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EXISTENCE AND EXPONENTIAL STABILITY
FOR A NEW CLASS OF FIRST-ORDER
IMPULSIVE EVOLUTION EQUATIONS∗

Caijing Jiang1,† and Fengzhen Long2

Abstract The aim of this paper is to present systematic methods for ana-
lyzing the existence and the exponential stability of a new class of first-order
impulsive evolution equations. We initially provide two existence results of
mild solutions for the equations using two kinds of methods. Subsequently,
we also explore the exponential stability of the equation. Lastly, we present
some applications in differential hemivariational inequalities to demonstrate
our main results.

Keywords Impulsive delay evolution equation, mild solution, existence, ex-
ponential stability.

MSC(2010) 34A12, 34B37, 34K20.

1. Introduction

Impulsive evolution equations constitute an intriguing and vibrant domain of math-
ematical inquiry, attracting considerable attention in recent times. These equations
are distinguished by their capacity to simulate systems that experience sudden al-
terations or impulses at specific instances of time.This characteristic distinguishes
them from traditional evolution equations, which usually depict systems evolving
smoothly over time. The importance of impulsive evolution equations lies in their
capability to capture and analyze intricate phenomena present in various real-world
systems, such as biological populations, financial markets, and control systems.

Additionally, impulsive evolution equations are utilized in various interdisci-
plinary fields. In biology, they are applied to simulate the dynamics of infectious
diseases using impulsive vaccination strategies or the effects of harvesting on prey-
predator systems. In engineering, impulsive equations can represent the behavior of
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systems that undergo abrupt changes in operating conditions, such as power grids
experiencing sudden load changes. In the field of economics, impulsive evolution
equations are capable of capturing the repercussions of policy alterations or market
interventions on the dynamics of the economy. The wide-ranging applicability of
these equations renders them an invaluable resource for researchers from diverse
disciplines, who aim to comprehend and model systems exhibiting impulsive char-
acteristics.

Studying impulsive evolution equations necessitates the creation of novel mathe-
matical tools and methods. One example is the extension of the monotone iterative
technique, commonly utilized in the examination of ordinary and partial differential
equations, to impulsive fractional evolution equations. This provides fresh perspec-
tives on the dynamics of intricate systems. By including impulsive impacts, these
equations are able to represent the abrupt shifts and interruptions that frequently
occur in real-world systems.

This enables a more accurate and realistic modeling of such systems, leading to a
deeper understanding of their behavior and performance. This technique allows for
the construction of approximate solutions and the proof of existence and uniqueness
results under certain conditions.This facilitates the development of more precise and
practical models for these systems, fostering a profounder comprehension of their
operational patterns and effectiveness. Furthermore, this methodology facilitates
the derivation of approximate solutions and the verification of the existence and
uniqueness of outcomes under specified circumstances. Additionally, Lipschitz con-
ditions, Gronwall’s inequality, compact semigroup, and noncompactness measure
have been utilized in the analysis of these equations, offering robust instruments
for evaluating solutions and constraining their behaviors. Regarding the funda-
mental principles and recent advancements in impulsive differential equations, we
recommend consulting [1, 19,20,25,26] for further insights.

The importance of exponential stability in differential equations is deep and
varied. Exponential stability is an essential idea in the examination of dynam-
ical systems, especially those characterized by differential equations. It denotes
the feature of a system’s solutions to converge towards an equilibrium point at an
exponential rate as time progresses.

This trait is greatly appreciated in different scientific and engineering fields
because of its implications for system performance, predictability, and robustness
(see [3, 4, 6, 12, 27]). An important aspect of exponential stability is its ability
to guarantee the quick convergence of system states.In numerous scenarios, it is
crucial for the system to quickly reach a stable state, whether it is a control system
adjusting to a desired setup or a physical process stabilizing after a disruption.
Additionally, exponential stability is closely connected to the resilience of dynamical
systems. Moreover, the idea of exponential stability is relevant to the study of
chaotic dynamics and nonlinear systems. Though typically associated with linear
systems, the application of exponential stability to nonlinear systems offers valuable
understanding of the dynamics of intricate systems.

In particular, the exponential convergence of trajectories in nonlinear systems
can help identify regions of stability and predict the long-term behavior of the sys-
tem, even in the presence of chaotic dynamics. The significance of exponential
stability is also reflected in its role in system identification and model reduction.
Specifically, the rapid convergence of paths in nonlinear systems can aid in deter-
mining stable areas and forecasting the system’s future behavior, even when chaotic
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dynamics are present. The importance of exponential stability is also evident in its
contribution to system recognition and simplification. In numerous situations, it is
vital to approximate intricate systems with simpler models that are easier to ana-
lyze and control. Exponential stability offers a measure for evaluating the accuracy
of these approximations. If the simplified model preserves the exponential stability
of the initial system, it is more probable to offer dependable forecasts and uphold
the desired system performance.

Consider an interval J = [0, b](b > 0) and a finite set of points

D = {ti ∈ (0, b), i = 1, 2, · · · ,m}, 0 = t0 < t1 < t2 < · · · < tm < tm+1 = b.

In this paper, we consider the following form:
x′(t) = Ax(t) + f(t, x(t)) +B(t, x(t))g(t, x(t)), t ∈ (0, b]−D,

∆x(tk) = G(tk, x(tk)), tk ∈ D,

x(t) = θ(t), t ∈ [−τ, 0].

(1.1)

A : D(A) ⊆ X → X, is the infinitesimal generator of a uniformly bounded C0-
semigroup {T (t)}t≥0 on a reflexive Banach space X. θ : [−τ, 0] → X(τ > 0) is
a continuous function. Let V be a separable Banach space. f : J × X → X, g :
J × X → V,B : J × X → L(V,X) G : D × X → X are given functions to be
specified later. Here, x(tk) = x(t−k ) and ∆x(tk) = x(t+k ) − x(t−k ), where x(t

+
k ) and

x(t−k ) denote the right and the left limits of x(t) at t = tk ∈ D, respectively.
The objective of this paper is to furnish methodical methodologies for studying

the existence and exponential stability of the first-order impulsive evolution equa-
tion (1.1), which incorporates Caputo first-order derivatives in separable reflexive
Banach spaces. Firstly, we establish two existence result for mild solutions to the
equations, employing two kinds of methods. In addressing the existence results
under varying hypotheses, we invoke several fixed point theorems. Additionally,
we consider the exponential stability of the equation. Lastly, to exemplify our key
findings, we present several applications pertaining to differential hemivariational
inequalities.

