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BACKWARDS DYNAMICS OF
TIME-DEPENDENT ATTRACTOR FOR PLATE

EQUATION ON THE WHOLE SPACE∗

Tingting Liu1,†, Juanping Gao1 and Wenhui Ma1

Abstract In this paper, we give the definition and criterion for the exis-
tence of backwards compact time-dependent attractor which is the minimal one
among the backwards compact and pullback attracting sets in time-dependent
whole space. Combining with the method of Ct−limit compact and backwards
asymptotic estimates outside a ball, the existence of backwards compact time-
dependent attractor for stretchable plate equation with localized weak damp-
ing on the whole space is obtained.
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1. Introduction

In this paper, we consider the existence of the backwards compact attractor for the
non-autonomous stretchable plate with local damping ε(t)utt + α(x)ut +∆2u+ λu+ (p− ∥∇u∥2)∆u+ f(x, u) = g(x, t), t > τ,

u(x, τ) = u0(x), ut(x, τ) = u1(x), x ∈ Rn

(1.1)
on time-dependent unbounded domain, where x ∈ Rn(n ≥ 5), λ > 0, p ∈ R, ε =
ε(t) is a decreasing bounded function along with

lim
t→+∞

ε(t) = 0, (1.2)

and there exists a constant L > 0 such that

sup
t∈R

[|ε(t)|+ |ε′(t)|] ≤ L. (1.3)

Moreover, we assume that the function in (1.1) satisfies the following conditions:
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Function α(x) ∈ L∞(Rn), and

α′(x) ∈ L∞(Rn), α(·) ≥ α0 > 0 a.e. x ∈ Rn. (1.4)

Nonlinear function f(x, s) ∈ C1(Rn × R,R) satisfies ∀ s ∈ R, x ∈ Rn, there is

|f(x, u)| ≤ c0|u|q + ϕ1(x), ϕ1(x) ∈ L2(Rn), (1.5)

f(x, u)u− c1F (x, u) ≥ ϕ2(x), ϕ2(x) ∈ L1(Rn), (1.6)

F (x, u) ≥ c2|u|q+1 − ϕ3(x), ϕ3(x) ∈ L1(Rn), (1.7)

|∂f
∂u

(x, u)| ≤ β; |∂f
∂x

(x, s)| ≤ ϕ4(x), ϕ4(x) ∈ L2(Rn), (1.8)

where ci > 0, i = 0, 1, 2, β > 0, F (x, u) =
∫ u

0
f(x, s)ds, and 0 < q ≤ n

n−4 for n ≥ 5.
The condition for g is given below.

The problem (1.1) stems from the elastic equation established by Woinowsky-
Krieger, Ball [4, 15] etc. It is clear that (1.1) becomes an autonomous plate equa-
tion when ε(t) is a positive constant. In this case, we can characterize the long-
time behavior of solutions by virtue of the concept of global attractors under the
framework of semigroup. Some authors have extensively studied the existence of
global attractors for the autonomous plate equation on unbounded domain, one can
see [3, 12, 13, 23] and references therein. On the other hand, when g is dependent
on t, the attractors are studied for the non-autonomous system on bounded and
unbounded domain, respectively, one can refer to [1, 10,11,24,26,27] and so on.

Just for our problem (1.1), since the presence of ε(t) vanishing at infinity leads
to time-dependent terms at functional level, the dynamical system associated with
such problem is still understood under the non-autonomous framework even the
forcing term g in the equation is independent of time t. In order to describe the
long-term behavior of solution for these problems, the concept of time-dependent
global attractor A = {At}t∈R is introduced [8,22] and the methods for verifying the
compactness are extended to time-dependent bounded domain, such as contractive
functions and Ct−condition [20, 21]. However, when the domain is unbounded,
in [18, 19] we have given the method of asymptotic contractive function to verify
the compactness of the solution process family and the method is used for plate
equation, which obtain the existence of time-dependent global attractor inH2(Rn)×
L2(Rn). But when the force term g depends on t simultaneously, we want to know
how the backwards behavior of the solution is going under the influence of the non-
autonomous external force term and the degenerate coefficient, where the conditions
for damping coefficient are taken from [3].

For the backwards dynamics of pullback attractors, the backwards asymptotic
behavior of some kinds of equation have been discussed. In [5,6], when α(x) ≡ β(t)
the authors proved that the evolution process for wave equation on bounded domain
have a pullback attractor A = {A(t)} that is backwards bounded, i.e.

⋃
s≤t As is

bounded for each t, for more results about the backwards compactness for pullback
attractor about evolution equation with time-dependent coefficient, one can refer
to [2, 9, 16,17,25,29] and so on.

So in this section, combing with the pullback attraction of time-dependent at-
tractor and the results of backwards dynamics for non-autonomous wave equations,
under some suitable assumptions of the external force term [9, 28], we discuss the
existence of the backwards compact attractor of equation (1.1) in time-dependent
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whole space. From the discussion that follows, the pullback-bounded family de-
pends on the conditions of the external force term, which is consistent with respect
to the parameter ε(t).

As we know, the existence of attractor depends on some kind compactness for a
dynamical system. For our system, it is different from the result of wave equation
[28], because there are some novelties in showing the main results:

(i) For the existence of degenerate coefficient, the goal of this paper is to define
a suitable object family A = {At}t∈R ⊂ Xt and for each t ∈ R, every s ≤ t, As and⋃

s≤t As are able to attract(under the topology of Xt) all solution of the system
originating sufficiently far in the past.

(ii) To overcome the difficulty of lacking the compactness of Sobolev embed-
ding in Rn, we take advantage of the idea of ωt-limit compact in time-dependent
space along with tail estimate to overcome the difficulties caused by nonlinear term
∥∇u∥2∆u and critical nonlinear function.

(iii) Since the presence of localized weak damping, which makes the estimation
more complicated, so we can’t directly use the method [18] to settle the problem.
Moreover, we think the paper extend the already result in [19].

For brevity, we denote C be a family of positive constant, which will change in
the different line, even in the same line.

The rest of this article consists of two sections. In Section 2, we define some
functions sets and give some useful lemmas. In Section 3, existence of solution
and the time-dependent absorbing set as well as tail estimate and the existence of
the time-dependent global attractor for (1.1) based on the asymptotic contractive
process are obtained.

