
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com

Volume 15, Number 6, December 2025, 3521–3534 DOI:10.11948/20230470

ANALYSIS OF A STOCHASTIC TREE-GRASS
MODEL WITH MEAN-REVERTING
ORNSTEIN-UHLENBECK PROCESS

Xiaohui Ai1,†, Wufei Huang1 and Yifan Wu1

Abstract Considering the survival regulation mechanisms of trees and grasses
in savannas ecosystems, the stochastic variability of ecosystems and the effects
of fire, a stochastic tree-grass model with mean-reverting Ornstein-Uhlenbeck
process is developed and investigated in this paper. Firstly, the biological and
environmental components of the tree-grass model and the biological signif-
icance of each parameter are described, while the mean-reverting Ornstein-
Uhlenbeck process is introduced and its biological significance is explained.
Then we list some dynamical properties of the model and give proofs. The
existence and moment estimates of the global solution of the stochastic model
and sufficient conditions for the existence of a stationary distribution are given.
In addition, we give sufficient conditions for extinction of species. Finally, we
verify that the theories are valid by numerical simulation.
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1. Introduction

While grasslands and forests are both extremely important ecosystems in nature,
trees and grasses mix together to create a landscape that is neither grassland nor
forest, which is called savannas ecosystems [14]. Disturbance is central to the coex-
istence of trees and grasses in humid climates, most typically in the form of fire [1].
This shows that the tree-grass system affected by fire is very complex, mathematical
model should be used to deal with this problem.

Several scholars have now developed systems of ordinary differential equations
to describe the asymmetric competition between trees and grasses. Tamen [15]
presented a simple model of tree-grass dynamics that treats fire as a continuous
event with positive initial conditions G(0) = G0 and T (0) = T0 as follow

dG

dt
= (γG − δG0)G− b1G

2 − cTG− λ1fG,

dT

dt
= (γT − δT )G− b2T

2 − λ2f
G2

G2 + α2
T,
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where T and G are tree and grass biomasses, γT and γG are tree and grass biomass
productivity, δT and δG0 are natural mortality rate, b1 and b2 are mortality as-
sociated with intraspecific competition, f is the fire frequency, λ1 and λ2 are the
mortality rate caused by fire, c is mortality due to competition between trees and

grasses, G2

G2+α2 describes the interrelationship between grass biomass and fire inten-
sity. To facilitate the study of the dynamical properties of the model, we consider
to simplify the parameters of the model by combining parameters that describe the
natural variation in organisms

dG

dt
= G(a1 − b1G− cT )− λ1fG,

dT

dt
= T (a2 − b2T )− λ2f

G2

G2 + α2
T,

where a1 = γG − δG0 and a2 = γT − δT denotes the natural growth rate of grass
and trees respectively. However, populations in nature are constantly subject to
environmental change and are in a state of dynamic flux. Most of the parameters
involved in ecological dynamics, such as growth rates and mortality rates, there-
fore fluctuate stochastically around some mean value [5, 9]. Mao et al. [13] also
demonstrated that stochastic noise can have an unstable effect on biological pop-
ulations, implies that the introduction of stochastic noise would bring biological
models closer to realistic populations. We assume the natural growth rate of the
grass a1 and the tree a2 to be stochastic variables a1(t) and a2(t). In general,
there are two common approaches to model real-world stochastic effects, namely
linear perturbations [4, 7, 10] and the mean-reverting Ornstein-Uhlenbeck process.
According to Zhou [18], we know that if a linear perturbation is used as the param-
eter of a stochastic process, its stochastic fluctuations will become large in a small
time interval, which is an unreasonable result. Therefore we let a1(t) and a2(t) be
fluctuated by the mean-reverting Ornstein-Uhlenbeck process [12,16,17]{

da1(t) = β1[ā1 − a1(t)]dt+ σ1dB1(t),

da2(t) = β2[ā2 − a2(t)]dt+ σ2dB2(t),

where ā1 and ā2 denote the average of a1(t) and a2(t) over time, i.e. E[a1(t)] = ā1,
E[a2(t)] = ā2. Bi(t)(i = 1, 2) denotes independent standard Brownian motion,
βi(i = 1, 2) indicates the speed of reversion, σi indicates intensity of fluctuations.
Thus we can construct the following tree-grass model with the mean-reverting
Ornstein-Uhlenbeck process

dG(t) =
{
G(t)[a1(t)− b1G(t)− cT (t)]− λ1fG(t)