The main novelties of the paper are following. First, the existence and the
exponential stability of the first-order impulsive evolution equation considered in
this work has not been studied. Such equations are important and useful in the
applications of many practical problems. Second, the method with almost history-
dependent operators is quite useful in the study of mild solutions to evolution equa-
tions, and has applied to deal frictional contact problems (see [17, 18]). Moreover,
the method involving feedback control is new to prove existence for impulsive evolu-
tion equations, which can be applied to several problems, for instance, evolutionary
hemivariational inequalities, differential variational inequalities. Third, we provide
a new idea to study the differential hemivariational inequalities as a application of
the abstract existence result.

We now discuss the difference between the two methods. The first method is re-
stricted by the Lipschitz conditions for the data by using the fixed point theorem for
almost history-dependent operator, which can derives the existence and uniqueness
of solution. For the second method, it is restricted by the compactness conditions
for the semigroup and is involved in feedback control system, which only derives the
existence of solution. They are both new and useful to study impulsive evolution
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equations. It is the first step to use them to investigate such equations, which can
be generalized and improved to deal with more complex evolution equations, for
instance, fractional evolution equations and functional differential equations.

The rest of this paper is organized as follows. In Section 2, we will present
some preliminaries which will be used to prove our main results. In Section 3 and
Section 4, some sufficient conditions are established to guarantee some existence
of mild solutions of problem (1.1). The subsequent structure of this paper is as
follows. Section 2 introduces foundational concepts that will be instrumental in
demonstrating our primary results. Sections 3 and 4 establish sufficient conditions to
ensure the existence of mild solutions for problem (1.1). Theorem 3.2 and Theorem
4.1 are the main results. Section 5 delves into the exponential stability of problem
(1.1), and the final section shows some applications.

2. Preliminaries

The norm of a Banach space X will be denoted by ∥ · ∥X . Let J̄ = J ∪ [−τ, 0].
Let C(J,X) denote the Banach space of continuous functions from J into X with
the norm ∥x∥C = supt∈J∥x(t)∥X and L2(J,X) denote the Banach space of twice

integrable functions from J into X with the norm ∥x∥L2 =

(∫
t∈J

∥x(t)∥2X
) 1

2

. In

order to define the mild solutions of problem (1.1), we also consider the Banach space
PC(J,X) = {x ∈ C((tk, tk+1], X) : x(t−k ), x(t

+
k ) exist, k = 0, 1, 2, · · · ,m and x(tk) =

x(t−k )} with the norm ∥x∥PC = supt∈J ∥x(t)∥X . Let C := C([−τ, 0], X)∩PC(J,X)
with the norm ∥x∥C = supt∈[−τ,b] ∥x(t)∥X .

As is well-known, the concept of history-dependent operator was initially pre-
sented in [17], while the definition of almost history-dependent operator was ex-
plored in [18], both of which have garnered numerous practical applications. Here,
we define the class of almost history-dependent operators over bounded intervals I
as detailed below:

Definition 2.1 ( [18]). An operator F : C(I,X) → C(I,X) is called an almost
history-dependent operator if for any compact set K ⊂ I, there exist constants
ℓK ∈ [0, 1), LK ≥ 0 such that

∥(Fx)(t)− (Fy)(t)∥X ≤ ℓK∥x(t)− y(t)∥X + LK

∫ t

0

∥x(s)− y(s)∥Xds, (2.1)

for all x, y ∈ C(I,X), t ∈ K.

There are three special cases of general history-dependent operators.

(i) If LK = 0, then (2.1) is reduced to

∥(Fx)(t)− (Fy)(t)∥X ≤ ℓK∥x(t)− y(t)∥X ,

which implies that

∥Fx− Fy∥C(I,X) ≤ ℓK∥x− y∥C(I,X),

i.e., F is a Lipschitz continuous operator on C(I,X) with constant ℓK ∈ [0, 1).
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(ii) If ℓK = 0, then (2.1) is reduced to

∥(Fx)(t)− (Fy)(t)∥X ≤ LK

∫ t

0

∥x(s)− y(s)∥Xds,

i.e., F is a history-dependent operator on C(I,X) with constant LK ≥ 0
(cf. [17]).

Theorem 2.1 ( [18]). If F : C(I,X) → C(I,X) is a almost history-dependent
operator, then F has a fixed point in C(I,X).

Definition 2.2 ( [9,15,25]). A function x ∈ C is called a mild solution to problem
(1.1) if it satisfies

x(t) =



θ(t), t ∈ [−τ, 0],

T (t)θ(0) +

∫ t

0

T (t− s)[f(s, x(s)) +B(s, x(s))g(s, x(s))]ds, t ∈ (0, t1],

T (t)θ(0) +

k∑
i=1

T (t− ti)G(ti, x(ti)) +

∫ t

0

T (t− s)[f(s, x(s))

+B(s, x(s))g(s, x(s))]ds, t ∈ (tk, tk+1], k = 1, · · · ,m.

3. Existence result I

In the sequel, we will establish the following assumptions regarding the data of our
problem.
(Hf ) : f : J × X → X is continuous on J × X, and there exist a function ϕ ∈
L2(J,R+) and a constant Lf > 0 such that

∥f(t, 0)∥X ≤ ϕ(t),

∥f(t, x1)− f(t, x2)∥X ≤ Lf∥x1 − x2∥X

for all x1, x2 ∈ X and a.e. t ∈ J .
(HB) : B : J × X → L(V,X) is continuous on J × X, and there exist a function
φ ∈ L2(J,R+) and a constant LB > 0 such that

∥B(t, 0)∥L(V,X) ≤ φ(t),

∥B(t, x1)−B(t, x2)∥L(V,X) ≤ LB∥x1 − x2∥X

for all x1, x2 ∈ X and a.e. t ∈ J .
(Hg) : g : J × X → V is continuous on J × X, and there exist a function ψ ∈
L∞(J,R+) and a constant Lg > 0 such that

∥g(t, x)∥X ≤ ψ(t),

∥g(t, x1)− g(t, x2)∥X ≤ Lg∥x1 − x2∥X

for all x1, x2 ∈ X and a.e. t ∈ J .
(HG) : There exist constants Lk ≥ 0 with M

∑k
i=1 Li < 1 (k = 1, 2, · · · ,m) such

that

∥G(tk, x1)−G(tk, x2)∥X ≤ Lk∥x1 − x2∥X
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for all tk ∈ D,x, y ∈ X.
For fixed η ∈ C(J, V ), consider the following problem:

x(t) =



θ(t), t ∈ [−τ, 0],

T (t)θ(0) +

∫ t

0

T (t− s)[f(s, x(s)) +B(s, x(s))η(s))]ds, t ∈ (0, t1],

T (t)θ(0) +

k∑
i=1

T (t− ti)G(ti, x(ti)) +

∫ t

0

T (t− s)[f(s, x(s))

+B(s, x(s))η(s)]ds, t ∈ (tk, tk+1], k = 1, · · · ,m.