2. Preliminaries

2.1. Abstract results

In the following, according to the definition of the pullback attractors and backwards
compact attractors proposed in [5,9,14,28], as well as the definition and topological
structure of the time-dependent phase space Xt [8, 22], we give the definition of
backwards compact time-dependent attractors and relevant conclusions in Xt .

Definition 2.1. The non-autonomous set D = {Dt}t∈R ⊂ Xt is increasing if for
any s ≤ t, there have Ds ⊂ Dt.

Definition 2.2. Non-autonomous set D = {Dt}t∈R ⊂ Xt is called backwards com-
pact if for each t ∈ R, Dt and

⋃
s≤t Ds is compact in Xt; if for each t ∈ R,

⋃
s≤t Ds

is bounded in Xt, Dt is said to be backwards bounded.

Next, we give the definition of the backwards compact time-dependent attractors
in Xt:

Definition 2.3. A family of compact subsets A = {At}t∈R ⊂ Xt is called time-
dependent attractor if it fulfills the following properties:

(i) (invariance) U(t, s)A(s) = A(t), for every s ≤ t;

(ii) (pullback attraction) for every pullback-bounded family B and every t ∈ R,

lim
s→−∞

distXt(U(t, s)A(s),A(t)) = 0.
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If property (ii) holds uniformly with regard to t ∈ R, then A is a uniform
time-dependent attractor.

Definition 2.4. Non-autonomous set A = {At}t∈R ⊂ Xt is called a backwards
compact time-dependent attractor for the process U(t, τ) if

(i) For each t ∈ R, At is backwards compact;
(ii) For each t ∈ R, At pullback attracts every bounded subset Bt ⊂ Xt;
(iii) At is the smallest set satisfying properties (i), (ii).

The results of smallest property for A, we can see [8], and the authors pointed
out when the process satisfies some continuity, then it’s invariant.

Theorem 2.1. A backwards compact time-dependent attractor A = {At}t∈R ⊂ Xt

must be a time-dependent attractor and backwards compact, vice versa.

Proof. From the definition of the attractor and the inclusion relation between
them, the result can be obtained.

According to the definition of the time-dependent absorbing set in Xt, there is:

Definition 2.5. A time-dependent absorbing set for the process {U(t, τ)}t≥τ is a
pullback bounded family B = {Bt}t∈R with the following property: for every R >
0 there exists a t0 = t0(t) ≤ t such that

τ ≤ t− t0 ⇒ U(t, τ)Bτ (R) ⊂ Bt.

The non-autonomous set B is a backwards time-dependent absorbing set for the
process U means: for any t ∈ R, s ≤ t and any R ≥ 0, there exists s0 = s0(R) ≥ 0
such that when τ ≤ s− s0, there is

U(s, τ)Bτ (R) ⊂ Bt,

where Bt(R) denotes the R-ball of Xt.

Definition 2.6. The process U is called pullback asymptotically compact in Xt:
for any t ∈ R, with the bounded sequence {xn} ⊂ Xτn and {τn}∞n=1 ⊂ R−t satisfies
that when n → ∞ , τn → −∞, there is sequence

{U(t, τn)xn}n∈N in Xt has convergent subsequence,

where R−t = {τ : τ ∈ R, τ ≤ t}.
Further, the process U is called backwards pullback asymptotically compact: for

any t ∈ R, sn ≤ t, with the bounded sequence {xn} ⊂ Xτn and {τn}∞n=1 ⊂ R−t

satisfies that when n → ∞, τn → −∞, the sequence

{U(sn, τn)xn}n∈N in Xt has convergent subsequence.

Theorem 2.2. Let U be a backwards pullback asymptotically compact process on
Banach space Xt, then the following propositions are equivalent:

(i) U has a backwards compact time-dependent attractor A = {At}t∈R;
(ii) U has an increasing, bounded and time-dependent absorbing set K1 =

{K1
t }t∈R;
(iii) U has a bounded and backwards time-dependent absorbing set K2 =

{K2
t }t∈R;
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and the attractor coincides with the time-dependent ω-limit of any pullback absorb-
ing set, i.e.

At := ω(K1
t , t) = ω(K2

t , t), ∀ t ∈ R,

where ω(Kt, t) =
⋂

s≤t

⋃
τ≤s U(t, τ)Kτ .

Proof. (i) ⇒ (ii). For any t ∈ R, define K1
t =

⋃
s≤t O1

s(As) = O1
t (
⋃

s≤t As),

where O1
s is defined as the 1-neighborhood in Xs. Obviously, K1

t is increasing.
Since At is backwards compact, we know that K1

t is bounded. Combined with the
pullback attracting of At, which implies O1

s(As) is the time-dependent pullback
absorbing set, therefore K1

t is the time-dependent absorbing set.
(ii) ⇒ (iii). If K1 = {K1

t }t∈R is an increasing time-dependent absorbing set,
then for any t ∈ R, s ≤ t and for the bounded subset Bτ ⊂ Xτ , there exists
s0 := s0(s, t) < s such that for any τ < s− s0, there is

U(s, τ)Bτ ⊂ K1
s ⊂ K1

t .

Obviously, K1
t is a backwards time-dependent absorbing set.

(iii) ⇒ (i). Since K2 = {K2
t }t∈R is a backwards time-dependent absorbing set,

we know that for any s ∈ R, s ≤ t and the bounded subset Bτ ⊂ Xτ , there is

lim
τ→−∞

distXt(U(s, τ)Bτ ,K
2
t ) = 0,

namely, K2
t pullback attracts every bounded set at any past time, so the process

U(t, τ) is strongly pullback bounded dissipation (see [6]). And then combined the
pullback asymptotic compactness of U in Xt [6, 8], it is known that there exist a
family of time-dependent attractors A = {At}t∈R, and

At =
⋂
s≤t

⋃
τ≤s

U(t, τ)Bτ .

Then we prove At is backwards bounded, that is, for any t ∈ R,
⋃

s≤t As is

bounded in Xt. From the backward pullback absorbing of K2
t , for any s ≤ t, τ ∈ R,

there is
U(s, τ)K2

τ ⊂ K2
t .

Using the definition of At,
As ⊂ K2

t .