}
dt,

dT (t) =
{
T (t)[a2(t)− b2T ]− λ2f

G(t)2

G(t)2 + α2
T (t)

}
dt,

da1(t) = β1[ā1 − a1(t)]dt+ σ1dB1(t),

da2(t) = β2[ā2 − a2(t)]dt+ σ2dB2(t).

(1.1)

Currently, there are fewer papers dedicated to stochastic models with the mean-
reverting Ornstein-Uhlenbeck process. Therefore, the study of tree-grass models
affected by fire in combination with the mean-reverting Ornstein-Uhlenbeck process
will be a new breakthrough in the study of stochastic populations and tree-grass
models.
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We will next investigate the dynamical properties of the system (1.1), including
the existence of global solutions, boundedness of the θth moments, the existence of
the stationary distribution, and the extinction of the trees and grasses.

2. Materials and methods

Assume that X(t) is a homogeneous Markov process defined in k-dimensional space
and characterized by the following k-dimensional stochastic differential equation

dX(t) = h(t,X(t))dt+

k∑
j=1

σj(t,X(t))dBj(t).

Then we have the Khasminskii Theorem [6].

Lemma 2.1. (Khasminskii) There exists a constant Q that makes

|h(s, x)− h(s, y)|+
k∑

j=1

|σj(s, x)− σj(s, y)| ⩽ Q|x− y|,

|h(s, x)|+
k∑

j=1

|σj(s, x)| ⩽ Q(1 + |x|).

Furthermore, there exists a non-negative function U(x) for any x ∈ Rk\H such that

LU(x) ⩽ −1,

where H is a compact subset defined on Rk.
Then, the solution X(t) is a stationary Markov process, i.e. X(t) has a station-

ary distribution.

3. The format of theorem, lemma, proof, etc.

Theorem 3.1. For any initial value (G(0), T (0), a1(0), a2(0) ∈ R2
+ × R2, there

exists a unique solution (G(t), T (t), a1(t), a2(t)) of system (1) on t ⩾ 0, and it will
remain in R2

+ × R2 with probability one (a.s.).

Proof. For convenience, we define that Sn0
= (−n0, n0)× (−n0, n0)× (−n0, n0)×

(−n0, n0). It is clearly that the coefficients of system (1.1) are all Lipschitz con-
tinuous, according to Mao et al., we know that there exists a local unique solution
(G(t), T (t), a1(t), a2(t)) ∈ R2

+×R2 of the system (1.1) on t ∈ [0, τe], where τe is an ex-
plosion time. A sufficiently large n0 > 0 can be found to make (lnG(0), lnT (0), a1(0),
a2(0)) ∈ Sn0

. For any integer n > n0, the stopping time of the solution can be de-
fined as

τn = inf{t ∈ (0, τe)| lnG(t) /∈ (−n, n), or lnT (t) /∈ (−n, n),

or a1(t) /∈ (−n, n), or a2(t) /∈ (−n, n)}.

It is obviously that τn is monotonically increasing to infinity as n increases. We
let τ∞ = limn→∞ τn, it can be found that τ∞ ⩽ τe(a.s.). To prove Theorem 3.1,
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we only need to verify τ∞ = ∞. Using the contradiction method, i.e. τ∞ < ∞
a.s.. Then there exists constants (ε, T0) ∈ ((0, 1),R+) such that P(τ∞ ⩽ T0) ⩾ ε.
Therefore there exists an integer n1 ⩾ n0 such that P{τn ⩽ T0} ⩾ ε, n ⩾ n1.

For any t ⩽ τn, a non-negative C2-fuction V (G(t), T (t), a1(t), a2(t)) is defined
as

V (G,T, a1, a2) = G− 1− lnG+ T − 1− lnT +
a41
4

+
a42
4
.

