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TWO-DIMENSIONAL SOLITARY WAVE
SOLUTIONS FOR WATER WAVES NEAR THE

CRITICAL POINT

Rong Wu1,†

Abstract This paper considers that the Bond number is greater than but
close to 1

3
and the Froude number is greater than but close to 1 for the two-

dimensional traveling gravity-capillary waves in water of finite depth. The
horizontal propagating direction and the stream function are chosen as inde-
pendent variables. The Euler equations are reduced to a system of ordinary
differential equations with dimension 4 by applying a spatial dynamics ap-
proach, a center manifold reduction and a normal form analysis. The reduced
system has a homoclinic solution near a nonzero equilibrium. The fixed point
theorem shows that this homoclinic solution persists for the original system,
i.e., the hydrodynamic problem has a solitary wave solution which exponen-
tially approaches a constant function (independent of the horizontal variable
but dependent on the stream function) at infinity.

Keywords Solitary wave solutions, center manifold reduction, normal form,
homoclinic orbits.
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1. Introduction

The classical two-dimensional travelling water-wave problem concerns the irrota-
tional flow of a perfect fluid with a constant density ρ subject to the forces of
gravity and surface tension. The fluid is bounded above by a free surface and below
by a horizontal rigid bottom. The wave is moving with a constant speed c. Assume
that the mean depth of the layer is h. It is well-known that the existence of solitary
wave solutions is determined by two constants: Bond number b = T/(ρhc2) and
Froude number F = c/

√
gh where g is the acceleration of gravity and T is the coef-

ficient of surface tension on the free surface. The distribution of the eigenvalues of
the linear operator obtained from the linearized Euler equations is given in Figure
1 where λ = F−2.

The bifurcation phenomena might happen near the curves Cl
0, C

r
0 , El and Er in

Figure 1. There are a lot of results near these curves. Amick & Kirchgässner [1]
proved a unique solitary wave solution of depression above the curve Er\{( 13 , 1)}.
Buffoni & Groves [4], Dias & Iooss [10], Iooss & Kirchgässner [19], and Iooss &
Pérouème [21] obtained solitary wave solutions near the right side of the curve
Cl

0\{( 13 , 1)}. Beale [2], Iooss & Kirchgässner [20], Lombardi [24] and Sun [27] used
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Figure 1. The distribution of the important eigenvalues of the linearized operator. The number of
purely imaginary eigenvalues varies near the curves Cl

0, El and Er. Dots and crosses denote simple and
double eigenvalues respectively.

different methods and showed the existence of generalized solitary wave solutions
which have an oscillatory tail of exponentially small amplitude at infinity below
the curve El\{( 13 , 1)}. Deng and Sun [9] also proved the existence of multi-humbp
solutions. At the critical point ( 13 , 1), there is an eigenvalue 0 with multiplicity
4. The dominant system corresponding to this hydrodynamic problem is related
to a fourth order ordinary differential equation. It is not easy to find a homoclinic
orbit of this fourth order ordinary differential equation. Thus, the problem becomes
much more difficult than ones near the curves Cl

0, El and Er. Buffoni, Groves &
Toland [5] considered the region D1 to the left of the curve Cr

0 and near the point
( 13 , 1). Using the properties of the Hamiltonian system, they obtained the dominant
system

A(4) + PA(2) +A−A2 = 0 (1.1)

where P is a constant, which has been studied by many papers (cf. Buffoni, Champ-
neys & Toland [3]). The system (1.1) has a homoclinic solution approaching 0 for
some constant P . Using some results in [3], they proved the existence of infinitely
many distinct solitary wave solutions. Sun & Shen [28] also investigated this case
when (b, λ) approaches ( 13 , 1) along a specific curve in D1. However, when (b, λ)
tends to ( 13 , 1) from the regionD2, the problem of existence of solitary wave solutions
is still open. We would like to mention that other properties of the two-dimensional
water-wave problem have also been extensively investigated such as the controlla-
bility and the stabilization in a basin [7], the propagation of singularities [30], the
transverse dynamics [16] and vorticity [11,12,14,26].