(3.1)

Theorem 3.1. Assume that the hypotheses (Hf ), (HB), (Hg), (HG) are satisfied.
Then for each η ∈ C(J, V ), problem (3.1) has a unique mild solution on xη ∈ C.
Moreover, for two solutions xη1

, xη2
∈ C of problem (3.1) corresponding to η1, η2 ∈

C(J, V ), respectively, one has

∥xη1(t)− xη2(t)∥X ≤M

∫ t

0

∥η1(s)− η2(s)∥V ds, ∀t ∈ J (3.2)

for some M > 0.

Proof. The mild solution to problem (3.1) exists and is unique, as demonstrated
in Theorem 3.1 in [24]. We now show the boundedness of xη. If t ∈ (0, t1], then
from the hypotheses (Hf ), (HB), (Hg) and the Hölder’s inequality, we obtain

∥xη(t)∥X

≤ ∥T (t)θ(0)∥X +

∫ t

0

∥T (t− s)[f(s, xη(s)) +B(s, xη(s))η(s)]∥Xds

≤ M∥θ(0)∥X +M

∫ t

0

[∥f(s, xη(s))− f(s, 0)∥+ ∥f(s, 0)∥

+(∥B(s, xη(s))−B(s, 0)∥+ ∥B(s, 0)∥)∥η(s)∥]ds

≤ M∥θ(0)∥X +M

∫ t

0

(Lf∥xη(s)∥X + ∥ϕ(s)∥X + LB∥η∥C∥xη(s)∥X)ds

≤ M∥θ(0)∥X +M
√
b∥ϕ∥L2(J,R+) +M(Lf + LB∥η∥C)

∫ t

0

∥xη(s)∥Xds.

Therefore, by using the standard Gronwall’s inequality, we obtain

∥xη(t)∥X ≤M1e
M2 for some M1,M2 > 0.

If t ∈ (tk, tk+1](k = 1, · · · ,m), from the hypotheses (Hf ), (HB), (Hg), (HG) and
the Hölder’s inequality, we have

∥xη(t)∥X

≤ ∥T (t)θ(0)∥X + ∥
k∑

i=1

T (t− ti)G(ti, xη(ti))∥X

+

∫ t

0

∥T (t− s)[f(s, xη(s)) +B(s, xη(s))η(s)]∥Xds
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≤ M∥θ(0)∥X +M∥
k∑

i=1

(∥G(ti, xη(ti))−G(ti, 0)∥X + ∥G(ti, 0)∥X)

+M

∫ t

0

[∥f(s, xη(s))− f(s, 0)∥+ ∥f(s, 0)∥

+(∥B(s, xη(s))−B(s, 0)∥+ ∥B(s, 0)∥)∥η(s)∥]ds

≤ M∥θ(0)∥X +M

k∑
i=1

Li∥xη(ti)∥X +M∥G(ti, 0)∥X

+M

∫ t

0

(Lf∥xη(s)∥X + ∥ϕ(s)∥X + LB∥η∥C∥xη(s)∥X)ds

≤ M∥θ(0)∥X +M

k∑
i=1

Li∥xη(ti)∥X +M∥G(ti, 0)∥X

+M
√
b∥ϕ∥L2(J,R+) +M(Lf + LB∥η∥C)

∫ t

0

∥xη(s)∥Xds.

Thus

sup
s∈[0,t]

∥xη(s)∥X

≤ M∥θ(0)∥X +M

k∑
i=1

Li sup
s∈[0,t]

∥xη(s)∥X +M∥G(ti, 0)∥X

+M
√
b∥ϕ∥L2(J,R+) +M(Lf + LB∥η∥C)

∫ t

0

sup
r∈[0,s]

∥xη(r)∥Xds,

and hence

(1−M

k∑
i=1

Li) sup
s∈[0,t]

∥xη(s)∥X

≤ M∥θ(0)∥X +M

k∑
i=1

Li sup
s∈[0,t]

∥xη(s)∥X +M∥G(ti, 0)∥X

+M
√
b∥ϕ∥L2(J,R+) +M(Lf + LB∥η∥C)

∫ t

0

sup
r∈[0,s]

∥xη(r)∥Xds.

Since M
∑k

i=1 Li < 1, by utilizing the standard Gronwall’s inequality once more,
we obtain

sup
s∈[0,t]

∥xη(s)∥X ≤M3e
M4 for some M3,M4 > 0.

Afterwards, we demonstrate (3.2). Let η1, η2 ∈ C(J, V ) and t ∈ (0, t1]. Then

∥xη1(t)− xη2(t)∥X

≤ M

∫ t

0

[∥f(s, xη1
(s))− f(s, xη2

(s))∥X

+∥B(s, xη1
(s))η1(s)−B(s, xη2

(s))η2(s)∥X ]ds.
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Because of

∥B(s, xη1(s))η1(s))−B(s, xη2(s))η2(s))∥
≤ ∥B(s, xη1(s))η1(s)−B(s, xη2(s))η1(s)∥

+∥B(s, xη2(s))η1(s)−B(s, xη2(s))η2(s))∥
≤ ∥B(s, xη1(s))−B(s, xη2(s))∥∥η1(s)∥+ ∥B(s, xη2(s))∥∥η1(s)− η2(s))∥
≤ LB∥η1∥C∥xη1(s)− xη2(s)∥

+(∥B(s, xη2(s))−B(s, 0X)∥+ ∥B(s, 0X)∥)∥η1(s)− η2(s))∥
≤ LB∥η1∥C∥xη1(s)− xη2(s)∥+ (LB∥xη2(s)∥+ φ(s)∥)∥η1(s)− η2(s))∥
≤ LB∥η1∥C∥xη1(s)− xη2(s)∥+ (LBM1e

M2 + φ(s))∥η1(s)− η2(s))∥,

one has

∥xη1(t)− xη2(t)∥X

≤ M(Lf + LB∥η1∥C)
∫ t

0

[∥xη1
(s)− xη2

(s)∥Xds

+M(LBM1e
M2 + ∥φ∥L2)

∫ t

0

∥η1(s)− η2(s))∥ds.