Applying the Itô formula, which yields

LV = [G(a1 − b1G− cT )− λ1fG]− (a1 − b1G− cT − λ1f)

+ [T (a2 − b2T )− λ2f
G2

α2 +G2
T ]− (a2 − b2T − λ2f

G2

α2 +G2
)

+
3σ2

1a1
2

+ β1a
3
1(ā1 − a1) +

3σ2
2a2
2

+ β2a
3
2(ā2 − a2)

⩽λ1f + λ2f +G(|a1|+ b1) + T (|a2|+ b2 + c)− b1G
2 − b2T

2

+
3σ2

1a1
2

+ β1a
3
1ā1 − β1a

4
1 +

3σ2
2a2
2

+ β2a
3
2ā2 − β2a

4
2

⩽K0

⩽∞,

(3.1)

where K0 = sup{λ1f +λ2f +G(|a1|+ b1)+T (|a2|+ b2+ c)− b1G
2− b2T

2+
3σ2

1a1

2 +

β1a
3
1ā1 − β1a

4
1 +

3σ2
2a2

2 + β2a
3
2ā2 − β2a

4
2} is a positive number. According to the

inequality (3.1), we have

dV (G,T, a1, a2) ⩽ K0dt+ σ1a
3
1dB1(t) + σ2a

3
2dB2(t). (3.2)

Integrating from 0 to τn ∧ T0 and taking expectation on both sides of the in-
equality (3.2), we can get that

EV (G(τn ∧ T0), T (τn ∧ T0), a1(τn ∧ T0), a2(τn ∧ T0))

⩽V (G(0), T (0), a1(0), a2(0)) +K0T0. (3.3)

Notice that for any ω ∈ {τn ⩽ T0}, at least one of G and T is equal to n or 1/n, we
have

V (G(τn, ω), T (τn, ω), a1(τn, ω), a2(τn, ω))

⩾min{(
√
n− 1− ln

√
n), (

√
1

n
− 1− ln

√
1

n
)}.

According to the inequality (3.3), it can be derived that

V (G(0), T (0), a1(0), a2(0)) +K0T0

⩾E[1{τn⩽T0}(ω)V (G(τn), T (τn), a1(τn), a2(τn))]

⩾εmin{(
√
n− 1− ln

√
n), (

√
1

n
− 1− ln

√
1

n
)},

where 1{τn⩽T0} is an index function of {τn ⩽ T0}. Let n → ∞, we have

∞ > V (G(0), T (0), a1(0), a2(0)) +K0T0 = ∞,

which is contradictory to the assumptions.
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Theorem 3.2. For any initial value (G(0), T (0), a1(0), a2(0)) ∈ R2
+ × R2, the so-

lution (G,T, a1, a2) of system (1.1) satisfy

E|(G,T )|θ ⩽ K(θ) (3.4)

for any θ > 0, where K(θ) is a continuous function with respect to θ. That is to
say, the θth moment of the solution of system (1.1) is bounded.

Proof. For any θ > 2, a non-nagetive C2-funtion V1(G,T, a1, a2) : R2
+ × R2 can

be defined by

V1(G,T, a1, a2) =
Gθ

θ
+

T θ

θ
+

a2θ1
2θ

+
a2θ2
2θ

. (3.5)

Applying differential operator L to eγtV1(G,T, a1, a2), taking expections on the
both sides of the formula, we have

E[eγtV1(G,T, a1, a2)] =E[V1(G(0), T (0), a1(0), a2(0))]

+

∫ t

0

E{L[eγsV1(G(s), T (s), a1(s), a2(s))]}ds, (3.6)

where γ = θmin{β1, β2}. According to Itô formula, it can be gotten that

L(eγtV1) = γeγtV1 + eγtLV1

= γeγt(
Gθ

θ
+

T θ

θ
+

a2θ1
2θ

+
a2θ2
2θ

) + eγtGθ(a1 − b1G− cT − λ1f)

+ eγt[a2θ−1
1 β1(ā1 − a1) + (2θ − 1)a2θ−2

1 σ2
1 ]