So we know that
⋃

s≤t As is bounded.
To prove the backward compactness of A = {At}t∈R in Xt, we need prove that

for any sequence {xn} ∈
⋃

s≤t As, which exists convergent subsequence in Xt.
From the backwards boundedness of A = {At}t∈R, we know

⋃
s≤t As is bounded,

let xn ∈ Asn , sn ≤ t, that is

yn ∈ Asn = U(sn, τn)Aτn ⊂ U(sn, τn)(
⋃
τn≤t

Aτn),

where we use the minimalism of the attractorA = {At}t∈R, it is invariant. Combined
with the backwards compactness of the process {U(t, τ)}t≥τ , we know that the
sequence {yn} exists convergent subsequence.

By Theorem 2.1, we infer A = {At}t∈R is a backwards compact time-dependent
attractor.
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2.2. Notations

For problem (1.1), we first introduce the following abbreviations:

Lp = Lp(Rn), H = L2(Rn), Hs = W s,2(Rn), ∥ · ∥ = ∥ · ∥L2 ,

the notation ⟨·, ·⟩ represents the L2−inner product and can also be used for the
notation of dual pairs of conjugate spaces. And we use the symbol ∥ · ∥2s to define
the norms in Hilbert space Hs.

For t ∈ R, consider the time-dependent phase space

Ht = H2 ×Ht, H1
t = H3 ×H1

t

endowed with the following norms

∥z∥2Ht
= ∥(u, ut)∥2Ht

= ∥u∥22 + ε(t)∥ut∥2, (2.1)

and

∥z∥2H1
t
= ∥(u, ut)∥2H1

t
= ∥u∥23 + ε(t)∥ut∥21.

For convenience, for z ∈ Ht, we define the following norm

∥z∥2Ht
= ∥(u, ut)∥2Ht

= ∥∆u∥2 + λ∥u∥2 + ε(t)∥ut∥2, (2.2)

obviously, it is equivalent to the norm in (2.1).

Furthermore, in order to prove the result, for non-autonomous external force
term g ∈ L2

loc(R,H1), we assume the following backwards tempered conditions
[9, 28]:

(1) g is backwards tempered, i.e

sup
s≤t

∫ s

−∞
eγ(r−s)[∥g(·, r)∥2 + ∥g(·, r)∥21]dr < ∞,∀ t ∈ R, γ > 0; (2.3)

(2) g is backwards tempered tail-small, i.e

lim
k→∞

sup
s≤t

∫ s

−∞
eγ(r−s)

∫
|x|≥k

|g(x, s)|2dxdr = 0, ∀ t ∈ R, γ > 0; (2.4)

(3) g is backwards tempered complement-small, i.e

lim
i→∞

sup
s≤t

∫ s

−∞
eγ(r−s)∥(I − Pi)g(x, s)∥dr = 0, ∀ t ∈ R, γ > 0. (2.5)

We give the following lemma, which is indispensable for our proof.

Lemma 2.1. ( [7]) Let Ω ⊂ Rn having the extension property, or Ω = Rn, 1 <
p, p0, p1 < +∞, 0 ≤ s0 < s1 < +∞, 0 < θ < 1,

s = (1− θ)s0 + θs1,
1

p
=

1− θ

p0
+

θ

p1
.

Then for any u ∈ W s0,p0(Ω) ∩W s1,p1(Ω) satisfies

∥u∥W s−,p(Ω) ≤ C(θ)∥u∥θW s1,p1 (Ω)∥u∥
1−θ
W s0,p0 (Ω),

where

s−

= s, s0, s, s1 ∈ N or s0, s, s1 ∈ R \ N,

< s, other case.
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3. Existence of time-dependent pullback attractor

By the Faedo-Galerkin procedure, under the conditions of (1.2)-(1.8) and (2.3)-
(2.5), we can obtain the existence of the solution for equation (1.1), as well as there
exists a unique weak solution z(t) = (u, ut) under the partial sense:

u ∈ C([τ, T ]; H2), ut ∈ C([τ, T ]; H),

furthermore, the mapping (u0, u1) → (u(t, τ, u0), ut(t, τ, u0)) is continuous in Ht,
that is: given R > 0, for every pair of initial data zi(τ) = {ui

0, u
i
1} ∈ Hτ , i = 1, 2,

and the solution {zi(t), gi} = {ui, ui
t}, if ∥zi(τ)∥Hτ ≤ R, i = 1, 2, then the difference

of the corresponding solutions satisfies

∥z1(t)− z2(t)∥Ht ≤ eC(t−τ)
[
∥z1(τ)− z2(τ)∥Hτ + ∥g1 − g2∥2L2

b(R,L2)

]
, ∀ t ≥ τ,

(3.1)

where C = C(R) ≥ 0.

The well-posedness of weak solutions for the problem can be shown by Galerkin
approximation and compactness method as in [14,19,29] on unbounded domain, so
the proof we omitted here.

Global existence of (weak) solutions u to (1.1) is classical, and based on the
continuous dependence of the solution on the initial data, problem (1.1) generates
a strongly continuous process, i.e.

U(t, τ) : Hτ → Ht, t ≥ τ ∈ R acting as U(t, τ)z(τ) = {u(t), ut(t)},

where u is the unique solution of problem (1.1) with initial time τ and initial
condition z = z(τ) = {u0, u1} ∈ Hτ .

3.1. Dissipation estimates

In order to prove the existence of backwards compact time-dependent attractors,
firstly, we make some backwards asymptotic estimates of the solution, such that
the process {U(t, τ)}t≥τ exists an increasing, bounded and time-dependent pullback
absorbing set:

Lemma 3.1. Assume that (1.2)-(1.8) and (2.3) are hold, for any t ∈ R, s ≤ t and
R0 > 0, there exists s0 := s0(s, t) > 0 such that for any s−τ ≥ s0, z(τ) ∈ Bτ (R0) ⊂
Hτ , ξ ∈ [τ − s, 0], there have

sup
s≤t

[
∥u(s+ ξ, τ, u0)∥2H2 + ε(s+ ξ)∥v(s+ ξ, τ, v0)∥2

]
≤ Ce−

δ0
2 ξ(1 +G(t)),

sup
s≤t

∫ s

τ

e
δ0
2 (r−s)(∥u(r, τ, u0)∥2H2 + ∥v(r, τ, u0)∥2)dr ≤ C(1 +G(t)), (3.2)

where G(t) is given by

G(t) := sup
s≤t

∫ s

−∞
e

δ0
2 (r−s)∥g(·, r)∥2dr, ∀ t ∈ R.
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Proof. Fixed t ∈ R, for any s ≤ t. Multiplying (1.1) by v(s) := v(s, τ, v0) =
ut(s) + δu(s) and integrating on Rn, we get

d

ds
[∥∆u(s)∥2 + λ∥u(s)∥2 + ε(s)∥v(s)∥2 + 2⟨F (x, u(s)), 1⟩]

+ 2δ∥∆u(s)∥2 + 2δλ∥u(s)∥2

− ε′(s)∥v(s)∥2 + 2

∫
Rn

(α(x)− δε(s))|v(s)|2dx− 2δ

∫
Rn

α(x)u(s) · v(s)dx

+ 2δ2ε(s)⟨u(s), v(s)⟩+ 2⟨(p− ∥∇u∥2)∆u, v⟩+ 2δ⟨f(x, u(s)), u⟩
=2⟨g(x, s), v⟩.