The result (3.2) is derived from the standard Gronwall’s inequality. When t ∈
(tk, tk+1](k = 1, · · · ,m), the equation (3.2) can be derived using the same reasoning
as before. The proof is finished.

We are now capable of demonstrating the existence of mild solutions for problem
(1.1) as follows.

Theorem 3.2. Assume that the hypotheses Theorem 3.1 are satisfied. Then prob-
lem (1.1) has a unique mild solution on C.

Proof. Define the operator 𭟋 : C(J, V ) → C(J, V ) by

(𭟋η)(t) = g(t, xη(t)), ∀η ∈ C(J, V ).

Then the problem of finding mild solutions for problem (1.1) is reduced to find fixed
points of 𭟋. Let η1, η2 ∈ C(J, V ) and t ∈ J . Then

∥g(t, xη1(t))− g(t, xη2(t))∥V ≤ Lg∥xη1(t)− xη2(t)∥X ,

∥xη1
(t)− xη2

(t)∥X ≤M

∫ t

0

∥η1(s)− η2(s)∥V ds,

∥𭟋η1(t)−𭟋η2(t)∥V ≤ LgM

∫ t

0

∥η1(s)− η2(s)∥V ds.

This inequality illustrates that 𭟋 is an almost history-dependent operator, and
hence by applying Theorem 2.1, we conclude that there exists unique fixed point
η∗ ∈ C(J, V ). Let x∗ = xη∗ , i.e. x∗ solves problem (3.1) with η = η∗ = g(t, x∗(t)).
Then x∗ is the mild solution of problem (3.1). In addition x∗ is the unique mild
solution of problem (3.1) due to the uniqueness of the fixed point of 𭟋.

4. Existence result II

In this section, we will consider alternative hypotheses that without Lipschitz con-
ditions as discussed in Section 3.
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(HA) : T (t) is compact for every t > 0.
(Hf1) : f : J × X → X is Borel measurable on J × X and continuous on X, and
there exist a function ϕ1 ∈ L2(J,R+) and a constant Lf1 > 0 such that

∥f(t, x)∥X ≤ ϕ1(t) + Lf1∥x∥X
for all x ∈ X and a.e. t ∈ J .
(HB1

) : There exist a function φ1 ∈ L2(J,R+) and a constant LB1 > 0 such that

∥B(t, x)∥L(V,X) ≤ φ1(t) + LB1∥x∥X
for all x ∈ X and a.e. t ∈ J .
(Hg1) : There exist a function ψ1 ∈ L2(J,R+) and a constant Lg1 > 0 such that

∥g(t, x)∥V ≤ ψ1(t) + Lg1∥x∥X
for all x ∈ X and a.e. t ∈ J .
(HG1) : G(tk, ·) : X → X is continuous and there exist constants ak, bk ≥ 0 with

M
∑k

i=1 ai < 1 (k = 1, 2, · · · ,m) such that

∥G(tk, x)∥X ≤ ak∥x∥X + bk

for all tk ∈ D,x, y ∈ X.

Lemma 4.1 ( [7]). If (HA) holds, then the operator Ψ : L2(J,X) → C(J,X), given
by

(Ψh)(·) =
∫ ·

0

T (· − s)h(s)ds, ∀h ∈ L2(J,X), (4.1)

is compact.

We are now ready to present the primary finding of this section.

Theorem 4.1. Assume that the hypotheses (HA), (Hf1), (HB1), (Hg1), (HG1) are
satisfied. Then problem (1.1) has a mild solution on J .

Proof. Case 1. Let t ∈ [0, t1]. For any n > 0, let τ0,j =
j
n t1, 0 ≤ j ≤ n− 1. We

set

u0,n(t) =

n−1∑
j=0

u0,jχ[τ0,j ,τ0,j+1)(t), t ∈ [0, t1],

where χ[τ0,j ,τ0,j+1) represents the character function of the interval [τ0,j , τ0,j+1). The

sequence {u0,j} is constructed as follows. To begin with, we set u0,0 = g(0, θ(0)).
According to Theorem 3.3 in [24], there exists x0,n(·) such that x0,n(t) = θ(t) for
t ∈ [−τ, 0] and

x0,n(t) = T (t)θ(0) +

∫ t

0

T (t− s)[f(s, x0,n(s)) +B(s, x0,n(s))u
0,0]ds, t ∈ (0, τ0,1].

Then take u0,1 = g(τ0,1, x0,n(τ0,1)). By following the same steps, we can obtain
x0,n on [τ0,1, τ0,2] etc. By induction, we arrive at the following:

x0,n(t)

= T (t)θ(0) +
∫ t

0
T (t− s)[f(s, x0,n(s)) +B(s, x0,n(s))u0,n(s)]ds, t ∈ (0, t1],

u0,n(t) = g(τ0,j , x0,n(τ0,j)), t ∈ [τ0,j , τ0,j+1), 0 ≤ j ≤ n− 1.
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By (Hf1), (HB1), (Hg1) and the proof of Theorem 3.1 there exist r0,0, r0,1, r0,2, r0,3 >
0 such that

∥x0,n∥C([0,t1],X) ≤ r0,0

and

∥f(·, x0,n(·))∥L2([0,t1],X) ≤ r0,1,

∥g(·, x0,n(·))∥L2([0,t1],X) ≤ r0,2,

∥u0,n(·)∥L2([0,t1],V ) ≤ r0,3.

Then, in the case of subsequences,

f(·, x0,n(·))⇀ f0(·) in L2([0, t1], X), (4.2)

B(·, x0,n(·))⇀ B0(·) in L2([0, t1],L(V,X)), (4.3)

u0,n(·)⇀ u0(·) in L2([0, t1], V ). (4.4)

By (HA) and Lemma 4.1, we can conclude that∫ t

0

T (t− s)[f(s, x0,n(s)) +B(s, x0,n(s))u0,n(s)]ds

→
∫ t

0

T (t− s)[f0(s) +B0(s)u0(s)]ds, t ∈ (0, t1]

and the sequence {x0,n} is relatively compact in C((0, t1], X).

x0,n(·) → x0(·) in C((0, t1], X) (4.5)

and

x0(t) = T (t)θ(0) +

∫ t

0

T (t− s)[f0(s) +B0(s)u0(s)]ds, t ∈ (0, t1].