Motivated by the above work, in this paper, we consider (b, λ) close to ( 13 , 1)
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along the curve C1 defined by

λ = 1− 20

169

(1
b
− 3

)2

. (1.2)

Choosing the horizontal propagating direction x and the stream function as indepen-
dent variables and adopting a spatial dynamics approach given by Kirchgässner [23],
we obtain a different dominant system

A(4) + PA(2) −A−A2 = 0, (1.3)

which has a homoclinic solution approaching a nonzero equilibrium. We show that
this homoclinic solution will persist when higher order terms are added by applying
a perturbation method. This yields that the hydrodynamic problem has a solitary
wave solution which exponentially approaches a constant function (independent of
x but dependent on the stream function) as x → ±∞. Our result differs from ones
approaching 0 or a solution periodic in x near the curves Cl

0, El, Er and the region
D1 close to ( 13 , 1).

This paper is organized as follows. In Section 2, we change the governing equa-
tions of the wave problem into a spatial dynamic system using the horizontal direc-
tion x and the stream. The properties of its linear operator are also given. A center
manifold reduction theorem obtained by Mielke [25] yields that the spatial dynamic
system is reduced to a system of ordinary differential equations with dimension 4.
The adjoint operator of this linear operator is also presented. All details in this
section can be found in [23] (also see [20]). Section 3 studies the case: (b, λ) near
( 13 , 1). There is an eigenvalue zero with multiplicity 4 while other eigenvalues have
nonzero real parts. The reduced system consists of four ordinary differential equa-
tions. Its normal form is analyzed. Then we concentrate on that (b, λ) approaches
( 13 , 1) along the curve C1 (see Figure 1). The scaling is introduced. Section 4 proves
that the reduced system has a nonzero equilibrium. Its dominant system near this
equilibrium corresponds to a fourth order ordinary differential equation (1.1), which
has a homoclinic solution. Section 5 applies the idea given by Groves & Mielke [15]
to prove that this homoclinic solution persists when the higher-order terms are
included by using a fixed point theorem and a perturbation method. This gives
the existence of a solitary wave solution which exponentially approaches a constant
function.

2. Preliminary

Two-dimensional travelling waves of an inviscid, irrotational and incompressible
fluid layer are studied subject to gravity and surface tension. The motion is steady
in a moving frame. The governing equations are (cf. [20, 23])

div v = curl v = 0, for 0 < η < z(ξ),

v2 = 0, on η = 0, (2.1)

1

2
|v|2 − bκ+ λz = constant

v1∂ξz − v2 = 0

 , on η = z(ξ),
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where κ =
∂2
ξz

(1+(∂ξz)2)3/2
is the curvature of the free surface η = z(ξ) and v = (v1, v2)

is the velocity. All quantities are in nondimensional forms. λ = gh
c2 is the inverse

square of the Froude number and b = T
ρhc2 is the Bond number. Here g is the

acceleration of gravity, h is the mean depth of the layer, c is the wave speed, ρ is
the density and T is the coefficient of surface tension.

We look for solutions which are bounded in the flow domain Ω = {(ξ, η)| ξ ∈
R, 0 < η < z(ξ)}. Due to the moving frame, we have a normalized flux Q = 1
through any simple cross section of the layer. The quiescent state of the layer is
given by v = (1, 0) and η(ξ) = 1. Let Ψ(ξ, η) denote the stream function satisfying

∂ξΨ = −v2, ∂ηΨ = v1, Ψ|η=0 = 0, Ψ(ξ, z(ξ)) = 1 (2.2)

since Q = 1. Introduce new variables (x, y) ∈ Ω1 = R× (0, 1), which are defined by

x = ξ, y = Ψ(ξ, η).

Note that this is globally invertible from Ω to Ω1 as long as |v1 − 1| and v2 are
small. Let

W1 =
1

2
(v21 + v22 − 1), W2 =

v2
v1

, β = W2(·, 1)

and W = (W1,W2)
T , which change (2.1) into (More details can be seen in [20,23])

β̇ =
1

b
(1 + β2)3/2

(
W1(·, 1) + λ

([
h−1

]
− 1

))
, on y = 1,

Ẇ = K(W )Wy, in Ω1, (2.3)

and

W2 = 0, on y = 0 (2.4)

where the constant in (2.1) is set to λ+ 1
2 and

h =
(1 + 2W1

1 +W 2
2

)1/2

, K(W ) =

W2h −h3

h−1 W2h

 , [f ] =

∫ 1

0

f(y)dy. (2.5)

The system (2.3) is reversible with a reverser S defined by

S(β,W1,W2) = (−β,W1,−W2),

that is, S(β,W1,W2)(−x) is also a solution whenever (β,W1,W2)(x) is. A solution
(β,W1,W2)(x) is reversible if S(β,W1,W2)(−x) = (β,W1,W2)(x).