By Hölder, Young inequalities, we deduce

− ⟨(∥∇u∥2 − p)∆u, v⟩ ≥ 1

4

d

ds
(∥∇u∥2 − p)2 +

δ

2
(∥∇u∥2 − p)2 − δ

2
p2,

2⟨g(x, s), v⟩ ≤ α0

2
∥v(s)∥2 + 2

α0
∥g(x, s)∥2.

From (1.4), there exists L1 > 0, such that ∥α(x)∥L∞ < L1. Choosing 0 < δ ≤
min{α0

8L ,
λα0

2L2
1+Lα0

}, such that

1

2
α0 − 3δε(s) ≥ δε(s); 2δλ− 2δ2L2

1

α0
− δ3L ≥ δλ. (3.3)

Then combined with Hölder’s and Young’s inequalities, we get

2δλ∥u(s)∥2 − ε′(s)∥v(s)∥2 + 2

∫
Rn

(α(x)− δε(s))|v(s)|2dx

− 2δ

∫
Rn

α(x)u(s) · v(s)dx+ 2δ2ε(s)⟨u(s), v(s)⟩

≥(2α0 − 3δε(s))∥v∥2 + 2δλ∥u(s)∥2 − 2δL1∥u(s)∥∥v(s)∥ − δ3L∥u∥2

≥δε(s)∥v(s)∥2 + (2δλ− 2δ2L2
1

α0
− δ3L)∥u(s)∥2 + α0

2
∥v(s)∥2. (3.4)

Therefore, from (1.6), Hölder’s and Young’s inequalities, taking δ0 = min{δ, δc1},
there is

d

ds
E(s) + δ0E(s) +

α0

2
∥v(s)∥2 ≤ M +M∥g(s)∥2, (3.5)

where

E(s) = ∥∆u(s)∥2 + λ∥u(s)∥2 + ε(s)∥v(s)∥2 + 1

2
(∥∇u∥2 − p)2 + 2⟨F (x, u(s)), 1⟩,

and positive constant M = max{δp2 + 2δ∥ϕ2(x)∥, 2
α0

}.
Applying the Gronwall lemma to (3.5) on [τ, s+ ξ], ξ ∈ [τ − s, 0], it yields

E(s+ ξ) +
δ0
2
e−

δ0
2 ξ

∫ s+ξ

τ

e
δ0
2 (r−s)E(r)dr +

α0

2
e−

δ0
2 ξ

∫ s+ξ

τ

e
δ0
2 (r−s)∥v(r)∥2dr

≤e−
δ0
2 ξe−

δ0
2 (s−τ)E(τ) +Me−

δ0
2 ξ

∫ s+ξ

τ

e
δ0
2 (r−s)(1 + ∥g(·, r)∥2)dr. (3.6)
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Exploiting (1.5) as well as continuous embedding H2 ⊂ Lq+1, we know that for any
x ∈ Rn, u ∈ R there is∫

Rn

F (x, u)dx ≤ c3(1 + ∥u0∥q+1
H2 + ∥u0∥2). (3.7)

Thus, there exists s0 := s0(R0, s, t) > 0, such that when s− τ ≥ s0 it yields

e−
δ0
2 ξe−

δ0
2 (s−τ)E(τ) ≤ c4e

− δ0
2 ξ(1 +Rq+1

0 +R4
0 + p2) ≤ C(p, L,R0)e

− δ0
2 ξ. (3.8)

From the above estimates

E(s+ ξ) +
δ0
2
e−

δ0
2 ξ

∫ s+ξ

τ

e
δ0
2 (r−s)E(r)dr +

α0

2
e−

δ0
2 ξ

∫ s+ξ

τ

e
δ0
2 (r−s)∥v(r)∥2dr

≤Ce−
δ0
2 ξ(1 +

∫ s

−∞
e

δ0
2 (r−s)∥g(·, r)∥2dr). (3.9)

Recall (1.7), and ξ ≤ 0, we have

− 2

∫
Rn

F (x, u(s+ ξ))dx− δ0

∫ s+ξ

τ

e
δ0
2 (r−s−ξ)

∫
Rn

F (x, u(r))dxdr

≤2∥ϕ3(x)∥

≤2e−
δ0
2 ξ∥ϕ3(x)∥. (3.10)

Using (3.9)-(3.10), by considering the supremum over the past time s ≤ t, we get
that

sup
s≤t

∥U(s+ ξ, τ)zτ∥2Hs+ξ
+

δ0
2
e−

δ0
2 ξ sup

s≤t

∫ s+ξ

τ

e
δ0
2 (r−s)∥u(r, τ, u0)∥2H2dr

+
α0

2
e−

δ0
2 ξ sup

s≤t

∫ s+ξ

τ

e
δ0
2 (r−s)∥v(r)∥2dr

≤Ce−
δ0
2 ξ sup

s≤t
(1 +

∫ s

−∞
e

δ0
2 (r−s)∥g(·, r)∥2dr)

≤Ce−
δ0
2 ξ(1 +G(t)),

then the results is proved.