Furthermore, from the definition of u0,n(·), for sufficiently large n we obtain

u0,n(t) = g(τ0,j , x0,n(τ0,j)) ∈ g(Oδ(t, x0(t))), (4.6)

for all t ∈ [τ0,j , τ0,j+1), 0 ≤ j ≤ n− 1, where Oδ(y) is the δ-neighborhood of y.
Secondly, by (4.2) and the Mazur’s theorem (Chapter 2, Corollary 2.8, [7]), let

a0il, b
0
il, c

0
il ≥ 0 and

∑
i≥1 a

0
il =

∑
i≥1 b

0
il =

∑
i≥1 c

0
il = 1 such that

f0,l(·) =
∑
i≥1

a0ilf(·, x0,i+l(·)) → f0(·), in L2([0, t1], X),

B0,l(·) =
∑
i≥1

b0ilB(·, x0,i+l(·)) → B0(·) in L2([0, t1],L(V,X)),

u0,l(·) =
∑
i≥1

c0ilu0,i+l → u0(·) in L2([0, t1], V ).

Then, in the case of subsequences,

f0,l(t) → f0(t) in X, a.e. t ∈ [0, t1],
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B0,l(t) → B0(t), in L(V,X), a.e. t ∈ [0, t1],

u0,l(t) → u0(t), in X, a.e. t ∈ [0, t1].

Therefore, based on (4.5) and (4.6), for sufficiently large l, we have

f0,l(t) ∈ cof(t, Oδ(x0(t))) a.e. t ∈ [0, t1],

B0,l(t) ∈ coB(t, Oδ(x0(t))) a.e. t ∈ [0, t1],

u0,l(t) ∈ cog(t, Oδ(x0(t))) a.e. t ∈ [0, t1].

Thus, for any δ > 0,

f0(t) ∈ cof(t, Oδ(x0(t))), a.e. t ∈ [0, t1],

u0(t) ∈ cog(t, Oδ(x0(t))), a.e. t ∈ [0, t1].

As a result,

f0(t) = f(t, x0(t)), B0(t) = B(t, x0(t)), u0(t) = g(t, x0(t)) a.e. t ∈ [0, t1].

Case 2. Let t ∈ (t1, t2]. For any n > 0, let τ1,j = t1 +
j
n (t2 − t1), 0 ≤ j ≤ n − 1.

We set

u1,n(t) =


u0(t), t ∈ [0, t1],
n−1∑
j=0

u1,jχ[τ1,j ,τ1,j+1)(t), t ∈ (t1, t2].

The sequence {u1,j} is created in the following manner. Take u1,0 = g(t1, x(t1)).
According to Theorem 3.2, there exists x1,n(·) which is given by

x1,n(t) =



θ(t), t ∈ [−τ, 0],

x0(t), t ∈ (0, t1],

T (t)θ(0) + T (t− t1)G(t1, x1,n(t1))

+

∫ t

0

T (t− s)[f(s, x1,n(s)) +B(s, x1,n(s))u
1,0]ds, t ∈ (t1, τ1,1].

Then take u1,1 = g(τ1,1, x1,n(τ1,1)). By applying the same process repeatedly, we
can calculate x1,n on (τ1,1, τ1,2]. By induction, we eventually derive the following
result:

x1,n(t) =



θ(t), t ∈ [−τ, 0],

x0(t), t ∈ (0, t1],

T (t)θ(0) + T (t− ti)G(t1, x1,n(t1))

+

∫ t

0

T (t− s)[f(s, x1,n(s)) +B(s, x1,n(s)u1,n(s)ds, t ∈ (t1, t2],

u1,n(t) = g(τ1,j , x1,n(τ1,j)), t ∈ (τ1,j , τ1,j+1], 0 ≤ j ≤ n− 1.
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By (Hf1), (HB1), (Hg1), (HG1) and the proof of Theorem 3.2, there exist r1,0, r1,1,
r2,1, r3,1 > 0 such that

∥x1,n∥PC((0,t2],X) ≤ r1,0

and

∥f(·, x1,n(·))∥L2([0,t2],X) ≤ r1,1,

∥B(·, x1,n(·))∥L2([0,t2],L(V,X)) ≤ r1,2, ∗
∥u1,n(·)∥L2([0,t2],V ) ≤ r1,3.

Then, there exists a subsequence {f(·, x1,n(·))} such that

f(·, x1,n(·))⇀ f1(·) in L2([0, t2], X), (4.7)

B(·, x1,n(·))⇀ B1(·) in L2([0, t2],L(V,X)), (4.8)

u1,n(·)⇀ u0(·) in L2([0, t1], V ). (4.9)

It is clear that f1|[0,t1] = f0, u1|[0,t1] = u0.
Employing (HA) and Lemma 4.1 again, we derive that∫ t

0

T (t− s)f(s, x1,n(s))ds→
∫ t

0

T (t− s)f1(s)ds, t ∈ (t1, t2],

x1,n(·) → x1(·), in PC((0, t2], X) (4.10)

and

x1(t) =



θ(t), t ∈ [−τ, 0],

x0(t), t ∈ (0, t1],

T (t)θ(0) + T (t− t1)G(t1, x1(t1))

+

∫ t

0

T (t− s)[f1(s) +B1(s)u1(s))ds, t ∈ (t1, t2].

Furthermore, as n becomes sufficiently large, according to the definition of u1,n(·),
we have

u1,n(t) = g(τ1,j , x1,n(τ1,j)) ∈ g(Oδ(t, x1(t))), (4.11)

for all t ∈ (τ1,j , τ1,j+1], 0 ≤ j ≤ n− 1.
Secondly, utilizing (4.7) and the Mazur’s theorem once more, let a1il, b

1
il, c

1
il ≥ 0

and
∑

i≥1 a
1
il =

∑
i≥1 b

1
il =

∑
i≥1 c

1
il = 1 such that

f1,l(·) =
∑
i≥1

a1ilf(·, x1,i+l(·)) → f1(·) in L2([0, t2], X),

B1,l(·) =
∑
i≥1

a1ilB(·, x1,i+l(·)) → B1(·) in L2([0, t2],L(V,X)),

u1,l(·) =
∑
i≥1

a1ilu1,i+l(·) → u1(·) in L2([0, t2], V ).
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Subsequently, in the case of subsequences,

f1,l(t) → f1(t) in X, a.e. t ∈ [0, t2],

B1,l(t) → B1(t) in L(V,X), a.e. t ∈ [0, t2],

u1,l(t) → u1(t) in V, a.e. t ∈ [0, t2].