The system (2.3) is treated as a quasilinear evolution equation in (see [20,23])

X = R× L2(0, 1)× L2(0, 1) with norm ∥ · ∥ (2.6)

where

u =


β

W1

W2

 ∈ Y = D(A) = R×H1(0, 1)×H1(0, 1)
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∩ {W2(0) = 0,W2(1) = β} with norm ∥ · ∥A. (2.7)

A denotes the linearization of the right-hand side of (2.3) at u = 0 for fixed λ > 0
and b > 0 and it is given by

Au =


1

b
(W1(1)− λ[W1])

−W2y

W1y

 . (2.8)

The scalar product in X is defined by

(u, ũ) = β
¯̃
β +

∫ 1

0

(
W1

¯̃W1 +W2
¯̃W2

)
dy. (2.9)

Symbolically, (2.3) can be written as

u̇ = Au+ F (λ, b, u), for u ∈ Y = D(A) (2.10)

where

F (λ, b, u) =


h0 −

1

b

(
W1(1)− λ[W1])

W2hW1y − h3W2y +W2y

h−1W1y +W2hW2y −W1y

 (2.11)

and

h0 =
1

b

(
1 + β2

)3/2(
W1(1) + λ([h−1]− 1)

)
. (2.12)

Lemma 2.1. (1) There exist constants C and σ0 > 0 such that each solution
u ∈ Y = D(A) of the resolvent equation

(A− iσI)u = u∗, (2.13)

where u∗ belongs to X and σ is a real number with |σ| ≥ σ0, satisfies

∥u∥Y ≤ C∥u∗∥X , (2.14)

∥u∥X ≤ C

|σ|
∥u∗∥X . (2.15)

(2) The complex number σ ̸= 0 is an eigenvalue of A if and only if

(λ− bσ2)− σ cothσ = 0. (2.16)

For λ = 1 and b ̸= 1
3 , 0 is a double eigenvalue while it is an eigenvalue with

multiplicity 4 for λ = 1 and b = 1
3 . The spectrum σ̃(A) of A consists of

isolated eigenvalues of finite algebraic multiplicity and σ̃(A) ∩ iR is a finite
set.
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(3) The adjoint operator A∗ of A is given by

A∗u∗ =
(
−W ∗

1 (1), −W ∗
2y +W ∗

2 (1), W ∗
1y

)
(2.17)

for u∗ = (β∗,W ∗
1 ,W

∗
2 ) ∈ D(A∗) = R × H1(0, 1) × H1(0, 1) ∩ {W ∗

2 (0) =
0,W ∗

2 (1) = − 1
bβ

∗}.

This lemma can be found in [20, 23]. The distribution of eigenvalues of A is
given in Figure 1. Using a center manifold reduction theorem given by Mielke [25],
we have the following lemma [20,23].

Lemma 2.2. (2.10) has a finite dimensional center manifold M λ̃
C of class Ck for

any positive integer k where λ̃ = (λ, b). The reduced system on M λ̃
C preserves

reversibility, which (2.10) has.

3. Normal form

In order to use some known results in [23], we set

λ = 1 + ν,
1

b
= δ + 3 (3.1)

for small ν and δ to be specified later, that is, (b, λ) is near the critical point ( 13 , 1).
The linear operator A in (2.10) for b = 1

3 and λ = 1 has an eigenvalue 0 with
multiplicity 4. Its eigenvector and generalized eigenvectors are given by (see [23])

U1 =


0

1

0

 , U2 =


−1

0

−y

 , U3 =


0

−1

2
y2

0

 , U4 =


1

6

0
1

6
y3

 (3.2)

while the eigenvector and generalized eigenvectors of the eigenvalue 0 corresponding
to the adjoint operator A∗ are given by

U∗
1 = 45


0

3

56
− 5

42
y2 +

1

24
y4

0

 , U∗
2 = 45


1

42

0

− 5

21
y +

1

6
y3

 ,

U∗
3 = 45


0

1

6
− 1

2
y2

0

 , U∗
4 = 45


1

3

0

−y

 . (3.3)