Lemma 3.2. Under the assumptions (1.2)-(1.8) and (2.3), for any initial data
z(τ) ∈ Bτ (R1) ⊂ H1

τ , there exists τ1 := τ1(R1), such that when s ≤ t there is

sup
s≤t

sup
z(τ)∈Bτ (R1)

{ε(s)∥A 1
4 v(s)∥2 + ∥A 3

4u(s)∥2 + λ∥A 1
4u(s)∥2}

+

∫ s

τ

e−
δ0
2 (s−r)∥A 1

4 v(r)∥2dr

≤C(1 +G(t) +G1(t) +
2G3(t)

δ0
), ∀ τ ≤ t, (3.11)

where

G1(t) := sup
s≤t

∫ s

τ

e
δ0
2 (r−s)∥g(·, r)∥2H1dr, ∀ t ∈ R.
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Proof. For any t ∈ R, s ≤ t, multiplying (1.1) by A
1
2 v(s) = A

1
2us(s) + δA

1
2u(s)

and integrating on Rn, we obtain

d

ds
[ε(s)∥A 1

4 v(s)∥2 + ∥A 3
4u(s)∥2 + λ∥A 1

4u(s)∥2] + 2⟨α(x)(v − δu(s)), A
1
2 v(s)⟩

− ε′(s)∥A 1
4 v(s)∥2 − 2δε(s)∥A 1

4 v(s)∥2 + 2δ2ε(s)⟨u,A 1
2 v⟩

+ 2δ∥A 3
4u∥2 + 2δλ∥A 1

4u(s)∥2

+ 2⟨(p− ∥∇u∥2)∆u,A
1
2 v⟩+ 2⟨f(x, u(s)), A 1

2 v(s)⟩

=2⟨g(x, s), A 1
2 v(s)⟩,

where

2⟨(p− ∥∇u∥2)∆u,A
1
2 v⟩ = d

dt
(∥∇u∥2∥A 1

2u∥2 − p∥A 1
2u∥2)

+ 2δ(∥∇u∥2∥A 1
2u∥22 − p∥A 1

2u∥2)− ∥A 1
2u∥2⟨∇u,∇ut⟩.

Combing with Hölder, Young inequalities

∥A 1
2u∥2|⟨∇u,∇ut⟩| ≤ C(∥A 1

2u∥6 + δ2∥u∥2 + ∥v∥2), (3.12)

2|⟨g(·, s), A 1
2 v⟩| ≤ α0

4
∥A 1

4 v∥2 + 4

α0
∥g(·, s)∥2H1 , (3.13)

2|⟨f(x, u), A 1
2 v⟩| = 2

∫
Rn

|∂f
∂u

(x, u) ·A 1
4u ·A 1

4 v +
∂f

∂x
(x, u) ·A 1

4 v|dx

≤ 2β∥A 1
4u∥ · ∥A 1

4 v∥+ 2∥ϕ4(x)∥∥A
1
4 v∥

≤ α0

2
∥A 1

4 v∥2 + 4β2

α0
∥A 1

4u∥2 + 4

α0
∥ϕ4(x)∥2. (3.14)

From the above estimates

d

ds
E1(s) + δ0E1(s) +

α0

4
∥A 1

4 v(s)∥2

≤C(∥g(·, s)∥2H1 + ∥A 1
4u(s)∥2 + ∥A 1

2u∥6 + ∥v∥2), (3.15)

where

E1(s) = ε(s)∥A 1
4 v(s)∥2 + ∥A 3

4u(s)∥2 + λ∥A 1
4u(s)∥2 + ∥∇u∥2∥A 1

2u∥2 − p∥A 1
2u∥2.

By virtue of Lemma 2.1,

∥∇u∥ ≤ η∥u∥+ Cη∥∆u∥, ∀η > 0,

and applying the Gronwall lemma to (3.15) over [τ, s], from (3.2) we get

E1(s) +
δ0
2

∫ s

τ

e
δ0
2 (r−s)E1(r)dr +

α0

4

∫ s

τ

e
δ0
2 (r−s)∥A 1

4 v(r)∥2dr

≤e−
δ0
2 (s−τ)E1(τ) + C

∫ s

τ

e−
δ0
2 (s−r)(1 + ∥g(·, r)∥2H1

+ ∥A 1
4u(s)∥2 + ∥A 1

2u∥6 + ∥v∥2)dr. (3.16)
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Then, by considering the supremum over the past time s ≤ t, we infer

sup
s≤t

[
E1(s) +

δ0
2

∫ s

τ

e
δ0
2 (r−s)E1(r)dr +

α0

4

∫ s

τ

e
δ0
2 (r−s)∥A 1

4 v(r)∥2dr
]

≤C(1 +G(t) +G1(t)) +G3(t) sup
s≤t

∫ s

τ

e
δ0
2 (r−s)dr)

≤C(1 +G(t) +G1(t) +
2G3(t)

δ0
),

the result is proved.

3.2. Backwards asymptotic estimates outside a ball

Lemma 3.3. Assume that (1.2)-(1.8) and (2.3)-(2.5) are hold, for any η > 0, t ∈ R
there exist T1 = T1(η,R) and K = K(η, t) > 1, such that when τ ≥ T1, k ≥ K and
z(τ) ∈ Bτ (R1),

sup
s≤t

∫
Ωc

k

(
ε(s)|v(s, τ, v0)|2 + |∆u(s, τ, u0)|2 + λ|u(s, τ, u0)|2

)
dx ≤ Cη,

where Ωc
k = {x ∈ Rn : |x| ≥ k}, C is a positive constant.

Proof. Choosing smooth function θ satisfies: for any s ∈ R, 0 ≤ θ ≤ 1, and

θ(s) =

0, when 0 ≤ |s| ≤ 1,

1, when |s| ≥ 2,
(3.17)

so, there exists a positive contant C̃0, such that for any s ∈ R+, max{|θ′(s)|, |θ′′(s)|}
≤ C̃0.