+ eγt[a2θ−1
2 β2(ā2 − a2) + (2θ − 1)a2θ−2

2 σ2
2 ]

+ eγtT θ(a2 − b2T − λ2f
G2

α2 +G2
)

⩽ eγt(
γGθ

θ
+ a1G

θ − b1G
θ+1 − cGθT − λ1fG

θ +
γT θ

θ
+ a2T

θ

− b2T
θ+1 + λ2fT

θ − β1a
2θ
1

2
+ β1ā1a

2θ−1
1 + (2θ − 1)a2θ−2

1 σ2
1

− β2a
2θ
2

2
+ β2ā2a

2θ−1
2 + (2θ − 1)a2θ−2

2 σ2
2)

⩽K1(θ)e
γt, (3.7)

where K1(θ) = sup(G,T,a1,a2)∈R2
+×R2{eγt(γG

θ

θ + a1G
θ − b1G

θ+1 − cGθT − λ1fG
θ +

γT θ

θ + a2T
θ − b2T

θ+1 + λ2fT
θ − β1a

2θ
1

2 + β1ā1a
2θ−1
1 + (2θ − 1)a2θ−2

1 σ2
1 − β2a

2θ
2

2 +

β2ā2a
2θ−1
2 + (2θ− 1)a2θ−2

2 σ2
2)} < ∞. Combining formula (3.6) and (3.7), we obtain

E[eγtV1(G,T, a1, a2)] ⩽ E[V1(G(0), T (0), a1(0), a2(0))] +
K1(θ)(e

γt − 1)

γ
,

which is equivalent to the following inequality

E[V1(G,T, a1, a2)] ⩽ e−γtE[V1(G(0), T (0), a1(0), a2(0))] +
K1(θ)(e

γt − 1)

γeγt
,
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then we obtain that

lim sup
t→∞

EV1(G,T, a1, a2) ⩽
K1(θ)

γ
. (3.8)

Besides, it can be easily gotten that

|(G,T )|θ ⩽ 2
θ
2 θmax{G

θ

θ
,
T θ

θ
} ⩽ 2

θ
2 θV1(G,T, a1, a2). (3.9)

Then combining the inequalities (3.8) and (3.9), it can be derived that

lim sup
t→∞

E|(G,T )|θ ⩽ 2
θ
2 θ lim sup

t→∞
EV1(G,T, a1, a2) ⩽ 2

θ
2 θ

K1(θ)

γ
= K(θ). (3.10)

For any θ ∈ (0, 2), according to Hölder’s inequality and the inequality (3.10), we
have

lim sup
t→∞

E|(G,T )|θ ⩽ lim sup
t→∞

E[|(G,T )|2] θ2 ⩽ (K(2))
θ
2 . (3.11)

The proof of the theorem is finished.

Theorem 3.3. For any initial value (G(0), T (0), a1(0), a2(0)) ∈ R2
+ × R2, if ā1 +

ā2 > λ1f + λ2f and P 2
0 < min{ 2

b1
, 2b2
(b2+c)2 }, where P0 can satisfy −P0(ā1 + ā2 −

λ1f − λ2f) +K2 = −2 with the constant

K2 := sup
(G,T,a1,a2)∈R2

+×R2

{|a1|G− cGT − λf1G+ |a2|T +
3a21σ

2
1

2
+

3a22σ
2
2

2
+ β1|a1|3ā1

+ β2|a2|3ā2 −
b1G

2

2
− b22T

2

2
− β1a

4
1

2
− β2a

4
2

2
}.

Then system (1.1) has a stationary distribution l(·) on R2
+ × R2.

Proof. We define V0(G,T, a1, a2) : R2
+ × R2 by

V0(G,T, a1, a2) = P0[− lnG(t)−lnT (t)− a1(t)

β1
− a2(t)

β2
]+G(t)+T (t)+

a41(t)

4
+
a42(t)

4
.