Moreover,

SU1 = U1, SU2 = −U2, SU3 = U3, SU4 = −U4,

SU∗
1 = U∗

1 , SU∗
2 = −U∗

2 , SU∗
3 = U∗

3 , SU∗
3 = −U∗

3 ,

(Ui, U
∗
j ) = 0 for i ̸= j, (Ui, U

∗
i ) = 1,
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where i, j = 1, 2, 3, 4.
Since the spectrum of A consists entirely of isolated eigenvalues of finite algebraic

multiplicity, we can write

u = AU1 +BU2 + CU3 +DU4 + v2

where A,B,C and D are real, and v2 is a linear combination of eigenvectors and
generalized eigenvectors corresponding to the rest of eigenvalues. The reverser S
(for simplicity, we still use S to denote the reverser since no confusion arises) is now
given by

S(A,B,C,D) = (A,−B,C,−D).

The center manifold reduction Lemma 2.2 shows that the set of all bounded solutions
of the system (2.10) is determined solely by the ordinary differential equations about
A,B,C and D

Ẋ = LX + F0(ν, δ, A,B,C,D), (3.4)

which preserves the reversibility, where X = (A,B,C,D)T ,

L =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0


and

F0(ν, δ, 0, 0, 0, 0) = 0, DF0(0, 0, 0, 0, 0, 0) = 0, SL = −LS, SF0 = −F0S.

For the sake of simplicity, we first let ν = δ = 0. There exists a change of variables
from X to Y which is close to identity, and transforms the system (3.4) into

Ẏ = LY + P(Y ) + o(|Y |n), (3.5)

where P is a polynomial of degree ≤ n (n is arbitrary but fixed) with P(0) = 0 and
DP(0) = 0 (see [13, 18]). For notational simplicity, in the following we still use X
to replace Y . Moreover, P satisfies

SP(X) = −P(SX) (3.6)

and

DP(X)L∗X = L∗P(X) (3.7)

for any X where L∗ = L̄T .
Let P = (P1, P2, P3, P3)

T and define a differential operator

D∗ = A
∂

∂B
+B

∂

∂C
+ C

∂

∂D
. (3.8)
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Then, (3.7) is equivalent to

D∗P = L∗P,

which gives

D∗P1 = 0, D∗P2 = P1, D∗P3 = P2, D∗P4 = P3. (3.9)

It is easy to find that the following are first integrals of D∗ = 0 (see [17])

u1 = A, u2 = B2 − 2AC, u3 = 3A2D − 3ABC +B3,

u4 = 3B2C2 − 6B3D − 8AC3 + 18ABCD − 9A2D2, (3.10)

where

u2
3 = u3

2 − u2
1u4.

Then we have the following lemma [17].

Lemma 3.1. (1) Assume that K is a polynomial of X with degree n and D∗K = 0.
Then

K(X) = K0(u1, u2, u3, u4) = K1(u1, u2, u4) + u3K2(u1, u2, u4),

where K0, K1 and K2 are polynomials of their arguments.

(2) P in (3.5) can be written as

P(X) =Q4(A, u2, u4)


0

0

0

1

+Q2(A, u2, u4)


0

A

B

C

+Q5(u2, u4)


0

u2

u5

u6



+Q1(A, u2, u4)


u3

u7

u8

u9

+Q3(A, u2, u4)


0

0

u3

u7

 , (3.11)

where Qj are polynomials in their arguments for j = 1, 2, · · · , 5, and

u5 = −3AD +BC, u6 = −3BD + 2C2, u7 = 3ABD − 2AC2 +B2C,

u8 = −3ACD + 3B2D −BC2, u9 = 3BCD − 4

3
C3 − 3AD2,

Q4(A, u2, u4) = Q41A+Q42A
2 +Q43u2 +O(|(A,B,C,D)|3),

Q2(A, u2, u4) = Q20 +Q21A+O(|(A,B,C,D)|2),
Q5(u2, u4) = Q50 +O(|(A,B,C,D)|2).
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A similar analysis holds if ν and δ are not zero (see [18]). By (3.6), the expression
of F in (2.11) and the results in [17], (3.5) becomes

Ȧ = B + P1(ν, δ, A,B,C,D) + f1(ν, δ, A,B,C,D),

Ḃ = C + P2(ν, δ, A,B,C,D) + f2(ν, δ, A,B,C,D),

Ċ = D + P3(ν, δ, A,B,C,D) + f3(ν, δ, A,B,C,D), (3.12)