Let s ≤ t with t ∈ R fixed. Taking the inner product of (1.1) with θkv(s) :=

θkv(s, τ, v0) = θ( |x|
2

k2 )v(s, τ, v0) in L2(Rn), we infer

d

ds

[ ∫
Rn

θk ·
(
ε(s)|v(s)|2 + λ|u(s)|2

)
dx

]
+ 2

∫
Rn

θkα(x)(v(s)− δu(s))v(s)dr

+ (−2δε(t)− ε′(s))

∫
Rn

θk · |v|2dx+ 2δ2ε(t)

∫
Rn

θk · u · vdx

+ 2

∫
Rn

θk∆
2u(s) · v(s)dx+ 2δλ

∫
Rn

θk|u(s)|2dx

=2

∫
Rn

θk(p− ∥∇u∥2) · v ·∆udx− 2

∫
Rn

θkf(x, u(s))v(s)dx

+ 2

∫
Rn

θkg(x, s)v(s)dx. (3.18)

Next, we deal with each term in the equation term by term:
Firstly,

2

∫
Rn

θk∆
2u · vdx ≥ d

dt

∫
Rn

θk|∆u|2dx+ 2δ

∫
Rn

θk|∆u|2dx

− (
4
√
2C̃0

k
+

8C̃0

k2
)∥∆u∥2 − 4

√
2C̃0

k
∥∇v∥2 − 8C̃0

k2
∥v∥2. (3.19)
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Similar to (3.4), we get

2

∫
Rn

θkα(x)(v − δu)vdx− (2δε(t))ε′(t))

∫
Rn

θk · |v|2dx

+ 2δ2ε(t)

∫
Rn

θk · u · vdx

≥ (α0 − 3δε(t))∥v∥2 − (
δ2L1

α0
+ δ3L)

∫
Rn

θk · |u|2dx, (3.20)

2|
∫
Rn

θkg(x, t)vdx| ≤
α0

2

∫
Rn

θk|v|2dx+
2

α0

∫
Rn

θk|g(x, t)|2dx, (3.21)

|2
∫
Rn

θk(p− ∥∇u∥2) · v ·∆udx|

≤ α0

2

∫
Rn

θk|v|2dx+
4

α0
(p2 + ∥∇u∥4)

∫
Rn

θk|∆u|2dx. (3.22)

From the above estimates

d

ds
E2(s) + δ0E2(s)

≤(
4
√
2C̃0

k
+

8C̃0

k2
)∥∆u(s)∥2 + 4

√
2C̃0

k
∥∇v(s)∥2 + 8C̃0

k2
∥v(s)∥2

+
4

α0
(p2 + ∥∇u∥4)

∫
Rn

θk|∆u|2dx+ (
δ2L1

α0
+ δ3L)

∫
Rn

θk · |u|2dx

+
2

α0

∫
Rn

θk|g(x, s)|2dx+ c

∫
Rn

θk[|ϕ2(x)|2 + |ϕ3(x)|2]dx,

where

E2(s) =

∫
Rn

θk(|∆u(s)|2 + λ|u(s)|2 + ε(s)|v(s)|2 + 2F (x, u(s)))dx.

Take k1(η) > 0, and for any 0 < η < 1, such that when k ≥ k1(η), there is

(
4
√
2C̃0

k
+

8C̃0

k2
)∥∆u∥2 + 4

√
2C̃0

k
∥∇v∥2 + 8C̃0

k2
∥v∥2

+
4

α0
(p2 + ∥∇u∥4)

∫
Rn

θk|∆u|2dx+ (
δ2L1

α0
+ δ3L)

∫
Rn

θk · |u|2dx

<η((p2 + 1)∥∆u∥2 + ∥∇v∥2 + ∥v∥2 + ∥∇u∥4∥∆u∥2),

and there exists k2(η) > 0, such that when k ≥ k2(η),

c

∫
Rn

θk[|ϕ2(x)|2 + |ϕ3(x)|2]dx < η.

Thus, we get the following inequality

d

ds
E2(s) + δ0E2(s)

≤cη(1 + ∥∆u∥2 + ∥∇v(s)∥2 + ∥v(s)∥2 + ∥∇u∥4∥∆u∥2) +
∫
Rn

θk|g(x, s)|2dx.
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Applying the Gronwall lemma on [τ, s], from Lemma 3.1-3.2, taking K1 =
max{k1, k2}, for any s ≤ t, we get

E2(s) ≤e−δ0(s−τ)E2(τ) + cη

∫ s

τ

e−δ0(s−r)[∥∆u(r)∥2 + ∥∇v(r)∥2 + ∥v(r)∥2

+ ∥∇u∥4∥∆u∥2]ds+
∫ s

τ

e−δ0(s−r)

∫
Rn

θk|g(x, r)|2dxdr

≤C(R0)e
−δ0τ + Cη(1 +G(t) +G1(t) + (1 +

1

δ0
)G3(t))

+ C

∫ s

τ

e−δ0(s−r)

∫
|x|≥k

|g(·, r)|2dxdr.

In line with (3.8), there is

e−δ0(s−τ)E2(τ) ≤ e−δ0(s−τ)C(Rq+1
1 +R4

1 + p2) < Cη, ∀ τ < s.

Then from (1.7), there exists K ≥ K1, τ ≥ T1, such that

−2

∫
Rn

θkF (x, u(s))dx ≤ −2c2

∫
Rn

θk|u|q+1 + 2

∫
Rn

θkϕ3(x)dx ≤ Cη.

So, for all k ≥ K, τ ≥ T1, we get

E2(s) ≤Cη(1 +G(t) +G1(t) +G3(t)) + C

∫ s

τ

e−δ0(s−r)

∫
|x|≥k

|g(·, r)|2dxdr.

Since G(·) is increasing and bounded, by taking the supremum with respect to the
past time and for K large enough, we infer

sup
s≤t

∫
Ωc

k

(|∆u(s)|2 + |u(s)|2 + ε(s)|v(s)|2)dx

≤Cη + sup
s≤t

∫ s

τ

e−δ0(s−r)

∫
|x|≥k

|g(·, r)|2dxdr.

Combing with (2.4), the result is proved.

3.3. Backwards asymptotic estimates inside a ball

Next, we prove the process U(t, τ) is backwards pullback asymptotically compact
inside a ball under the topology of Ht. For Q√

2k = {x ∈ Rn : |x| <
√
2k}, k ≥ 1.

Let qk(x) = 1− θk(x), it is obvious that
û(t) = û(t, τ, û0) = q(

|x|2

k2
)u(t, τ, u0),

v̂(t) = v̂(t, τ, v̂0) = q(
|x|2

k2
)v(t, τ, v0),

(3.23)
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and for any t ∈ R, it satisfies the following equation

v̂ =
dû

dt
+ δû, x ∈ Q√

2k,

ε(t)
dv̂

dt
+ (α(x)− δε(t))v̂ +∆2û− δ(α(x)− δε(t))û+ λû+ qkf(x, u)

= qkg(x, t) + 4∆∇qk∇u+ 6∆qk∆u+ 4∇qk∆∇u+ u∆2qk

+(p− ∥∇u∥2) · qk ·∆u, x ∈ Q√
2k,

û(x, τ) = û0 = qku0, v̂(x, τ) = v̂0 = qkv0, x ∈ Q√
2k,

û = v̂ = 0, |x| =
√
2k.