According to Itô formula, we have

LV0 =P0[−(a1 − b1G− cT − λ1f)− (a2 − b2T − λ2f
G2

α2 +G2
)− (ā1 − a1)

− (ā2 − a2)] +G(a1 − b1G− cT − λ1f) + T (a2 − b2T − λ2f
G2

α2 +G2
T )

+ β1a
3
1(ā1 − a1) +

3a21σ
2
1

2
+ β2a

3
2(ā2 − a2) +

3a22σ
2
2

2
⩽− P0(ā1 + ā2 − λ1f − λ2f) + sup

(G,T,a1,a2)∈R2
+×R2

{|a1|G− cGT−λf1G+ |a2|T

+
3a21σ

2
1

2
+

3a22σ
2
2

2
+ β1|a1|3ā1 + β2|a2|3ā2 −

b1G
2

2
− b2T

2

2
− β1a

4
1

2
− β2a

4
2

2
}

+ P0b1G+ P0cT + P0b2T − b1G
2

2
− b2T

2

2
− β1a

4
1

2
− β2a

4
2

2
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=− 2 + P0b1G+ P0b2T + P0cT − b1G
2

2
− b2T

2

2
− β1a

4
1

2
− β2a

4
2

2
. (3.12)

It is easy to obtain that as |(G,T, a1, a2)| → ∞, the function V0(G,T, a1.a2)
tends to ∞ or (G,T ) approaches the boundary of R2

+. Therefore the function has
a minimum value V0(G

0, T 0, a01, a
0
2) in R2

+ × R2. Thus a non-negative function can
be constructed as follows

V (G,T, a1, a2) = V0(G,T, a1.a2)− V0(G
0, T 0, a01, a

0
2).

According to Itô formula and the inequality (3.12), we obtain

LV (G,T, a1, a2) ⩽− 2 + P0b1G+ P0b2T + P0cT − b1G
2

2
− b2T

2

2

− β1a
4
1

2
− β2a

4
2

2
. (3.13)

Then we consider a closed set Hε as

Hε = {(G,T, a1, a2) ∈ R2
+ × R2|G ∈ [ε,

1

ε
], T ∈ [ε,

1

ε
], a1 ∈ [−1

ε
,
1

ε
], a2 ∈ [−1

ε
,
1

ε
]},

where ε ∈ (0, 1) is a sufficiently small number which can satisfy the following in-
equalities

− 2 +K3 −
min{b1, b2}

4
(
1

ε
)2 ⩽ −1, (3.14)

− 2 +K3 −
min{β1, β2}

4
(
1

ε
)4 ⩽ −1, (3.15)

− 2 + P0b2T + P0cT − b2T
2

2
+ P0b1ε ⩽ −1, (3.16)

− 2 + P0b1G− b1G
2

2
+ (P0b2 + P0c)ε ⩽ −1, (3.17)

where K3 = sup(G,T,a1,a2)∈R2
+×R2{P0b1G + P0b2T + P0cT − b1G

2

4 − b2T
2

4 − β1a
4
1

4 −
β2a

4
2

4 } < ∞.

Note that (R+ × R2)\Hε =
⋃6

k=1 Hc
k,ε, where

Hc
1,ε = {(G,T, a1, a2) ∈ R2

+ × R2|G ∈ (
1

ε
,∞)},

Hc
2,ε = {(G,T, a1, a2) ∈ R2

+ × R2|T ∈ (
1

ε
,∞)},

Hc
3,ε = {(G,T, a1, a2) ∈ R2

+ × R2||a1| ∈ (
1

ε
,∞)},

Hc
4,ε = {(G,T, a1, a2) ∈ R2

+ × R2||a2| ∈ (
1

ε
,∞)},

Hc
5,ε = {(G,T, a1, a2) ∈ R2

+ × R2|G ∈ (0, ε)},
Hc

6,ε = {(G,T, a1, a2) ∈ R2
+ × R2|T ∈ (0, ε)}.
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Next we will verify LV (G,T, a1, a2) ⩽ −1 for any (G,T, a1, a2) ∈ (R2
+ × R2)\Hε.

This part of the proof can be divided into six parts.