Ḋ = P4(ν, δ, A,B,C,D) + f4(ν, δ, A,B,C,D)

where fk are of order O(|(A,B,C,D)||(ν, δ, A,B,C,D)|n), and polynomials Pk of
degree n are given by

P1 = O(|(A,B,C,D)|3) + |(ν, δ)||(A,B,C,D)|2 + |ν||δ||(A,B,C,D)|,
P2 = p24A

2 + p25(B
2 − 2AC) +O(|(A,B,C,D)|3)

+ |(ν, δ)||(A,B,C,D)|2 + |ν||δ||(A,B,C,D)|,
P3 = p24AB + p25(BC − 3AD) +O(|(A,B,C,D)|3)

+ |(ν, δ)||(A,B,C,D)|2 + |ν||δ||(A,B,C,D)|, (3.13)

P4 = p41νA+ p42νC + p43δC + p44A
2 + p45(B

2 − 2AC) + p25(2C
2 − 3BD)

+ p26AC +O(|(A,B,C,D)|3) + |(ν, δ)||(A,B,C,D)|2 + |ν||δ||(A,B,C,D)|

for k = 1, 2, 3, 4. A direct calculation similar to ones in [20,23] yields some important
coefficients

p41 = −45, p42 =
30

7
, p43 = −5, p44 =

135

2
. (3.14)

Remark 3.1. (1) [23] did not analyze the normal form of (3.5) but calculated all
coefficients of terms with degree ≤ 2.

(2) Note that P2 in (3.13) has no terms with order of O
(
(|ν|+ |δ|)|(A,B,C,D)|

)
.

Thus, the system (3.12) is not discussed in [17] (see the system (2.19) in [17]).

In the following, we take

ν = −k1µ, δ = k2
√
µ (3.15)

for small µ > 0 where k1 > 0 and k2 are constants. It means that (b, λ) approaches
( 13 , 1) from the region D2 (see Figure 1). Then let

A = µÃ, B = µ5/4B̃, C = µ3/2C̃, D = µ7/4D̃, x = µ−1/4x̃.

By choosing large n and using (3.13)-(3.15), the system (3.12) is changed into
(dropping the tilde)

Ȧ = B +R1(µ,A,B,C,D),

Ḃ = C + p24
√
µA2 + p25µ(B

2 − 2AC) +R2(µ,A,B,C,D),

Ċ = D + p24
√
µAB + p25µ(BC − 3AD) +R3(µ,A,B,C,D), (3.16)

Ḋ = 45k1A− 5k2C − 30

7
k1
√
µC +

135

2
A2 + p45

√
µ(B2 − 2AC)

+ p25µ(2C
2 − 3BD) + p26

√
µAC +R4(µ,A,B,C,D),
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where

N3(µ,A,B,C,D) ≜


R1(µ,A,B,C,D)

R2(µ,A,B,C,D)

R3(µ,A,B,C,D)

R4(µ,A,B,C,D)



=


µ5/4O(|(A,B,C,D)|)

µO(|(A,B,C,D)|)

µ3/4O(|(A,B,C,D)|)
√
µO(|(A,B,C,D)|)


=

√
µO(|(A,B,C,D)|). (3.17)

For µ = 0, the system (3.16) corresponds to an ordinary differential equation

A(4) + 5k2A
(2) − 45k1A− 135

2
A2 = 0. (3.18)

If letting

k2 = − 13

2
√
5

√
k1, c =

4
√
5 4
√
k1

2
√
2

(3.19)

and following the solution form in [28], then (3.18) has a solution given by

HA(x) =
35

36
k1sech

4(cx)− 2

3
k1 (3.20)

which exponentially tends to − 2
3k1.

Remark 3.2. (1) When (b, λ) approaches (13 , 1) from the region D1, [5] and [28]
obtained the dominant system

A(4) + PA(2) +A−A2 = 0 (3.21)

where P is a constant. We here got a different dominant system from (3.18)

A(4) + PA(2) −A−A2 = 0. (3.22)

(2) From (3.1), (3.15) and (3.19), we know that

λ = 1− 20

169

(1
b
− 3

)2
, (3.23)

which implies that (b, λ) approaches ( 13 , 1) along the curve C1 (see Figure 1) .