(3.24)

Consider characteristic function

Aû = λû, x ∈ Q√
2k; û =

∂û

∂n
= 0, x ∈ ∂Q√

2k, (3.25)

and there exists a family of eigenvalues {λi}i∈N corresponding to the eigenfunctions
{ei}i∈N, which satisfies

λ1 ≤ λ2 ≤ · · · ≤ λi ≤ · · · , λi → +∞ (i → +∞),

and {ei}i∈N is orthogonal in H2
0 (Q

√
2k). For any n, let Xn = span{e1, · · · , en}

and Pn : L2(Q√
2k) → Xn be the projection operator. Then for any (û, v̂) ∈

H2
0 (Q

√
2k)× L2(Q√

2k), there exists a unique orthogonal decomposition

(û, v̂) = Pn(û, v̂)⊕ (I − Pn)(û, v̂) := (û1, v̂1) + (û2, v̂2).

Lemma 3.4. Assume that (1.2)-(1.8) and (2.3)-(2.5) are hold, for η > 0, τ ∈
R, R > 0, there exists T0 := T0(η,R1) > 0,K = K(η) ≥ 1, N = N(η, t) ≥ 1 and
τ ≥ T0, k ≥ K, n ≥ N, z(τ) ∈ Bτ (R1), when (û0, v̂0) ∈ Bτ , the solution (û, v̂)
satisfies

sup
s≤t

∥(I − Pn)U(s, s− τ, z0)(û0, v̂0)∥2Hs(
√
2k)

≤ η.

Proof. Let t ∈ R, n ∈ N, for each s ≤ t, taking the inner product of v̂2 :=
v̂2(s, τ, qkv0) with the second equation of (3.24) on L2(Q√

2k), we obtain

1

2

d

ds
E3(s) + δ0E3(s) ≤⟨qkfu(x, u)us, û2⟩+ ⟨qkg(x, t) + 4∆∇qk∇u+ 6∆qk∆u

+ 4∇qk∆∇u+ u∆2qk, v̂2⟩+ ⟨(p− ∥∇u∥2) · qk ·∆u, v̂2⟩,

where

E3(s) = ε(s)∥v̂2(s)∥2 + ∥∆û2(s)∥2 + λ∥û2(s)∥2 + 2⟨qkf(x, u), û2(s)⟩.

For any η > 0, there exists K := K(η) ≥ 1 such that for any k ≥ K1,

2⟨qkg(x, s), v̂2⟩ ≤
α0

4
∥v̂2∥2 + C∥(I − Pn)g(x, s)∥2,

⟨4∆∇qk∇u+ 6∆qk∆u+ 4∇qk∆∇u+ u∆2qk, v̂2⟩

≤ α0

4
∥v̂2∥2 + Cη(∥u∥2H2 + ∥∇∆u∥2),
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|⟨(p− ∥∇u∥2)∆u · qk ·∆u, v̂2⟩| ≤
α0

4
∥v̂2∥2 + Cη(p2∥∆u∥2 + ∥∇u∥6 + ∥∆u∥6).

For nonlinearities, we can obtain

2⟨qkfu(x, u)us, û2⟩

≤2

∫
Q√

2k

(c0|u|q−1 + ϕ1(x)) · qk · us · û2dx

≤2c0∥u∥q−1
L10 · ∥us∥ · ∥û2∥

L
10

6−q
+ 2∥ϕ1(x)∥L∞∥us∥ · ∥û2∥

≤C∥u∥q−1
2 · ∥us∥ · ∥û2∥

6−q
5 ∥û2∥

q−1
5

L10 + C∥us∥ · ∥û2∥

≤Cλ
q−6
10

i+1 ∥u∥
q−1
2 · ∥us∥ · ∥û2∥2 + Cλ

− 1
2

i+1∥us∥ · ∥û2∥2

≤δ0
4
∥û2∥2 + Cλ

q−6
5

i+1 (∥u∥
10(q−1)

4
2 + ∥u∥102 + ∥v∥10) + Cλ−1

i+1(∥u∥
2 + ∥v∥2)

≤δ0
4
∥û2∥2 + Cλ

q−6
5

i+1 (1 + ∥u∥102 + ∥v∥10) + Cλ−1
i+1(∥u∥

2 + ∥v∥2). (3.26)

So for any k ≥ K, we infer

d

ds
E3(s) + δ0E3(s)

≤C(λ
q−6
5

i+1 + λ−1
i+1)(1 + ∥u∥102 + ∥v∥10)

+ Cη(∥u∥2H2 + ∥∇∆u∥2 + ∥∇u∥6 + ∥∆u∥6) + C∥(I − Pn)g(·, s)∥2. (3.27)

Applying the Gronwall lemma on [τ, s], for all k ≥ K,

E3(s) ≤e−δ0(s−τ)E3(τ) + c(λ
q−6
5

i+1 + λ−1
i+1)

∫ s

τ

e−δ0(s−r)(1 + ∥u(r)∥102 + ∥v(r)∥10)dr

+ Cη

∫ s

τ

e−δ0(s−r)(∥u(r)∥2H2 + ∥∇u∥6 + ∥∆u∥6 + ∥∇∆u(r)∥2)dr

+ C

∫ s

τ

e−δ0(s−r)∥(I − Pn)g(·, r)∥2dr. (3.28)

We now consider the supremum of each term in (3.28) over the past time s ≤ t, and
then prove all terms on the right side of the inequality tend to zero.