Case 1. If (G,T, a1, a2) ∈ Hc
1,ε, according to the inequality (3.14), we have

LV (G,T, a1, a2) ⩽− 2 + sup
(G,T,a1,a2)∈R2

+×R2

{P0b1G+ P0b2T + P0cT − b1G
2

4
− b2T

2

4

− β1a
4
1

4
− β2a

4
2

4
} − b1G

2

4

⩽− 2 +K3 −
min{b1, b2}

4
(
1

ε
)2

⩽− 1.

Case 2. If (G,T, a1, a2) ∈ Hc
2,ε, according to the inequality (3.14), we have

LV (G,T, a1, a2) ⩽− 2 + sup
(G,T,a1,a2)∈R2

+×R2

{P0b1G+ P0b2T + P0cT − b1G
2

4
− b2T

2

4

− β1a
4
1

4
− β2a

4
2

4
} − b2T

2

4

⩽− 2 +K3 −
min{b1, b2}

4
(
1

ε
)2

⩽− 1.

Case 3. If (G,T, a1, a2) ∈ Hc
3,ε, combined with the inequality (3.15), we obtain

LV (G,T, a1, a2) ⩽− 2 + sup
(G,T,a1,a2)∈R2

+×R2

{P0b1G+ P0b2T + P0cT − b1G
2

4
− b2T

2

4

− β1a
4
1

4
− β2a

4
2

4
} − β1a

4
1

4

⩽− 2 +K3 −
min{β1, β2}

4
(
1

ε
)4

⩽− 1.

Case 4. If (G,T, a1, a2) ∈ Hc
4,ε, combined with the inequality (3.15), it can be

derived that

LV (G,T, a1, a2) ⩽− 2 + sup
(G,T,a1,a2)∈R2

+×R2

{P0b1G+ P0b2T + P0cT − b1G
2

4
− b2T

2

4

− β1a
4
1

4
− β2a

4
2

4
} − β2a

4
2

4

⩽− 2 +K3 −
min{β1, β2}

4
(
1

ε
)4

⩽− 1.

Case 5. If (G,T, a1, a2) ∈ Hc
5,ε and P 2

0 < 2b2
(b2+c)2 , combined with the inequality

(3.16), it can be derived that

−2 + P0b2T + P0cT − b2T
2

2
+ P0b1ε ⩽ −1.
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Case 6. If (G,T, a1, a2) ∈ Hc
6,ε and P 2

0 < 2
b1
, combined with the inequality (3.17),

it can be derived that

−2 + P0b1G− b1G
2

2
+ (P0b2 + P0c)ε ⩽ −1.

Based on the six cases above, we can derive that there is a sufficiently small constant
ε > 0 which can satisfy LV (G,T, a1, a2) ⩽ −1 for any (G,T, a1, a2) ∈ (R2

+×R2)\Hε,

where ε satisfies ε ⩽ min{1, 1−P0b2T−P0cT+
b2T2

2

P0b1
,
1−P0b1G+

b1G2

2

P0b2+P0c
} when K3 ⩽ 1, and

if K3 > 1, we have

ε ⩽ min{1, 2

√
min{b1, b2}
4(K3 − 1)

, 4

√
min{β1, β2}
4(K3 − 1)

}.

According to Lemma 2.1, system (1.1) has a stationary distribution l(·) on R2
+

× R2 when ā1 + ā2 > λ1f + λ2f .

Theorem 3.4. For any initial value (G(0), T (0), a1(0), a2(0)) ∈ R2
+ × R2, the so-

lution (G(t), T (t), a1(t), a2(t)) of system (1.1) satisfy

lim sup
t→∞

lnG(t)

t
⩽ ā1, lim sup

t→∞

lnT (t)

t
⩽ ā2.

Particularly, if ā1 < 0, ā2 < 0, then G(t) and T (t) are extinct.

Proof. Applying to Itô formula to lnG(t) and lnT (t), it can be gotten that
d lnG = (a1 − b1G− cT − λ1f)dt,

d lnT = (a2 − b2T − λ2f
G2

G2 + α2
)dt.

(3.18)

Integrating both sides of the equalities (3.18) from 0 to t, we have
lnG(t) = lnG(0) +

∫ t

0

(a1(t)− b1G(t)− cT (t)− λ1f)ds,

lnT (t) = lnT (0) +

∫ t

0

(a2(t)− b2T (t)− λ2f
G(t)2

G(t)2 + α2
)ds.

