υ̃m and Θ̃m, respectively. Ω̃ is
the set of quantities Ω̃m, (m = 1, . . . , N). Combining equations (2.11), (2.12) and
(4.60), the coefficients χ0 and χ−1 of the series expansion of χ near λ = 0 and
λ = ∞ are obtained as follows

χ0 = 1− i

2N∑
m=1

Ω̃m

Θ̃m

, (4.64)

and

χ−1 = i

2N∑
m=1

Ω̃m. (4.65)

We further find the system of equations for Ω̃m satisfies

2N∑
j=1

AmjΩ̃j = 1, (4.66)

where the matrix A2N×2N is defined by

Amj = θmδmj − i
(1− δmj)

Θ̃m − Θ̃j

, (4.67)

and

θm = − 1

Θ̃2
m

x+
2iε2

Θ̃3
m

y − 12ε3

Θ̃4
m

t+ Υ̃m. (4.68)

By organizing equations (4.64)-(4.68), the solutions (2.9) of the HD equation are
constructed

u =
[ det(A−1BA−1)

1 + det(A−1CA−1)

] 1
2

, (4.69)

where the matrixs B2N×2N is defined by

Bem =
2iε2

Θ̃3
m

, (4.70)

and the matrixs C2N×2N has

Cem =
1

Θ̃2
m

. (4.71)

The simplest solution which correspond to one term in the kernel K0 (4.60) has

u =

[
2ε2(ρ31 + ρ1

3)

|ρ1|6Λ̃− i|ρ1|2(ρ21 + ρ1
2)

] 1
2

, (4.72)

where

Λ̃ = |θ1|2 +
1

4λ1I
, θ1 = − 1

Θ̃2
1

x+
2iε2

Θ̃3
1

y − 12ε3

Θ̃4
1

t+ Υ̃1, (4.73)

and ρ1 is the complex number ρ = ρ1R + iρ1I .
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5. Conclusions

The ∂̄-method introduced in this paper constructs a variety of solutions to the HD
equation (1.1) under two constraints (2.13) and (2.14) on the kernel K, including
the solutions with functional parameters, line solitons and rational solutions. In
this paper, the ∂̄-dressing method corresponds to bare operators of linear auxiliary
problems (1.2) with constant asymptotic value of u at infinity, i.e.u|x2+y2→∞ →
−ε ̸= 0.

In the future, we will consider the construction of other types of exact solutions
with constant asymptotic values at infinity of two-dimensional HD equation via the
∂̄-dressing method, such as periodic solutions, multiple-pole solutions solutions and
so on. At the same time, we will research different exact solutions of other types of
nonlinear equations [11, 19, 24, 27, 32, 34, 35] especially high-dimensional equations,
which play an important role in many areas of mathematical physics. The methods
and results presented in this paper may provide a good inspiration for dealing with
similar high-dimensional nonlinear equations.
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