Thus, for sufficiently large l, based on (4.10) and (4.11),

f1,l(t) ∈ cof(t, Oδ(x1(t))), B1,l(t) ∈ coB(t, Oδ(x1(t))),

u1,l(t) ∈ cog(t, Oδ(x1(t))), a.e. t ∈ [0, t2].

Thus, for any δ > 0,

f1(t) ∈ cof(t, Oδ(x1(t))), a.e. t ∈ [0, t2],

B1(t) ∈ coB(t, Oδ(x1(t))), a.e. t ∈ [0, t2],

u1(t) ∈ cog(t, Oδ(x1(t))), a.e. t ∈ [0, t2].

As a result,

f1(t) = f(t, x1(t)), B1(t) = B(t, x1(t)), u1(t) = g(t, x1(t)), a.e. t ∈ [0, t2].

Case 3. Let t ∈ (tk, tk+1](k = 2, · · · ,m). For any n > 0, let τk,j = tk + j
n (tk+1 −

tk), 0 ≤ j ≤ n− 1. We set

uk,n(t) =


uk−1(t), t ∈ [0, tk],
n−1∑
j=0

uk,jχ(τk,j ,τk,j+1](t), t ∈ (tk, tk+1].

By induction, we arrive at the following conclusion:

xk,n(t) =



θ(t), t ∈ [−τ, 0],

xk−1(t), t ∈ (0, tk],

T (t)θ(0) +

k∑
i=1

T (t− ti)G(ti, xi,n(ti))

+

∫ t

0

T (t− s)[f(s, xk,n(s)) +B(s, xk,n(s)uk,n(s)]ds, t ∈ (tk, tk+1],

uk,n(t) = g(τk,j , xk,n(τk,j)), t ∈ (τk,j , τk,j+1], 0 ≤ j ≤ n− 1.

There exists rk,0, rk,1, rk,2, rk,3 > 0 such that

∥xk,n∥PC((0,tk+1],X) ≤ rk,0,

∥f(·, xk,n(·))∥L2([0,tk+1],X) ≤ rk,1,

∥B(·, xk,n(·), uk,n(·))∥L2([0,tk+1],L(V,X)) ≤ rk,2,

∥uk,n(·)∥L2([0,tk+1],V ) ≤ rk,3.

Next, for subsequences.

f(·, xk,n(·))⇀ fk(·) in L2([0, tk+1], X), (4.12)
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B(·, xk,n(·))⇀ Bk(·) in L2([0, tk+1],L(V,X)), (4.13)

uk,n(·)⇀ uk(·) in L2([0, tk+1], V ). (4.14)

It is clear that fk|[0,tk] = fk−1, Bk|[0,tk] = Bk−1, uk|[0,tk] = uk−1 and∫ t

0

T (t− s)[f(s, xk,n(s)) +B(s, xk,n(s))uk,n(s)]ds

→
∫ t

0

T (t− s)[fk(s) +Bk(s)uk(s)]ds, t ∈ (tk, tk+1].

We obtain similar results as in the previous proof

xk,n(·) → xk(·) in PC((0, tk+1], X), (4.15)

and

xk(t) =



θ(t), t ∈ [−τ, 0],

xk−1(t), t ∈ (0, tk],

T (t)θ(0) +

k∑
i=1

T (t− ti)G(ti, xi(ti))

+

∫ t

0

T (t− s)[fk(s) +Bk(s)uk(s)]ds, t ∈ (tk, tk+1].

Furthermore, from the definition of uk,n(·) for sufficiently large n, we obtain

uk,n(t) = g(τk,j , xk,n(τk,j)) ∈ g(Oδ(t, xk(t))), (4.16)

for all t ∈ (τk,j , τk,j+1], 0 ≤ j ≤ n− 1.
Furthermore, by equation (4.14) and the Mazur’s theorem once more let akil, b

k
il,

bkil ≥ 0 and
∑

i≥1 a
k
il =

∑
i≥1 b

k
il =

∑
i≥1 c

k
il = 1 such that

fk,l(·) =
∑
i≥1

akilf(·, xk,i+l(·)) → fk(·) in L2([0, tk+1], X),

Bk,l(·) =
∑
i≥1

akilB(·, xk,i+l(·)) → Bk(·) in L2([0, tk+1],L(V,X)),

uk,l(·) =
∑
i≥1

ckiluk,i+l(·) → uk(·) in L2([0, tk+1], V ).

Subsequently, in the case of subsequences,

fk,l(t) → fk(t) in X, a.e. t ∈ [0, tk+1],

Bk,l(t) → Bk(t) in L(V,X), a.e. t ∈ [0, tk+1],

uk,l(t) → uk(t) in V, a.e. t ∈ [0, tk+1].

Therefore, based on (4.15) and (4.16), for sufficiently large l,

fk,l(t) ∈ cof(t, Oδ(xk(t))), Bk,l(t) ∈ coB(t, Oδ(xk(t))),

uk,l(t) ∈ cog(t, Oδ(xk(t))), a.e. t ∈ (tk, tk+1].
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Therefore, for any δ > 0,

fk(t) ∈ cof(t, Oδ(xk(t))), Bk(t) ∈ coB(t, Oδ(xk(t))),

uk(t) ∈ cog(t, Oδ(xk(t))), a.e. t ∈ (tk, tk+1].

As a result,

fk(t) = f(t, xk(t)), Bk(t) = B(t, xk(t)), uk(t) = g(t, xk(t)), a.e. t ∈ (tk, tk+1].

Let

x(t) =


θ(t), t ∈ [−τ, 0],

x0(t), t ∈ (0, t1],

xk(t), t ∈ (tk, tk+1], k = 1, · · · ,m,

u(t) = um+1(t).

Hence, x ∈ C is a mild solution to problem (1.1). The proof is finished.

5. Exponential stability

In this section, we delve into the exponential stability of the problem (1.1).

Definition 5.1. A mild solution x of (1.1) is called globally exponentially stable if
there exists two constants L > 0 and ω > 0 such that

∥x(t)∥X ≤ Le−ωt.

For this purpose, we must impose the subsequent hypothesis.
(HT ) : there exist two constants M,w > 0 such that

∥T (t)∥ ≤Me−wt, for every t ≥ 0.

Theorem 5.1. Under the hypotheses of Theorem 3.2 and (HT ), the mild solution
of (1.1) is globally exponentially stable if M(Lf + LBlg) < w.