(3.19)

According to the equality (3.19), it can be obtained that

lnG(t) ⩽ lnG(0) +

∫ t

0

a1(s)ds, lnT (t) ⩽ lnT (0) +

∫ t

0

a2(s)ds. (3.20)

According to the definition of Ornstein-Uhlenbeck process and the strong law of
large numbers [8], it can be gotten that

lim
t→∞

1

t

∫ t

0

a1(s)ds = ā1, lim
t→∞

1

t

∫ t

0

a2(s)ds = ā2. (3.21)

Combining (3.20) and (3.21), we have
lim sup
t→∞

lnG(t)

t
⩽ lim sup

t→∞

∫ t

0
a1(s)ds

t
= ā1,

lim sup
t→∞

lnT (t)

t
⩽ lim sup

t→∞

∫ t

0
a2(s)ds

t
= ā2.

(3.22)
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Therefore, when ā1 < 0, ā2 < 0, it means that limn→∞ G(t) = 0, limn→∞ T (t) = 0,
in other words, G(t) and T (t) are extinct. Then Theorem 3.4 has proved.

4. Example

In this section, we will introduce Milstein’s higher-order method [3] to our numerical
tests in order to verify our conclusions. The corresponding discretization equation
of system (1.1) can be gotten

G(k + 1) = G(k) +G(k)[a1(k)− b1G(k)− cT (k)− λ1f ]∆t,

T (k + 1) = T (k) + T (k)[a2(k)− b2T (k)− λ2f
G2

α2 +G2
]∆t,

a1(k + 1) = a1(k) + β1[ā1 − a1(k)]∆t+ σ1ξk
√
∆t,

a2(k + 1) = a2(k) + β2[ā2 − a2(k)]∆t+ σ2ηk
√
∆t,

(4.1)

where ∆t > 0 denotes time increment, ξk and ηk are independent Gaussian random
variables with the Gaussian distribution N(0, 1).

According to Tamen [15], we can obtain a reasonable range of values for the
parameters in system (1.1). For the convenience of readers, it will be shown in
Table 1. And we provides several combinations of parameters in Table 2 which will
be used in the following examples.

Table 1. Parameter values of system (1.1).

Parameters Values Units

a1 0.3− 4.5 yr−1

a2 0.156− 7.17 yr−1

b1 0.1 ha.t−1.yr−1

b2 0.3 ha.t−1.yr−1

c 0.19 ha.t−1.yr−1

λ1 0.1− 1 yr−1

λ2 0.005− 1 yr−1

α 0.54− 1.73 t.ha−1

f 0− 1 yr−1

Table 2. Several combinations of biological parameters of system (1.1).

Combination Values

(A1) a10 = 2.4, a20 = 3, b1 = 0.1, b2 = 0.3, c = 0.19, λ1 = 0.2, λ2 = 0.2,

f = 0.5, α = 0.8, σ1 = 0.08, σ2 = 0.08, β1 = 0.4, β2 = 0.5

(A2) a10 = 3, a20 = 4, b1 = 0.1, b2 = 0.3, c = 0.19, λ1 = 0.3, λ2 = 0.3,

f = 0.5, α = 0.8, σ1 = 0.05, σ2 = 0.05, β1 = 0.4, β2 = 0.5, q = 2

(A3) a10 = −0.4, a20 = −0.5, b1 = 0.1, b2 = 0.3, c = 0.19, λ1 = 0.2, λ2 = 0.2,

f = 0.5, α = 0.8, σ1 = 0.08, σ2 = 0.08, β1 = 0.4, β2 = 0.5
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Example 4.1. At first, we will verify the conclusion of Theorem 3.1. By Table 2, we
choose the combination A1 as the value of the parameters of the system (1.1), and
draw with R language. Then the results of computer simulation is shown in Figure
1. It means that the savannas ecosystem model is reasonably well constructed, and
the existence of the global solution of the system (1.1) is verified.

Figure 1. The existence of global solution.