In the following, we consider (b, λ) close to ( 13 , 1) along the curve C1.
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4. Nonzero equilibrium

Note that the solution in (3.20) approaches − 2
3k1, which corresponds to an equi-

librium (− 2
3k1, 0, 0, 0)

T of (3.16) for µ = 0 . In this section, we will prove that for
small µ > 0, (3.16) has a nonzero equilibrium near (− 2

3k1, 0, 0, 0)
T .

Let

d = d̃+ (−2

3
k1, 0, 0, 0)

T (4.1)

where d̃ = (d1, d2, d3, d4)
T is to be determined. Plugging (4.1) into (3.16) yields

d̃ = M1(µ, d̃). (4.2)

Here M1 is smooth and

M1(µ, d̃) =



3

2k1
d21 + a1(µ, d1, d2, d3, d4)

a2(µ, d1, d2, d3, d4)

a3(µ, d1, d2, d3, d4)

a4(µ, d1, d2, d3, d4)


(4.3)

where ak are the rest terms and of order
√
µO(|(d1, d2, d3, d4)|) for bounded dk,

k = 1, 2, 3, 4. Thus, we apply the fixed point theorem to (4.3) and have the following
lemma by using the uniqueness and the reversibility.

Lemma 4.1. For a closed ball B̄r(0) ⊂ R4 with a radius r = O(µ1/4), the map
M1 in (4.3) has a fixed point d̃ ∈ B̄r(0) ⊂ R4 for small µ > 0. Moreover, Sd = d
and

|d̃| ≤ M
√
µ (4.4)

where M > 0 is a constant.

Let X = X̃ + d where X = (A,B,C,D)T and X̃ = (Ã, B̃, C̃, D̃)T and plug it
into (3.16). Note that d is an equilibrium of (3.16). We obtain that from (3.17)

˙̃X = L̃X̃ + L̃µX̃ + Ñ2(X̃) + N̂2(µ, X̃) + Ñ3(µ, X̃) (4.5)

where

L̃X̃ =


B̃

C̃

D̃

−5k2C̃ − 45k1Ã

 , L̃µX̃ =



0

l42

l43

l44


, Ñ2(X̃) =



0

0

0
135

2
Ã2


,

N̂2(µ, X̃) =



0

p24
√
µÃ2 + p25µ(B̃

2 − 2ÃC̃)

p24
√
µÃB̃ + p25µ(B̃C̃ − 3ÃD̃)

p45
√
µ(B̃2 − 2ÃC̃) + p25µ(2C̃

2 − 3B̃D̃) + p26
√
µÃC̃


,
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Ñ3(µ, X̃) = N3(µ, X̃ + d)−N3(µ, d), (4.6)

l42 = 2p24(d1 −
2

3
k1)

√
µÃ+ 2p25µ

(
− d3Ã+ d2B̃ − (d1 −

2

3
k1)C̃

)
,

l43 = p24
√
µ
(
d2Ã+ (d1 −

2

3
k1)B̃

)
+ p25µ

(
− 3d4Ã+ d3B̃ + d2C̃ − 3(d1 −

2

3
k1)D̃

)
,

l44 =
(
135d1 − 2p45d3

√
µ+ p26d3

√
µ
)
Ã+ 2p45d2

√
µB̃

−
(
2p45(d1 −

2

3
k1) +

30

7
k1 + p26(d1 −

2

3
k1)

)√
µC̃

+ p25µ(−3d4B̃ + 4d3C̃ − 3d2D̃).

Moreover, it is easy to check that for any bounded X̃

|L̃µX̃|+ |N̂2(µ, X̃)|+ |Ñ3(µ, X̃)| = √
µO(|X̃|) (4.7)

where (3.17) and (4.4) are used. From Lemma 4.1, we know that Sd = d so the
system (4.5) is reversible too.

Therefore, the problem of the existence of solitary wave solutions of (3.16) is
equivalent to one of (4.5).

Remark 4.1. From the expression of L̃ in (4.6), we got the same system (3.21)
after scaling for P = − 13

6 .

Define

H(x) = (Ha, Hb, Hc, Hd)
T (x) = (HA +

2

3
k1, ḢA, ḦA,

...
HA)

T (x) (4.8)

where HA is given in (3.20). Thus, H(x) is a homoclinic solution of the system

˙̃X = L̃X̃ + Ñ2(X̃) (4.9)

and from (3.19)

|H(x)| ≤ Me−c|x|, for x ∈ R (4.10)

where M > 0 is a constant. Moreover,

SH(−x) = H(x). (4.11)

Now we will prove that the homoclinic solution H(x) will persist when higher
order terms are considered, i.e., we will show that there is a homoclinic solution of
(4.5).