Proof. Initially, Theorem 3.2 ensures that (1.1) possesses a unique mild solution.
If t ∈ (0, t1], we can deduce from the assumption (HT ) and the Hölder’s inequality
that

∥x(t)∥X

≤ ∥T (t)θ(0)∥X +

∫ t

0

∥T (t− s)[f(s, x(s)) +B(s, x(s))g(s, x(s))]∥Xds

≤ Me−ωt∥θ(0)∥X +M

∫ t

0

e−ω(t−s)[∥f(s, x(s))− f(s, 0)∥+ ∥f(s, 0)∥

+(∥B(s, x(s))−B(s, 0)∥+ ∥B(s, 0)∥)∥g(s, x(s))∥]ds

≤ Me−ωt∥θ(0)∥X +M

∫ t

0

e−ω(t−s)(Lf∥x(s)∥X + |ϕ(s)|+ LB∥φ∥L∞∥x(s)∥X)ds

≤ Me−ωt∥θ(0)∥X +

∫ t

0

e−ω(t−s)|ϕ(s)|ds



3550 C. Jiang & F. Long

+M(Lf + LB∥φ∥L∞)

∫ t

0

e−ω(t−s)∥x(s)∥Xds.

Then

eωt∥x(t)∥X ≤M∥θ(0)∥X +

∫ t

0

eωs|ϕ(s)|ds+M(Lf + LB∥φ∥L∞)

∫ t

0

eωs∥x(s)∥Xds.

Therefore, upon employing the standard Gronwall’s inequality once more, we derive

eωt∥x(t)∥X ≤M5e
M6t,

where

M5 =M∥θ(0)∥X + sup
t∈J

∫ t

0

eωs|ϕ(s)|ds, M6 =M(Lf + LB∥φ∥L∞),

implying that

∥x(t)∥X ≤ Le−ωt

with
L =M5, ω = w −M6.

If t ∈ (tk, tk+1](k = 1, · · · ,m), from the hypotheses (Hf ), (HB), (Hg), (HG) and
the Hölder’s inequality, we have

∥x(t)∥X

≤ ∥T (t)θ(0)∥X + ∥
k∑

i=1

T (t− ti)G(ti, x(ti))∥X

+

∫ t

0

∥T (t− s)[f(s, x(s)) +B(s, x(s))G((s, x(s))]∥Xds

≤ Me−ωt∥θ(0)∥X +Me−ωt∥
k∑

i=1

(∥G(ti, x(ti))−G(ti, 0)∥X + ∥G(ti, 0)∥X)

+M

∫ t

0

e−ω(t−s)[∥f(s, x(s))− f(s, 0)∥+ ∥f(s, 0)∥

+(∥B(s, xη(s))−B(s, 0)∥+ ∥B(s, 0)∥)∥η(s)∥]ds

≤ Me−ωt∥θ(0)∥X +Me−ωt
k∑

i=1

Li∥x(ti)∥X +Me−ωt∥G(ti, 0)∥X

+Me−ωt∥θ(0)∥X +

∫ t

0

e−ω(t−s)|ϕ(s)|ds

+M(Lf + LB∥φ∥L∞)

∫ t

0

e−ω(t−s)∥x(s)∥Xds

≤ Me−ωt∥θ(0)∥X +M

k∑
i=1

Li∥x(ti)∥X +Me−ωt∥G(ti, 0)∥X

+

∫ t

0

eωs|ϕ(s)|ds+M(Lf + LB∥φ∥L∞)

∫ t

0

eωs∥x(s)∥Xds.
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Thus

sup
s∈[0,t]

∥x(s)∥X

≤ Me−ωt∥θ(0)∥X +M

k∑
i=1

Li sup
s∈[0,t]

∥x(s)∥X +Me−ωt∥G(ti, 0)∥X

+

∫ t

0

e−ω(t−s)|ϕ(s)|ds+M(Lf + LB∥φ∥L∞)

∫ t

0

e−ω(t−s)∥x(s)∥Xds,

thereby

(1−M

k∑
i=1

Li)e
ωt sup

s∈[0,t]

∥x(s)∥X

≤ M∥θ(0)∥X +M∥G(ti, 0)∥X

+

∫ t

0

eωs|ϕ(s)|ds+M(Lf + LB∥φ∥L∞)

∫ t

0

eωs sup
r∈[0,s]

∥x(r)∥Xds.

SinceM
∑k

i=1 Li < 1, by applying standard Gronwall’s inequality again, we deduce
that

eωt sup
s∈[0,t]

∥x(s)∥X ≤M7e
M8t,

where

M7 =M∥θ(0)∥X +M∥G(ti, 0)∥X + sup
t∈J

∫ t

0

eωs|ϕ(s)|ds, M8 =M(Lf +LB∥φ∥L∞).

This entails that

∥x(t)∥X ≤ Le−ωt

with

L =M7, ω = w −M8.

The proof is complete.

6. Applications

6.1. Differential hemivariational inequalities

Differential variational inequalities (DVIs, abbreviated) are intricate systems that
intertwine differential or partial differential equations with a time-dependent vari-
ational inequality (refer to [10, 11]). They constitute a formidable mathematical
instrument utilized in dissecting a vast array of pragmatic challenges encountered
in contact and impact mechanics, electrical circuits incorporating ideal diodes, eco-
nomic dynamics, and transportation networks. Differential hemivariational inequal-
ities (DHVIs, for short) are a significant extension of DVIs that combine differential
or partial differential equations with a hemivariational inequality.
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Let us revisit the definition of Clarke’s subdifferential for a locally Lipschitz
function. j : K ⊂ V → R, where K is a nonempty subset of a Banach space V (one
can see [2,13]). We denote by j0(u; v) the Clarke’s generalized directional derivative
of j at the point u ∈ K in the direction v ∈ X, that is

j0(u; v) := lim sup
λ→0+, ζ→u

j(ζ + λv)− j(ζ)

λ
.

Recall also that the Clarke’s subdifferential or generalized gradient of j at u ∈ K,
denoted by ∂j(u), is a subset of V ∗ given by

∂j(u) := {x∗ ∈ X∗ : j0(u; v) ≥ ⟨u∗, v⟩, ∀v ∈ V }.

In this subsection, we consider the impulsive differential hemivariational inequal-
ity: 

x′(t) = Ax(t) + f(t, x(t)) +B(t, x(t))u(t), t ∈ (0, b]−D,

u(t) ∈ SOL(K;C, h,Φ, j), a.e. t ∈ (0, b]−D,

∆x(tk) = G(tk, x(tk)), tk ∈ D,

x(t) = θ(t), t ∈ [−τ, 0].