Example 4.2. Then we will verify the conclusion of Theorem 3.2. We will use
numerical simulations to find an upper bound on the θth moments. By Table 2, we
choose the combination A2 as the value of the biological parameters of the system
(1.1). The results of computer simulation in Figure 2 express that the θth moments
of the solution of the system (1.1) have an upper bound. It means that there is an
upper limit to the growth of the population so it is not infinite.

Figure 2. Boundness of θth moment.

Example 4.3. Based on the equations (4.1) we can count the frequency of the
solutions. In order to verify the conclusion of Theorem 3.3, We will plot histograms
to model the distribution of the solution values. By Table 2, we choose the com-
bination A1 as the value of the parameters of the system (1.1), and draw with R
language. Then the results of computer simulation is shown in Figure 3. Based on
the results of the frequency histogram, it can be found that G,T, a1, a2 all tend to
a stationary distribution when ā1 + ā2 > λ1f + λ2f and P 2

0 < min{ 2
b1
, 2b2
(b2+c)2 }.

It means that the savannas ecosystem will remain stable in the long term, when
subject to a number of conditions. And the existence of the stationary distribution
of the system (1.1) is verified.
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Figure 3. Frequency histogram of solutions.

Example 4.4. In order to verify the conclusion in Theorem 3.4 about the extinction
of the system (1.1), we choose to perform numerical simulations in conjunction with
A3 to determine whether both G and T become extinct under the conditions A3.
The results of the numerical simulation are presented in Figure 4. The results show
that both G and T become extinct at the same time if ā1 < 0, ā2 < 0.

Figure 4. Extinction of solutions.

5. Conclusions

In this paper, we first introduce the mixed tree-grass ecosystems commonly af-
fected by fire in nature, and then combine this with related studies to construct
differential equation models that attempt to describe the asymmetric interactions
between trees and grasses. Secondly, to more realistically reflect the role of environ-
mental noise in nature, i.e. the effect of environmental noise on the variability of
biomass, we introduced stochastic variables to simulate the stochastic effects in the
real world. Comparing the linear perturbation and the mean-reverting Ornstein-
Uhlenbeck process, we find that the mean-reverting Ornstein-Uhlenbeck process can
avoid explosive random fluctuations in the growth rate and thus better simulate en-
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vironmental noise [2, 11]. Accordingly, we developed a tree-grass model with the
mean-reverting Ornstein-Uhlenbeck process affected by fire. Next we prove some of
the dynamical properties of the tree-grass model. First we show that the solution
(G(t), T (t), a1(t), a2(t)) is global and unique, which is not the same as the linear
perturbation stochastic model with a global and unique positive solution. Secondly
we prove that for any θ > 0, the θth moments of the solution of the model are
bounded. We next prove the existence of a stationary distribution for system (1.1)
when ā1 + ā2 > λ1f + λ2f , and satisfy P 2

0 < min{ 2
b1
, 2b2
(b2+c)2 }, which implies that

the population in system (1.1) is weakly persistent. Finally we prove that when the
solution (G(t), T (t), a1(t), a2(t)) of system (1.1) satisfy ā1 < 0, ā2 < 0, Trees and
Grasses are extinct.

Therefore we can give the conclusion that our model is able to describe the
variation of tree and grass in savannas ecosystem, so the model design is reasonable.
Meanwhile our model illustrates that both trees and grasses have an upper bound
on their growth without exploding. And the growth of trees and grasses constrain
each other. Under some conditions, trees and grasses can coexist stably for a long
period of time. While the growth rate is negative, both trees and grasses will tend
to become extinct. Our model is also still partially underconsidered. The effect of
time lag is not considered in this paper. Whether it is fire or ecological changes,
the impacts they bring are often time-lagged. We will introduce a time lag term to
represent this in future studies. In savannas ecosystems, the water content of the
soil also needs to be taken into account, and we did not consider the water content
of the soil in our model. Therefore, we will add equation for soil water content ratio
to the model in future studies. Also, we did not consider the coefficients about fire
well enough. The intensity of fire actually changes with the number of trees and
grasses. We will consider these factors in our future studies, which will be a big
challenge.
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