5. Existence of solitary wave solution

Theorem 5.1. For 0 < µ ≤ µ0, (4.5) has a reversible homoclinic solution where
µ0 is a positive constant.

Using the relations among the systems (2.10), (3.16) and (4.5), this theorem
shows that (3.16) has a homoclinic solution exponentially approaching a nonzero
equilibrium as x → ±∞ so (2.10) has a solitary wave solution exponentially ap-
proaching a constant function (independent of x but depend on y) as x → ±∞.
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Remark 5.1. When (b, λ) approaches Er, El, C
l
0 or ( 13 , 1) in the region D1, the

solitary wave solutions exponentially approach 0 or a periodic solution in x. The
solution we here obtained exponentially approaches a constant function.

The proof is divided into two steps. We first show that (4.5) has a solution
exponentially approaching 0 as x → ∞. Then we use the reversibility condition to
obtain that this solution can be extended to x ∈ (−∞, 0). The basic idea comes
from [15] (also see [8]).

Step 1. Solution of (4.5) for x ∈ [0,∞).
In order to find a solution of (4.5) near H(x) given in (4.8), we assume that the

solution of (4.5) has a form

S̃(x;µ) = H(x) + Z(x), for x ≥ 0 (5.1)

which exponentially tends to 0 as x → ∞ where Z̃ is a perturbation term to be
determined and also exponentially tends to 0 as x → ∞.

Plugging (5.1) into (4.5) yields the equation about Z̃

Ż = L(x)(Z) +N1(x, Z;µ) (5.2)

where L(x) = L̃+ dÑ2[H(x)], d means taking the Fréchet derivative, and

N1(x, Z;µ) =L̃µH+ L̃µZ − dÑ2[H(x)]Z + Ñ2(H+ Z)− Ñ2(H)

+ N̂2(µ,H+ Z) + Ñ3(µ,H+ Z). (5.3)

In the following, we let M be a positive constant. Then N1 satisfies the following
estimates by using (4.7) and (4.10).

Lemma 5.1. If |Z| + |Z1| + |Z2| ≤ M0 for some positive constant M0, then for
x ≥ 0, ∣∣N1(x, Z;µ)

∣∣ ≤ M
(√

µ(e−cx + |Z|) + |Z|2
)
,∣∣N1(x, Z1;µ)−N1(x, Z2;µ)

∣∣ ≤ M
(√

µ+ |Z1|+ |Z2|
)
|Z1 − Z2|. (5.4)

Obviously, the solution of (5.2) exists if x is in a finite interval and an initial
condition is given. In order to prove the existence of solutions for x ≥ 0, we change
(5.2) to integral equations and then apply the fixed point theorem to prove the
existence of a fixed point of the integral equations.

Now we consider the linear system of (5.2)

Ż = L̃(Z) + (L(x)− L̃)(Z) (5.5)

where

L(x) =



0 1 0 0

0 0 1 0

0 0 0 1
525

4
k1sech

4(cx)− 45k1 0 −5k2 0


(5.6)
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and L̃ is given in (4.6). The linear system (5.5) yields the following differential
equation

A(4) + 5k2A
(2) −

(525
4

k1sech
4(cx)− 45k1

)
A = 0. (5.7)

Lemma 5.2. The equation (5.7) with initial conditions A′(0) = A(3)(0) = 0 has a
trivial solution only in L2(0,∞) (see Lemma 1 in [28]).

Obviously, L(x) exponentially tends to L̃ as x → ±∞ and L̃ has four eigenvalues
±λ1,±λ2 where

λ1 =
3 4
√
5√
2

4
√
k1, λ2 =

√
2

4
√
5 4
√
k1.