(6.1)

Here SOL(K;C, h,Φ, j) represents the set of solutions to the hemivariational in-
equality in V : find u : J → K ⊂ V such that

⟨Cu(t) + h(t, x(t)), v − u(t)⟩V +Φ(u(t), v)− Φ(u(t), u(t))

+ j◦(u(t); v − u(t)) ≥ 0, ∀v ∈ K, a.e. t ∈ J. (6.2)

Consider the following assumptions regarding the data in problem (6.2).
(HK) : K is a closed convex subset of V such that 0V ∈ K.
(HC) : C : V → V ∗ is pseudomonotone and there exists a constant αC > 0 such
that

⟨Cv1 − Cv2, v1 − v2⟩V ≥ αC∥v1 − v2∥2V

for all v1, v2 ∈ V .
(Hh) : h : J ×X → V ∗ is continuous on J ×X, and there exist constants lh, Lh > 0
such that

∥h(t, x)∥V ∗ ≤ lh,

∥h(t, x1)− τ(t, x2)∥X ≤ Lh∥x1 − x2∥X

for all x1, x2 ∈ X and a.e. t ∈ J .
(HΦ) : Φ(u, ·) : V → R is convex and lower semicontinuous on V for all u ∈ V ,
Φ(u, λv) = λΦ(u, v), Φ(v, v) ≥ 0 for all u, v ∈ V, λ > 0, and there exists αΦ > 0
such that

Φ(u1, v2)− Φ(u1, v1) + Φ(u2, v1)− Φ(u2, v2) ≤ αΦ ∥u1 − u2∥V ∥v1 − v2∥V

for all u1, u2, v1, v2 ∈ V .
(Hj) : j : V → R is locally Lipschitz, and there exist c0, c1, αj > 0 such that

∥∂j(u)∥V ∗ ≤ c0 + c1∥u∥V ,
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j0(u1;u2 − u1) + j0(u2;u1 − u2) ≤ αj ∥u1 − u2∥2V

for all u, u1, u2 ∈ V .

Theorem 6.1 ( [8], Lemma 3.3). Assume that the hypotheses (HK), (HC),
(Hh), (HΦ), (Hj) are satisfied and

αΦ + αj < αC .

Then problem (6.2) possesses a unique solution u ∈ C(J, V ). Moreover, u satisfies
the following estimate

∥u(t)∥V ≤ 1

mC − αj
(∥C0V ∥V ∗ + ∥lh∥V ∗ + c0). (6.3)

Furthermore, if u1, u2 ∈ C(J, V ) denote the solution of problem (6.2) for x1, x2 ∈
C(J,X), then it holds that

∥u1(t)− u2(t)∥V ≤ Lh

αC − αΦ − αj
∥x1(t)− x2(t)∥X .

The subsequent finding regarding the existence and uniqueness of the solution
stems directly from Theorem 3.1.

Theorem 6.2. Assume that (Hf ), (HB), (Hg), (HG) and the hypotheses of Theorem
6.1 are hold. Then problem (6.1) has a unique mild solution on C.

6.2. A boundary value problem

For a, b > 0, we consider the following boundary value problem.

∂

∂t
x(r, t)

= δ
∂2

∂r2
x(r, t)− cx(r, t) + µ(r, t) sinx(r, t)

+ν(r, t)α(r, t)|x(r, t)| x2(r, t)

1 + x2(r, t)
, 0 ≤ r ≤ a, t ∈ (0, b]−D,

∆x(r, tk) = −β(r, tk)
x(r, tk)

1 + |x(r, tk)|
, 0 ≤ r ≤ a, tk ∈ D,

x(0, t) = x(a, t) = 0, 0 ≤ t ≤ b,

x(r, σ) = θ(r, σ), 0 ≤ r ≤ a, σ ∈ [−τ, 0],

(6.4)

where δ, c > 0, µ, ν, α, β ∈ C([0, a] × [0, b]) → R+. Here, x(r, t) represents the
temperature of the point w at time t.

To represent problem (6.4) as the form of problem (1.1), we take X = V =
L2([0, a]) and x(t)(·) := x(t, ·). Let A: D(A) → X be the operator given by

Aξ = δξ′′ − cξ,

with the domain

D(A) = H2([0, a]) ∩H1
0 ([0, a]) =

{
ξ ∈ X : ξ′, ξ′′ ∈ X, ξ(0) = ξ(a) = 0

}
.
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From [15], it is easy to verify that A generates a C0 semigroup {T (t) = eAt}t≥0

satisfying

∥T (t)∥ ≤ e−(c+δπ2/4)t, for every t ≥ 0.

This implies that (HT ) holds with M = 1, w = c+ δπ2/4.
Now define the map f : J ×X → X, g : J ×X → V,B : J ×X → L(V,X) G :

D ×X → X, respectively, as

f(t, x)(r) = f(r, t, x(r)) = µ(r, t) sinx(r),

B(t, x)(r) = B(r, t, x(r)) = ν(r, t)|x(r)|,

g(t, x)(r) = g(r, t, x(r)) = α(r, t)
x2(r)

1 + x2(r)
,

G(t, x)(r) = G(r, t, x(r)) = −β(r, t) x(r)

1 + |x(r)|
,

for any t ∈ [0, b] and x ∈ X. Then under these notations problem (6.4) is rewritten
into the form of (1.1). One can verify easily that (Hf ), (HB), (Hg), (HG) holds with
Lf = ∥µ∥C , LB = ∥ν∥C , Lg = ∥α∥C , Lk = ∥β∥C .

Consequently, when 2k∥β∥C < 1 and ∥µ∥C + ∥α∥C∥ν∥C < c + δπ2/4, from
Theorem 3.2 and Theorem 5.1, problem (6.4) admits one unique mild solution
which is globally exponentially stable.

7. Conclusions

We investigate in this work the existence and the exponential stability of a new
class of first-order impulsive evolution equations, in which two kinds of methods
are provided for the existence of mild solutions. Moreover, based on the existence
result, the exponential stability of the solution is also present. Thereafter, we show
an interesting application to prove the existence of solutions to a class of differential
hemivariational inequalities.

It is valuable to study such results for the equations by using similar method or
finding more methods. Furthermore, it is still interesting to weaken the hypotheses
of Lipschitz conditions and the compactness conditions.
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