By (3.7), for τ < T0 < t, we have

e−δ0(s−τ)E3(τ) ≤ e−δ0τ (1 + (L+ 1)R2
1 +Rq+1

1 ) < Cη. (3.29)

Since 1 ≤ q ≤ n
n−4 and when i → ∞, there is λi → ∞, combined with the

increasing property of (3.2) and G(·), there exists N := N(η) ≥ 1, such that for all
i ≥ N

C(λ
p−6
5

i+1 + λ−1
i+1) sup

s≤t

∫ s

τ

e−δ0(s−r)(1 + ∥u(r)∥102 + ∥v(r)∥10)dr

≤CηG5(t) sup
s≤t

∫ 0

τ−s

eδ0rdr

≤Cη

δ0
(1 +G5(t)). (3.30)
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Similarly, from Lemma 3.1-3.2, for any τ ≥ T0 we get

Cη

∫ 0

−τ

eδ0r(∥u(r + s)∥2H2 + ∥∇∆u(r + s)∥2 + ∥∇u(r + s)∥6 + ∥∆u(r + s)∥6)dr

≤Cη(1 +G3(t) +G1(t)). (3.31)

By (2.5), we know

c lim
n→∞

sup
s≤t

∫ s

τ

e−δ0(r−τ)∥(I − Pn)g(·, r)∥2dr = 0.

Combined with the above estimates, for all k ≥ K, τ ≥ T0 and n ≥ N , there is

sup
s≤t

E3(s) ≤ Cη(1 +G5(t) +G3(t) +G1(t)).

Reusing (1.5) and (3.2), for all τ ≥ τ1, it follows

2| sup
s≤t

⟨qkf(x, u), û2(s)⟩| ≤2 sup
s≤t

(c0∥u(s)∥q2q∥û2(s)∥+ 2∥ϕ1(x)∥∥û2(s)∥)

≤Cλ
− 1

2
i+1 sup

s≤t
(∥u(s)∥q2∥∆û2(s)∥+ ∥∆û2(s)∥ · ∥u∥)

≤1

2
∥∆û2(s)∥2 + Cλ−1

i+1(1 +G(t) +Gq(t)). (3.32)

Then for any k ≥ K, n ≥ N, τ ≥ T0, we obtain

sup
s≤t

(∥(I − Pn)û(s, τ, qku0))∥2H2
0 (Q(

√
2k))

+ ε(s)∥(I − Pn)v̂(s, τ, v̂0)∥2L2(Q√
2k)

)

≤cη(1 +G5(t) +G3(t) +G1(t)).

Combining with the boundedness of G(t), G1(t), the result is proved.

3.4. Backwards compact attractors in Ht

Theorem 3.1. Assume that (1.2)-(1.8) and (2.3)-(2.5) are hold, then the problem
(1.1) generated the process U(t, τ) possesses a backwards compact time-dependent
attractor A = {At}t∈R in Ht, which is the minimal one among the backwards com-
pact and pullback attracting sets in Ht.

Proof. For each t ∈ R, let

K(t) = {(u, v) ∈ Ht : ∥(u, ut)∥Ht
≤ C(1 +G(t))}. (3.33)

Since G(·) is increasing and finite, we can conclude that the time-dependent set K
is increasing and bounded. Combining with (3.2), we infer that K is a pullback
absorbing set.

In the following we will show that K is backwards pullback asymptotic com-
pactness. For any t ∈ R, we need only prove whenever sn ≤ t, τn → −∞, for any
bounded set {u0,n, v0,n} in the topological sense of Ht,

{(un, vn)} := {(u(sn, τn, u0n), v(sn, τn, v0n))} is precompact in Ht.
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Combined with Lemma 3.3, we know that there exists n1 ∈ N, k1 ≥ 1, such
that ∫

|x|≥k1

(|un|2 + |∆un|2 + ε(t)|vn|2)dx < η. (3.34)

By Lemma 3.4, for n ∈ N, r ≥ k1, there exists n2 ≥ n1 such that

∥(I − Pn)û(s, τ, qku0))∥2H2
0 (Q

√
2r)

+ ε(s)∥(I − Pn)v̂(s, τ, v̂0)∥2L2(Q√
2r)

< η. (3.35)

On the other hand, from (3.2), there exists n3 ≥ n2 such that for all n ≥ n3,

∥un∥2H2 + ε(t)∥vn∥2 ≤ C(1 +G(t)). (3.36)

For any fixed T, ζ ∈ [T, t], from (1.3), we know ε(ζ) is bounded, which implies
that the sequence {(un, vn)} is bounded in H2(Rn)×L2(Rn) and thus {(ûn, v̂n)} is
also bounded in H2

0 (Q
√
2r) × L2(Q√

2r). Therefore, the sequence {(Piun, Pivn)} is

bounded in the finite-dimensional subspace Pi(H
2
0 (Q

√
2r)) × Pi(L

2(Q√
2r)), which

further implies that the sequence {(Piun, Pivn)} has a convergent subsequence in
H2

0 (Q
√
2r)×L2(Q√

2r). It is a Cauchy sequence. Subsequently, there exists n4 ≥ n3

such that for all n,m ≥ n4, there is

∥(Piun, Pivn)− (Pium, Pivm)∥2Ht(Q√
2r)

< η. (3.37)

Since (ûn, v̂n) = (qkun, qkvn) = (un, vn) on Qr, it follows from (3.36) and (3.37)
that for all n,m ≥ n4,

∥(un − um, vn − vm)∥2Ht(Qr)

=∥(ûn − ûm, v̂n − v̂m)∥2Ht(Qr)

≤∥(ûn − ûm, v̂n − v̂m)∥2Ht(Q√
2r)

≤2∥Pi(ûn − ûm)∥2H2
0 (Q

√
2r)

+ 2ε(t)∥Pi(v̂n − v̂m)∥2L2(Q√
2r)

+ 2∥(I − Pi)ûn∥2H2
0 (Q

√
2r)

+ 2ε(t)∥(I − Pi)v̂n∥2L2(Q√
2r)

+ 2∥(I − Pi)ûm∥2H2
0 (Q

√
2r)

+ 2ε(t)∥(I − Pi)v̂m∥2L2(Q√
2r)

<6η. (3.38)

Note that, (3.35) holds true if k1 is replaced by the larger r. It follows from (3.35)
and (3.38) that for all n,m ≥ n4,

∥(un − um, vn − vm)∥2Ht
≤∥(un − um, vn − vm)∥2H2

0 (Qr)×L2(Qr)
+ 2∥un∥2H2(Qc

r)

+ 2ε(t)∥vn∥2L2(Qc
r)
+ 2∥um∥2H2(Qc

r)
+ 2ε(t)∥vm∥2L2(Qc

r)

<10η.

Therefore, the subsequence {(un, vn)} is a Cauchy sequence and converges in Ht,
which implies the theorem is proved.
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