Now we look for a fundamental matrix of the system (5.5). Since H(x) is a solution
of the system (4.9), we obtain that

s1(x) =
d

dx
H(x) (5.8)

is a solutions of the system (5.5) that satisfies

s1(0) =
(
0,−35

√
5

72
k
3/2
1 , 0,

1225

288
k21

)T
(5.9)

and by (4.10)

|s1(x)| ≤ Me−cx for x ∈ [0,∞). (5.10)

Using the relationship between L(x) and L̃ (see Problem 29 in Chapter 3 in the
book by Coddington & Levinson [6]), let s1(x), s2(x), u1(x) and u2(x) be linearly
independent solutions of (5.5) such that u1(x), u2(x) > 0 for large x. By Lemma
5.2, we may choose

u1[2](0) = u1[4](0) = u2[2](0) = u2[4](0) = 0 (5.11)

and for x ∈ [0,∞)

|u1(x)|+ |u2(x)| ≤ Mecx, |s2(x)| ≤ Me−cx. (5.12)

Here f [i] denotes the i-th component of f .
Define

B(x) =
(
s1(x), s2(x), u1(x), u2(x)

)
which is a fundamental matrix of (5.5). Note that the trace of L(x) in (5.6) is equal
to 0, which gives that DetB(x) is independent of x and equal to DetB(0) = M .

Assume that the fundamental set of solutions for the adjoint equation of (5.5)
is {

s∗1(x), s
∗
2(x), u

∗
1(x), u

∗
2(x)

}
which is the dual of {s1(x), s2(x), u1(x), u2(x)} in the sense of the Euclidean inner
product on R4 for each fixed x. It follows from (5.10) and (5.12) that for x ∈ [0,∞)

|s∗1(x)|+ |s∗2(x)| ≤ Mecx, |u∗
1(x)|+ |u∗

2(x)| ≤ Me−cx. (5.13)
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The solution of (5.2) that decays to zero at infinity can be found as

Z = G(Z;µ) (5.14)

where

G(Z;µ) =

2∑
k=1

∫ x

0

⟨N1(t, Z;µ), s∗k(t)⟩dt sk(x)−
2∑

k=1

∫ ∞

x

⟨N1(t, Z;µ), u∗
k(t)⟩dt uk(x)

and ⟨·⟩ denotes the Euclidean inner product on R4.
Take any positive constant τ such that τ/c ∈ ( 12 , 1). Consider (5.14) as a fixed

point problem in a Banach space

Eτ =
{
Z ∈ C(0,∞) | sup

x∈[0,∞)

{|Z(x)|eτx} < ∞
}

with the norm
∥Z∥τ = sup

{
|Z(x)|eτx| x ∈ [0,∞)

}
,

which implies that Z exponentially tends to zero as x → ∞. It is easy to obtain
the following lemma using Lemma 5.1, (5.10), and (5.12) and (5.13).

Lemma 5.3. For x ≥ 0, the function G satisfies∥∥G(Z;µ)
∥∥
τ
≤ M

(
∥Z∥2τ +

√
µ(1 + ∥Z∥τ )

)
,∥∥G(Z1;µ)− G(Z2;µ)

∥∥
τ
≤ M

(√
µ+ ∥Z1∥τ + ∥Z2∥τ

)
∥Z1 − Z2∥τ

(5.15)

for Z,Z1, Z2 ∈ Eτ .

Let B̄r̃(0) ⊂ Eτ be a closed ball in Eτ with a radius r̃ = O(µ1/4). Thus, the
contraction mapping theorem yields that G has a fixed point Z in B̄r̃(0) for small
µ > 0, i.e., (5.14) has a unique solution Z(x;µ) satisfying

∥Z(x;µ)∥τ ≤ M
√
µ. (5.16)

Using the same argument as that for (5.16) and an extension of a contraction
mapping principle in [29], we can show that Z(x;µ) is smooth in its arguments.

Step 2. Solution of (4.5) for x ∈ (−∞, 0].
Using (4.11), (5.1), (5.11) and (5.14), it is easy to verify that the following

equation

(I − S)S̃1(0;µ) = 0 (5.17)

is true.
To construct the solution for x < 0, we know from the reversibility of the system

(4.5) that both S̃1(x;µ) and S
(
S̃1(−x;µ)

)
are solutions of (4.5) and at x = 0 from

(5.17)

S
(
S̃1(0;µ)

)
= S̃1(0;µ).

Thus, by the uniqueness of the solution for an initial value problem, we can define
a solution of (4.5) as

S̃2(x) =


S̃1(x;µ), for x ≥ 0,

S
(
S̃1(−x;µ)

)
, for x ≤ 0.
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Then SS̃2(−x) = S̃2(x). Thus, the solution S̃2(x) of (4.5) is a reversible homoclinic
solution. This completes the proof of Theorem 5.1.
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